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Abstract

Neural sexual differentiation begins during embryogenesis and continues after birth for a variable
amount of time depending on the species and brain region. Because gonadal hormones were the
first factors identified in neural sexual differentiation, their role in this process has eclipsed
investigation of other factors. Here, we use a mouse with a spontaneous translocation that
produces four different unique sets of sex chromosomes. Each genotype has one normal X-
chromosome, and a unique second sex chromosome, creating the following genotypes: XY*X, XX,
XY*, XXY* This Y* mouse line is used by several laboratories to study two human aneuploid
conditions: Turner and Klinefelter syndromes. Since sex chromosome number affects behavior
and brain morphology, we surveyed brain gene expression at embryonic days 11.5 and 18.5 to
isolate X-chromosome dose effects in the developing brain as possible mechanistic changes
underlying the phenotypes. We compared gene expression differences between gonadal males and
females as well as individuals with one versus two X-chromosomes. We present data showing, in
addition to genes reported to escape X-inactivation, a number of autosomal genes are differentially
expressed between the sexes and in mice with different numbers of X-chromosomes. Based on our
results, we can now identify the genes present in the region around the chromosomal break point
that produces the Y* model. Our results also indicate an interaction between gonadal development
and sex chromosome number that could further elucidate the role of sex chromosome genes and
hormones in the sexual differentiation of behavior.
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Introduction

Sex differences in the brain and behavior are widespread in animals. Neural development
occurs before and just after birth, and during this period sex differences are organized. The
powerful role of androgens on sexually dimorphic behaviors was described over 50 years
ago (Phoenix et al. 1959). Since then, much attention has focused on hormonal modulation
of brain sexual dimorphisms. Yet, in addition to sex differences in hormone secretions,
males and females have differences in gene expression arising from genomic imprinting and
sex chromosomes (Arnold 2009).
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Two of the mouse models used to examine these sex chromosome effects on brain and
behavior include the Four Core Genotypes in which gonadal (testes vs. ovaries) and
chromosomal (XX vs. XY) sex are uncoupled (De Vries et al. 2002), and the SF1 knock-out
mouse that has normal sex chromosomes but lacks gonads (Majdic and Tobet 2011,
Budefeld et al 2012). Here, we use a third model, the Y* mouse which offers a way to
assess the roles of X-chromosome number (Eicher et a/. 1991). In addition to this purpose,
several laboratories have used these mice to model human aneuploid conditions, particularly
Klinefelter syndrome (XXY). Data from all these models provide evidence that sex
chromosome complement is involved in behavior (Gatewood et a/. 2006; Quinn et al. 2007;
Gioiosa et al. 2008; Grgurevic et al. 2008; Park et al. 2008; Liu et al. 2010; Cox and
Rissman 2011; Bonthuis et al. 2012; Grgurevic et al. 2012).

To identify sexually dimorphic gene targets during neural development that may potentially
underlie behaviors regulated by sex chromosome, we compared the four genotypes
generated in the Y* model. The Y* mouse exhibits a rearrangement of the pseudoautosomal
regions (PAR) which creates the unique Y* chromosome. This chromosome contains Y-
chromosome genes, an inverted duplication of a partial PAR, and a small amount of X-
chromosome including the centromere (Eicher ef al. 1992; Burgoyne et al. 1998). Mating the
XY* male with a normal XX female results in offspring with four genotypes: normal XX
females (XX), 1X females, (XY*X), 2X males (XXY*) and 1X males (XY*). In this cross,
the XY* chromosome consists of an X-chromosome, with an incomplete PAR, attached to
the Y* chromosome. The Y*X contains the X centromere with X-chromosome genes close
to PAR,; it lacks any Y-chromosome genes. Comparisons between males and females with
one or two X-chromosomes enable us to determine which genes are differentially
represented in each genotype.

In this study, we collected whole heads at embryonic (E) day 11.5 prior to gonadal
differentiation and whole brains from embryos on day E18.5, a time point after which
gonads differentiate to become testes or ovaries. We used these time points because gonadal
differentiation in mice occurs between E12-14 (Koopman et al. 1990; Vazquez et al. 1998)
and by E18.5 testes are producing androgens (vom Saal and Bronson 1980). We determined
gene expression differences using microarrays and confirmed interesting candidates with
quantitative real time PCR. Through this analysis, we discovered another gene, Ms/3,
located on the Y* chromosome.

Materials and Methods

Animals

Y* mice (B6Ei.LT-Y(IsSXPAR;Y)EI/EiJ, strain# 002021) were purchased from Jackson
Laboratories and bred in our facilities. All mice used in this study were in the C57BL/6JEiJ
background and housed in constant conditions under a 12:12 light cycle (lights on at 0600
h). Food (Harlan Teklad diet #7912) and water were provided ad libitum. All experimental
procedures were approved by University of Virginia Animal Use and Care Committee and
performed according to the AALAC guidelines. For these studies, males from the XY* line
were mated with females from the same substrain to produce offspring with four genotypes
(Table 1): gonadal females with two copies of the complete X-chromosome (XX), females
with one complete X-chromosome and a PAR with a few X-chromosome genes (XY*X),
males with one sex chromosome containing all X-chromosome genes, the unique Y-
chromosome genes, a small subset of X-genes, as well as two duplications and one deletion
in the PAR (XY?*), and males with the sex chromosome just described plus one normal X-
chromosome (XXY*). Adult females (n=7) were paired with fertile males and checked daily
for the presence of mating plugs. The day that a plug was found was designated as
embryonic day 0.5 (E0.5). On E11.5 and E18.5 embryos were rapidly removed from deeply
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anesthetized pregnant dams between 1000 and 1200h and kept in ice-cold Dulbecco's
phosphate buffered saline. Four dams were used to harvest litters at E11.5 and three dams
were sacrificed at E18.5. Whole heads were removed from E11.5 embryos (n=2-4/
genotype) and whole brain was dissected from E18.5 fetuses (n=2—4/genotype) and
immediately flash frozen and stored at —80°C until RNA extraction. Pups were selected
based on intrauterine position to reduce any potential variation from hormones produced by
neighboring embryos (vom Saal 1989). Only mice residing next to zero or one male in utero
were used for our analysis.

To determine sex and genotype, RNA from embryonic mice was isolated from tail clippings
as previously described (Park et al. 2008) and reverse transcribed into cONA. We measured
XistmRNA as an indication for the number of X chromosomes since Xist is expressed only
when an inactivated X chromosome is present and thus a PCR product only appears in
samples containing two or more X chromosomes. The primers used for X7st genotyping
were 5 TAAGGACTACTTAACGGGCT 3’ (forward) and 5’
TACTCAGACATTCCCTGGCA 3’ (reverse) and we normalized the product to GAPDH as
an endogenous control. The primers used for GAPDH were 5’
ACCACAGTCCATGCCATCAC 3’ (forward) and 5 TCCACCACCCTGTTGCTGTA 3’
(reverse). To determine the gonadal sex of each embryo, we assayed for the presence or
absence of the spermiogenesis specific transcript (SstyZ) which is only present on the Y-
chromosome. The primers used for SstyZ were 5> CTGGAGCTCTACAGTGATGA 3’
(forward) and 5> CAGTTACCAATCAACACATCAC 3’ (reverse) and we normalized the
product to myogenin as an endogenous control; 5> TTACGTCCATCGTGGACAGCAT 3’
(forward) and 5 TGGGCTGGGTGTTAGTCTTAT 3’ (reverse). In addition to this, we used
gene expression profiles across chromosomes X and Y to confirm genotypes. As shown in
Supplemental Figure 1, replicate samples clustered together according to age and genotype
based on our principle component analysis of chromosome X- and Y-gene expression
profiles.

RNA isolation and microarray hybridization

Total RNA was extracted from individual embryonic heads (E11.5) or whole brain (E18.5)
in Trizol reagent (Invitrogen) according to the manufacturer's protocol. RNA concentration
and quality was assessed by the Agilent 2100 Bioanalyzer (Agilent). Briefly, total RNA (1
ug) was transcribed into double-stranded cDNA using the One-cycle Targeting and Control
Reagent kit (Affymetrix, Santa Clara, CA). Biotin-labeled cRNA was synthesized from
cDNA, purified and fragmented according to manufacturer's instructions. Labeled cCRNA
from individual animals (n = 2-4/group, each from a different litter) was hybridized to a
Mouse Genome 430 2.0 array (Affymetrix) for each sample (n = 24 total microarrays).

Statistical analysis of microarrays

Microarray data were processed using GeneChip Operating Software v4.1 (GCOS,
Affymetrix). Quality control analyses were performed on the array data including intensity
histogram plots, calculation of background levels, and fraction of probe sets detecting RNA.
As shown in Supplemental Figures 2 and 3, we generated normalized unscaled standard
error (NUSE) and relative log expression (RLE) plots, which are sensitive indicators of
hybridization quality (Gentleman et a/. 2005). The data were further checked for
reproducibility by generating MvA plots which are pairwise scatter plots of M = difference
of log intensities (y-~axis) versus A = average log intensities (x-axis) for all replicates. All
arrays were determined to be acceptable and further analyzed using GCRMA, a low-level
analysis algorithm to arrive at estimates of relative gene expression levels. We performed
modified t-tests within age groups to compare gene expression differences between
genotypes as well as between age groups using the limma package in the Bioconductor
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software suite (Smyth 2004). In order to arrive at robust differences in gene expression that
can be detected by qPCR, we applied a 1.5 fold change and 20% false discovery rate (FDR)
cutoff for each comparison. The FDR was calculated using the Benjamini-Hochberg
procedure (Benjamini and Hochberg 1995). We also assessed reproducibility and confirmed
genotypes by generating a principle component plot (Supplemental Figure 1) using the
plotPCA function from the Affycoretools package within Bioconductor using normalized,
log2 GCRMA expression values for all probe sets on X- and Y-chromosomes.

Quantitative real time PCR

Total RNA was isolated from the whole heads (E11.5) and the brain tissue (E18.5) from
male and female embryos (n=2-4/group, each from a different litter). cDNA was generated
from 1 pg of total RNA by reverse transcription with the iScript cDNA kit (Bio-Rad).
Quantitative real time PCR was performed using the OneStep™ System (ABI) according to
the manufacturer’s instructions for SYBR Green based detection. Samples were run in
triplicates on either one or two plates and the average values were analyzed. SYBR Green
primers were designed for BC022906, Eif2s3x, Hces, Kmdsc, Kdméa, Mid1, Xist, Msl3,
Msl2, Msl1, Myst1, Dxh9and Ppib (control gene). Primer sequences for these genes can be
found in Supplemental Table 1. Quantification of candidate gene expression was calculated
based on the threshold cycle (C;) for each well using the provided software and normalized
to peptidylprolyl isomerase B (Ppib) as the endogenous control. Relative amount of gene
expression was scaled to XX females as the reference sample. All data was analyzed using
NCSS (2007). For data analysis, we used two-way ANOVA with gonadal sex and X-
chromosome number as factors. Significant results were assessed by Tukey-Kramer's post
hoc tests that adjust significance levels to take multiple comparisons into account.

Copy number assay

Results

Genomic DNA was extracted from adult cerebellum of the four Y* genotypes: XX, XY*X,
XXY* and XY*. For comparison, genomic DNA was isolated from whole brain of E18.5
wild type male and female C57BL/6J embryos. DNA was isolated using standard
phenol:chloroform extraction procedures. Briefly, brain tissue was homogenized in TE
buffer and protein was digested using proteinase K. DNA was extracted twice using
phenol:chloroform:isoamyl alcohol, then precipitated with 3M sodium acetate in ethanol.
Isolated DNA was washed in ethanol, resuspended in TE buffer and any remaining RNA
was digested by RNase A. The amount and purity of DNA was assessed by
spectrophotometer. 20ng of DNA was used in a PCR reaction to determine the relative
amount of Ms/3, Heesand BC022960 within each genotype and normalized to
peptidylprolyl isomerase B (Poib) as the endogenous control. The relative amount of each
gene of interest was calculated using the AA Ct method (Livak and Schmittgen 2001). For
copy number analysis, relative amount of genomic DNA was normalized to Apibas an
endogenous control and XY C57BL/6 males were used for the reference sample. Thus, the
relative gene copy in C57BL/6 males was set to 1. For data analysis, we used two-way
ANOVA with gonadal sex and X-chromosome number as factors. Significance was
determined by Tukey-Kramer post hoc tests.

Sex differences in Y* mice prior to and after gonad differentiation

We compared E11.5 male and female embryos with one or two X-chromosomes to
determine which genes were differentially expressed between males and females before
gonadal differentiation (Figure 1); 32 transcripts were significantly altered (Table 2). Of
these, four Y-chromosome genes and 16 autosomal genes differed between XY*X and XY*.
Genes encoding kinases (Frk and Mobk/1k) or a voltage-gated calcium channel that
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regulates AMPA activation (Cacng5), as well as a few genes that likely play a role in cell
growth and or immune response (Nedd9, Cyré61, Warl, Defcr3and Ebi3) were significantly
different by sex in mice with one X-chromosome. Frkand Nedd9were also altered in the
XY*X and XX female comparison, thus this change is not related to gonadal sex and may be
produced by non-gonadal effects of Sry, other Y-chromosome genes, or some other genetic
differences between XY* and XY*X,

At E11.5, comparisons between XXY* and XX mice revealed 28 differentially expressed
transcripts (Table 2); 13 autosomal genes were significantly different. In general, genes
involved in signaling and transport within the cell (i.e. syntaxin 5a and dystonin) or involved
in synaptic plasticity and myelination (neuronal pentraxin 2, AjptxZ, and SH3 domain and
tetratricopeptide repeat 2, Sh3tc2) differed in males and female with two X-chromosomes.
Src homology2 domain (She), GTP-binding protein 8 (Gipbp8) and Scm-like with four mbt
domains (SfmbtI), all genes that encode for proteins involved in tyrosine kinase signaling
and transcriptional repression were decreased in XXY* males. Two genes with putative roles
in melanin synthesis, 7rpml1, transient receptor potential cation channel m1, and 7yrp1,
tyrosinase-related protein 1 are also decreased in XXY* males as compared to XX females.

Four Y-chromosome genes represented by 7 probe sets were higher in both XY* and XXY*
males when compared to their female counterparts. Kadmbad, Eif2s3y, Dax3y, and Uty all
have paralogs on the X chromosome that escape X-inactivation. One additional Y gene,
RNA binding motif protein, Y chromosome, member A1, (Rbmylal) was elevated in XXY*
vs. XX.

At embryonic day 18.5, following gonadal differentiation, 24 transcripts were differentially
expressed between males and females with one X-chromosome (Figure 1). Two transcripts
encode receptors: Ht5b, serotonin receptor 5b, and Rorb, a nuclear receptor with no
currently defined function, but associated with neurological disease. One protein kinase A
subunit, Prkar1b, was increased in XY*X females as compared to XY* males. As in the
E11.5 comparisons, four Y-linked transcripts, Kdmbd, Eif2s3y, Dax3y and Uty, were
expressed in both XY* and XXY* males, but not in females.

When XXY* males and XX females were compared, 45 transcripts were differentially
expressed (Table 2). One of these genes, CuxZ, cut-like homeobox 2, was higher in XX
females when compared to XXY* males and recently this same sex difference was noted in
female mouse liver (Conforto and Waxman 2012). In our study, Cux2was also increased in
XX females when compared to XXY* males and XY*X females. This gene is involved in
dendritic spine morphology in brain and could be important for sex differences. A few
receptors important for neuronal signaling were influenced by sex in this comparison as
well. The ionotropic glutamate receptor, AMPA (Grik2), GABA A receptor gamma subunit
(Gabrgl), the serotonin receptor (Hr1a), neuropeptide Y receptor 2 (Mpy2r), and an
inwardly rectifying potassium channel (Kcry3) were increased in E18.5 XXY* as compared
to XX brains. Tetracoid repeat domain 39B ( 7¢t39b) was higher in XX females compared to
XXY* males and is reported to be sensitive to estrogens, suggesting that estrogens could
depress this mRNA in brain. Finally, Cd99is an interesting gene candidate; it encodes a
surface glycoprotein, and in humans it resides within the pseudoautosomal region (PAR)
thus escaping X-inactivation. In mouse, however, it resides on Chromosome 4, and is
increased in females compared to males at both ages regardless of sex chromosome
complement.

Gene expression affected by number of X-chromosomes prior to gonad differentiation

At embryonic day 11.5, gonadal tissues have not yet differentiated into testes or ovaries.
Presumably any differences in gene expression profiles would be from the contribution of
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sex chromosomes. Within each sex, we identified genes affected by X-chromosome number
(Figure 1 and Table 3). We identified 22 probe sets with significantly altered transcript
levels between XY*X and XX females. About half of the probe sets (9 out of 22) were
located on the X-chromosome, and a few of these have been identified as genes that escape
X-inactivation (Table 2 and Figure 2). Most of the autosomal genes we discovered are not
well characterized. But two of these genes, tyrosinase-related protein ( 7yrpZ) and neural
precursor (Nedd9) are binding partners. Nedd9is a scaffolding protein involved in tyrosine
kinase activity and neuronal development (\VVogel et al. 2010). Other annotated autosomal
genes such as Fyn-related kinase (£7k), neuronal pentraxin 2 (Npitx2) and ORAI calcium
release-activated calcium channel (OrarZ), are kinases or receptors that are involved in
neuronal development. All of these genes were elevated in XY*X as compared to XX
females. In male XY* vs. XXY* mice, expression of 16 transcripts was significantly
different. Surprisingly, only two autosomal genes were differentially expressed: PTPRF
interacting protein (Ppfibp1, a tyrosine kinase involved in axonal guidance) and pleckstrin
homology domain containing member 2 (Plekhh2) were higher in XY* than XXY* males,
but little is known about their function.

Four of the 13 mouse genes known to escape X-inactivation, Xist, 7six, Kaméa, and
Eif2s3x (Yang et al. 2006; Reinius et al. 2010), were higher in tissues from mice with two
X-chromosomes (Figure 2). Interestingly, we also observed X-chromosome genes with
higher transcript levels in XY*X and XY* mice as compared with XX and XXY* mice:
Msl3, Hees, and BC022960 . These genes tended to be located on the distal tip of the X-
chromosome (Figures 3 and 5). One of these genes, Ms/3, male-specific lethal-3, in
Drosophila targets the dosage compensation complex (DCC) to the X-chromosome.

Differential gene expression in mice with one versus two X-chromosomes following
gonadal differentiation

When comparing gene expression profiles of whole brains at E18.5, XY*X and XX females,
had 32 unique transcripts that were significantly different. A majority of these genes reside
on autosomes (21 transcripts out of 32). Of the differentially expressed X-linked genes, Xist
and 7six, as expected had much higher expression in tissues with two X-chromosomes
(Figure 2). Genes located on the distal tip of the X-chromosome, Ms/3, BC022960, Arhgap6
and Hces had higher expression in XY*X and XY* mice versus XX and XXY* mice (Table
3 and Figure 3). Many of the autosomal genes affected by X-chromosome number, in
females, can be divided into three main categories: neurogenesis and neuronal
differentiation, G-protein mediated cell signaling, and genes associated with mood disorders.
Four genes were consistently increased in XY*X females including a kinase, double-cortin
like kinase (Dc/kI) and a calmodulin regulator cAMP regulated phosphoprotein (Arop21).
Both play a role in neuronal migration and neurogenesis. The ionotropic AMPA glutamate
receptor (Grik2) and neuronal leucine rich repeat transmembrane 2 (Lrrtm2) which regulates
the surface expression of AMPA, were also higher in XY*X females. Four genes may play a
role in schizophrenia and bipolar disorders; serotonin receptor 3 (Htr3a), transcription factor
cut-like 2 (Cux2), a phosphodiesterase (Pdel0a), and a nuclear hormone receptor (Rorb). A
final category of genes significantly affected by X-chromosome number in females included
genes involved in G protein coupled signaling such as the catalytic subunit of PI3 kinase
(Pik3c), membrane associated guanylate kinase (MagiZ), an uncharacterized G-protein
(Gpr151), and regulator of G-protein signaling binding protein (Rgs760).

In the male XY* vs. XXY* comparison at E18.5, 9 genes were differentially expressed,
similar to the E11.5 comparison where 16 genes were changed prior to the onset of gonad
development. Of these 9 transcripts, five genes reside on the X-chromosome (Xist, Msl3,
Tsix, B022960, and Hccs). These same genes were affected by X-chromosome number in
females (XX and XY*X). In addition, two genes that reside on the Y chromosome, ubiquitin
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activating enzyme E1 (Ubely1) and an uncharacterized cDNA clone, 4933439C20Rik, were
different in the male comparison. One autosomal gene, DEAD box polypeptide 4 (Ddx4)
that in the gonad plays a role in germ cell development and sperm motility was higher in
XY* versus XXY* males. However, Ubely1 is increased 3-fold in XXY* males while Ddx4
is decreased 1.5-fold. Further studies examining the actions of these genes in the brain are
needed to understand these findings.

Overview of gene expression differences between ages and genotypes

As shown in Figure 1, on the order of half the genes in the genome (i.e., ~15,000 probe sets)
were differentially expressed on the development scale between E11.5 to E18.5 for each
genotype. We observed about twice the number of differentially expressed genes between
females (54 total) with the same number of X-chromosomes as compared to males (22 total).
Because development had a larger effect on gene expression profiles than genotype, a
principle component plot using all probe sets only revealed differences between the ages
(data not shown). Therefore, we generated a principle component plot using the expression
profiles of only X- and Y-chromosome genes (Supplemental Figure 1). As expected, the
individual biological replicates grouped together. Of note, XX females and XY* males,
cluster together while XY*X females and XXY* males are the furthest apart. Perhaps this is
due to gene expression programs evolving to reduce the differences between males and
females on the sex chromosomes. Finally, we observed higher variability in the E11.5 tissue
as compared to the E18.5 brains. This may be due to differences in the source of the tissue,
which could have introduced greater variability in the expression data from the E11.5
embryos.

Confirmation of selected genes by RT gPCR

Microarray data were confirmed by quantitative RT PCR for several genes at both
embryonic ages (Figures 2 and 3). In the microarray analysis, XistmRNA expression was
assessed by three different probe sets. Fold change differences between mice with one or
two X-chromosomes ranged from 67 to more than 500 depending on the probe set, age and
comparison (Table 3 and Supplemental Table 2). Using quantitative PCR on cDNA, we
observed a similar range of 59 to 158-fold increase in Xisttranscript in mice with two X-
chromosomes at both developmental ages. Although, £/f2s3x and Kdm5c have been
reported to escape X-inactivation, only £/f2s3x was significant for each comparison in the
microarray analysis. Using qPCR, however, £if2s3x and Kdmb5c were significantly
increased in 2X mice compared to 1X for both sexes and ages (i.e., £/f2s3x fold increase
between 1.4 and 1.7, and Kdmbc fold increase between 1.3 and 2.1 in mice with two X-
chromosomes at both ages). Kaméawas only significantly increased in the XX and XXY*
E11.5 embryos in the microarray dataset, but using gPCR it was significantly elevated at
both ages. Genes located on the distal tip of the X-chromosome, Ms/3, Hces and BC022960,
were increased on average about two-fold in embryos with one X-chromosome. These genes
are increased two-fold in the confirmatory qPCR as well.

Expression and copy number analysis of genes on the distal tip of the X-chromosome

In Drosophila, Msl-3 targets the DCC to the X-chromosome and is responsible for dosage
compensation (Lucchesi 1998). Because the DCC deposits marks that lead to increased
transcription of the X-chromosome in male Drosophila, we measured expression in adult
brain for Ms/3and the other members of the complex to determine if the whole complex
was elevated in XY*X and XY* mouse brain. The DCC is comprised of 5 proteins, Msl1,
Msl2, Msl3, Mof and Mle; but mMRNA of these transcripts was not significantly altered by
sex or genotype (Figure 4).
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Msi3is present on the distal tip of the X-chromosome and lies very close to the region
where X- and Y-chromosomes have a translocation event in the Y* mouse model (Eicher et
al. 1991; Isles et al. 2004). Two nearby X-genes, holocytochrome ¢ synthase (Hcces) and
BC022960, fit a similar profile for mRNA expression both in the microarray data and in
confirming qPCR (Supplemental Table 2). In the Y* model, Hccs and BC022960 also lie
within the small X-chromosome section on the Y* chromosome (Isles et al. 2004).
BC022960 has previously been identified to escape X-inactivation. However, BC022960
shows expression levels two-fold higher in mice with only one vs. two X-chromosomes,
obviously not fitting an X-inactivation escapee profile in the Y* model. Hccs has not
previously been shown to be an X-inactivation escapee, and its relative transcript level
changes are similar to that of BC022960 and Ms/3.

Using genomic DNA from adult cerebellar tissue, we asked if copy number for Ms/3, Hccs,
and BC022960was different in mice possessing one or two X-chromosomes. In normal
C57BL/6 embryonic male and female brain tissue, which does not contain the unique Y*
chromosome, we expected all three genes would be present in one copy in males and two
copies in females. Indeed, the relative copy numbers of Ms/3, Hces, and BCO22960 were
twice as high in female C57BL/6 brains as compared to males (Supplemental Figure 3), as
expected for genes residing on the X-chromosome.

The relative copy number of Ms/3was not different between any of the Y* genotypes
(p>0.05), indicating two copies of Ms/3in mice with one complete X-chromosome (XX),
and mice with one complete X-chromosome and an additional few X-genes attached to a
portion of the PAR (XY*X). In the Y* mice, mMRNA expression and copy number data
strongly suggest that all three genes, Ms/3, Hces and BC0O22906 are present in equivalent
amounts. One copy of each gene appears to be inactivated when two X-chromosomes are
present (XX and XXY*). In the case of Y* mice with only one X-chromosome (XY* and
XY*X), these genes are present in two copies, one on the X-chromosome and one on the Y*
chromosome (see Figures 3 and 4). The copy on the Y* chromosome is not subjected to X-
inactivation, leading to higher mMRNA expression in mice with one X-chromosome.

Transcript levels of MidZ, which is located distal to Hccs, warrant further investigation since
the levels are almost 50% higher in XY*X, XY* and XXY* brains compared to XX at E18.5,
but are the same across all four genotypes at E11.5. MidZ sits very close to the pseudo-
autosomal region (PAR). At the regions interrogated by our probe sets, portions of Mid
may not be present on the small X-chromosome section of the Y* chromosome, giving the
observed expression levels.

Discussion

Sex chromosome complement modulates a variety of behaviors (Gatewood ef a/. 2006;
Quinn et al. 2007; Gioiosa et al. 2008; Grgurevic et al. 2008; Park et al. 2008; Liu et al.
2010; Cox and Rissman 2011; Bonthuis ef a/. 2012; Grgurevic ef al. 2012). Using the Y*
mouse model, we identified genes that are sexually dimorphic and/or differed by X-
chromosome number prior to and just after gonadal differentiation. Few autosomal genes
were changed by X-chromosome dosage in males while 10 genes were altered in females.
Following gonadal differentiation, many autosomal genes changed in females only. Three of
these, Rorb, Cux2and Htr3a have been associated with mood disorders (Niesler e al. 2001;
Glaser et al. 2005; Mansour et al. 2009; McGrath et al. 2009; Gatt ef al. 2010), while the
remaining genes primarily function in G-protein signaling and neuronal development. These
targets may contribute to the behavioral phenotypes previously described.
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About 15% of human genes escape X-inactivation (Carrel and Willard 2005) and it is
believed that this contributes to sexual dimorphism within the brain and behavior. In mice,
far fewer genes escape X-inactivation. The largest lists catalogue 13 potential escapees
(Lopes et al. 2010; Yang et al. 2010) and most studies consistently validate five (Reinius et
al. 2010; Werler et al. 2011). Many X-escapees have a paralog on the Y-chromosome
(Kdmbc-Kdmb5d, Eif2s3x- Eif2s3y, and Kdmé6al Utx-Uty) that in theory could compensate for
the inactivated copy (Xu and Disteche 2006). In Y* mice, regardless of age or X-
chromosome complement, four Y-linked paralogs (Kdmb5ad, Eif2s3y, Uty and Dax3y) were
increased in males compared to females but were not differentially expressed in males at
either age. Other X-inactivation escapees, such as Sfaroom4and Car5b, do not have
expressed Y-paralogs and expression differences between males and females may contribute
to sexual dimorphism.

An earlier study examining sexually dimorphic gene expression (Dewing ef al. 2003)
reported 51 altered genes in CD-1 mouse heads prior to gonad differentiation. Of these only
three X-linked genes, Xist, E£if2s3x, and Kdméawere in our study and were elevated in mice
with two X-chromosomes. Two Y-chromosome genes, £/f2s3yand Dby, were increased in
CD-1 males; we replicated only £/f2s3y. None of the autosomal genes reported in Dewing ef
al. were replicated in our dataset. Experimental differences such as mouse strain, embryo
ages and an older microarray design, could account for these discrepancies. More
importantly, both studies confirm the potential for sex differences in neural development
prior to gonadal differentiation.

Before gonadal differentiation, six transcripts known to escape X-inactivation were detected
at higher levels in mice with two X-chromosomes; Xist, Kadmbc, Kdméa, Eif2s3x, Tsix and
one uncharacterized transcript, 5530601 H04Rik. Following gonadal differentiation, only
Xistand 7six remained significantly different. If organizational gonadal hormones promote
multiple changes in gene transcripts, this could result in region-specific changes in gene
expression, reducing our power to detect genome-wide differences. Another limitation of
our design is that we used whole head or brain and thus, we can only detect the most robust
differences in gene expression (Reinius et al. 2010). Moreover, different regions in the
developing brain may express different X-inactivation escaping genes (Xu et al. 2006) and/
or steroid receptors that together create differential gene expression profiles in discrete brain
regions. Additionally, E11.5 heads included various non-neural tissues whereas the E18.5
samples were brain only. Finally, the use of 2—4 samples per group may have limited our
power to detect differentially expressed genes. Given these limitations, it is interesting that
specific X-inactivation escaping genes are temporally segregated.

Three X-chromosome genes in our data set produce proteins that act on chromatin to
regulate gene transcription. Two histone demethylases, Kadmbc and Kdméa, escape X-
inactivation and have Y-paralogs. Previous studies have suggested, as we do here, that Y-
paralogs may not compensate for lower levels of transcript in 1X individuals (Xu et al.
2008; Xu et al. 2008). Ms/3acts within the DCC to upregulate transcription of the X-
chromosome in male Drosophila (Lucchesi 1998). Paradoxically, few autosomal genes/
potential targets were changed in any genotype. Given that these genes regulate
transcription, are differentially expressed in 1X vs. 2X mice and are not compensated by Y-
paralogs, we suggest that the complex in which each functions does not form (e.g., no DCC
in mice) or that other mechanisms act in a compensatory manner.

In fact, X-chromosome dosage significantly altered expression of few genes in the Y*
model. Less than 80 total transcripts were differentially expressed between mice with one or
two X-chromosomes. Similarly, a study investigating sex differences in a cross between two
inbred mouse strains (C57BL/6 and C3H) found that differences between sexually
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dimorphic genes were modest in brain (Yang et a/. 2006). In the Four Core Genotype, a
transgene for Sry has been inserted to rescue the spontaneous deletion of this Y-
chromosome gene, and may modulate autosomal gene expression (Wijchers et al. 2010). In
the Y* mouse, Sryis expressed from the endogenous gene in both male genotypes. Only
three autosomal genes differed between XY* and XXY* males, raising the possibility that
the presence of Sry affects expression of autosomal genes which are responding to one
versus two copies of the X-chromosome. Alternatively, the lack of large perturbations in
gene profiles could indicate that addition or deletion of sex chromosomes does not globally
disrupt gene regulation. Importantly, gonadal hormones are also a likely factor since more
autosomal genes were affected in E11.5 than E18.5 brains.

Expression of 3 genes, Ms/3, Hees and BC022960 was 2-fold higher in mice with one X-
chromosome regardless of age. All three are located on the distal tip of the X-chromosome,
near PAR and may be part of the X-chromosome region crossing over with the Y*
chromosome. Hees and BC022960 reside on the small Y*X and Y* chromosomes (Isles et
al. 2004) which are not subject to X-inactivation (Davies et al. 2007). Ms/3was not
previously reported to be on the Y*X chromosome (Burgoyne et a/. 1998). Genomic DNA
analysis confirmed that there are two copies of Ms/3in each genotype. One copy is silenced
on the inactivated X-chromosome, which explains the 2-fold higher expression in mice with
only one X-chromosome. Our data suggest that Ms/3 resides on the Y*X chromosome, since
it is present in two copies and there is no X-inactivated chromosome in 1X mice. Thus,
higher expression of Ms/3, Hees, and BC022960in the XY* and XY*X is likely unique to
the Y* model due to the contribution of the few near-PAR X-chromosome genes involved in
the translocation.

Msi3is of particular interest because it is known to participate in the DCC, a complex
responsible for dosage compensation in Drosophila. Male flies never have more than one X-
chromosome. To compensate, X-genes are increased two-fold by the DCC (Akhtar and
Becker 2000; Smith et al. 2000). The DCC is comprised of 5 proteins: Msl1, Msl2, Msl3,
Mof and Mle (Lucchesi 1998). Notably, mice lack roX1 and roX2—two noncoding RNAs
that target the complex to chromatin (Alekseyenko et a/. 2008). None of the other members
of the mammalian complex (Ms/1, Msl2, Mofand Mle) were significantly affected by sex or
genotype. Thus, we do not expect increased Ms/3levels to have an effect on X-chromosome
expression in 1X mice, consistent with our analysis.

Behavioral differences between animals with one versus two X-chromosomes have been
found in Y* mice. An extra X-chromosome in adult males tends to increase aggression and
in mating tests XXY* mice are significantly faster to display most aspects of male sexual
behavior (Bonthuis er al. 2012). In a novel object recognition task, XXY* mice fail to
discriminate (Lewejohann et al. 2009). We observed few genes to be differentially regulated
between XY* and XXY* males at either age of development (i.e., only X-escapees and near-
PAR X-chromosome genes). Several limitations of our study may account for this lack of
robust differences. For example, whole head or whole brain was used for gene expression
analysis that would preclude detection of difference in specific brain regions. Also, the ages
used to measure gene expression may not be pertinent to these adult behaviors.

Female mice with only one X-chromosome are more anxious than normal females with two
X-chromsomes (Isles et al. 2004). Our gene profiling identified a few autosomal genes
(Nptx2, Nedd9, Rorb, Cux2and Htr3a; all genes involved in neuronal development or
associated with neurological disease) that were differentially expressed between XY*X and
XX female embryos; these might be, at least in part, responsible for the differences in adult
behavior. Prior to gonadal differentiation, genes altered by sex chromosome number in
females are involved in neuronal differentiation and migration. It is reasonable to presume
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that these genes play a role in brain organization. Following the onset of gonadal
differentiation, three main classes of genes are altered in females: genes involved in G-
protein coupled signaling, neurogenesis and mood disorders. All of these observed changes
occur prior to activational hormones at puberty. Together, these findings add to the theory
that sex chromosomes contribute to brain organization and could ultimately lead to changes
in social, cognitive and sexual behavior.
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Figure 1. Numbers of genes significantly altered by age, sex or genotypein the Y* mouse brain
Numbers and associated arrows shown between age, sex or genotype indicate the number of
differentially expressed genes called for a given comparison. The majority of gene
expression changes occurred between embryonic day (E) 11.5 and 18.5 within each
genotype. Far fewer genes were significantly altered between genotype or sex. XX = normal
female, XY*X = 1X female, XXY* = 2X male, XY* = normal male.
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Figure 2. Genes escaping X-inactivation at E11.5 and E18.5

Quantitative PCR of relative gene expression for X-inactive specific transcript (X7sf) at A.
E11.5 and B. E18.5, eukaryotic translation initiation factor 2 subunit 3 X-linked (£/72s3x) at
C.E1l.5and D. E18.5, lysine(K)-specific demethylase 6a (Kdméa) at E. E11.5 and F.
E18.5 and lysine(K)-specific demethylase 6a (Kdm5c) at G. E11.5 and H. E18.5.
Expression is relative to peptidylprolyl isomerase B (Apib) and normalized to XX females. *
p<0.05 main effect of X-chromosome number.

Genes Brain Behav. Author manuscript; available in PMC 2014 March 01.



1dussnuein Joyny vd-HIN 1duosnueln Joyny vd-HIN

1duosnuey JoyIny vd-HIN

Wolstenholme et al.

>

3.5
3.0
2.5
2.0
1.5
1.0
0.5

BC022960/Ppib

o
*
E *
BC022960/Ppib
*
E *

3.0
25
2.0
1.5
1.0
0.5
0.0

(@

Hccs/Ppib

*
*
Hccs/Ppib
*
*

2.0

m

MsI3/Ppib

2.5

()

2.0

1.5

1.0

Mid1/Ppib

Mid1/Ppib

0.5

0.0

E11.5
B

XX XY** XX¥* XY*

O

XX XY** XXY* XY*

“

MsI3/Ppib

XX XY** XX¥* XY*

L

XX XY*X XXY* XY*

3.0
2.5
2.0
1.5
1.0
0.5
0.0

25

20

1.5

1.0

0.5

0.0

2.5

2.0

1.5

1.0

0.5

0.0

E18.5

XX XY*X XXY* XY*

XX XY*X XXY* XY*

=

XX XY** XX¥* XY*

XX XY** XX¥* XY*

Page 16

Figure 3. Geneslocated on distal tip of X-chromosome with expression higher in 1X mice at

E11.5and E18.5

Quantitative PCR of relative gene expression for BC022960, an uncharacterized transcript
at A. E11.5 and B. E18.5, holocytochrome c synthase (Hccs) at C. E11.5 and D. E18.5, male
specific lethal 3 (Ms/3) at E. E11.5 and F. E18.5, and midline-1 (Mid1) at G. E11.5 and H.
E18.5. Expression is relative to peptidylprolyl isomerase B (Ppib) and normalized to XX

females. * p<0.05 main effect of X-chromosome number.
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Figure 4. Gene expression levels of the DCC complex in adult cerebellum

Quantitative PCR of relative gene expression for A. male specific lethal 3, (Ms/3), B.
Relative copy number of genomic DNA for Ms/3, C. male specific lethal 1 (Ms/1), D. male
specific lethal 2 (Ms/2). E. dead box polypeptide 9 (Dhx9), F. Myst histone
acetyltransferase 1 (Myst1). Expression is relative to peptidylprolyl isomerase B (Apib) and
normalized to XX females. * p<0.05 main effect of X-chromosome number.
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Figure 5. Schematic of the mouse X-chromosome with an overlay of genesreported to escape X-
inactivation

Transcripts significantly altered in 1X vs. 2X mice at embryonic day 11.5 and 18.5 as
described. Up arrows indicate gene expression levels are higher in 2X mice versus 1X mice
and escape X-inactivation. Down arrows indicate decreased gene expression in 2X vs. 1X
mice. On the right of the schematic, we show the name and location of genes previously
reported to escape X-inactivation (Reinius ef a/. 2010; Yang et al. 2010).
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Table 1

Genotype and sex chromosome complement in Y* mice

Copiesof  Copiesof

Genotype Gonads Sry Y X
XX ovary 0 0 2
XY*X ovary 0 0 1
XXY* testes 1 1 2
XY* testes 1 1 1
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