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Abstract
Mitochondrial oxidative metabolism plays a key role in meeting energetic demands of cells by
oxidative phosphorylation (OxPhos). Here, we have briefly discussed (i) the dynamic relationship
that exists among glycolysis, the tricarboxylic acid (TCA) cycle, and OxPhos; (ii) the evidence of
impaired OxPhos (i.e. mitochondrial dysfunction) in breast cancer; (iii) the mechanisms by which
mitochondrial dysfunction can predispose to cancer; and (iv) the effects of host and environmental
factors that can negatively affect mitochondrial function. We propose that impaired OxPhos could
increase susceptibility to breast cancer via suppression of the p53 pathway, which plays a critical
role in preventing tumorigenesis. OxPhos is sensitive to a large number of factors intrinsic to the
host (e.g. inflammation) as well as environmental exposures (e.g. pesticides, herbicides and other
compounds). Polymorphisms in over 143 genes can also influence OxPhos system. Therefore,
declining mitochondrial oxidative metabolism with age due to host and environmental exposures
could be a common mechanism predisposing to cancer.

Keywords
Mitochondrial metabolism; Oxidative phosphorylation; OxPhos; inflammation; tumor suppressor
p53; breast cancer

1. Introduction
Metabolism is central to cellular physiology. It provides energy in the form of adenosine 5′-
triphosphate (ATP) and building blocks (other nucleotides, lipids, amino acids, etc.) for
different cellular processes including cell growth, proliferation, and supporting functions of
differentiated cells such as milk synthesis in lactating mammary glands [1,2]. The overall
cellular metabolism relies on glycolysis, the tricarboxylic acid (TCA, also known as citric
acid or Krebs) cycle, and oxidative phosphorylation (OxPhos). The reactions of glycolysis,
the TCA cycle and OxPhos occur in the cytoplasm, mitochondrial matrix, and at
mitochondrial inner membrane, respectively. Although occurring at distinct subcellular
locations, these processes are interdependent (Fig. 1). Their relationship is tunable based on
catabolic and anabolic demands of cells [3]. One of the key factors that regulate this
relationship in real time is ATP-demand. In this review, we will briefly discuss their
relationship and the role of impaired mitochondrial metabolism in breast cancer. Emphasis is
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given to OxPhos because it is susceptible to host and environmental factors that may
contribute to a majority of breast cancers [4].

2. An overview of cellular metabolism
In a typical mammalian cell glucose is metabolized via glycolysis to generate pyruvate.
Glycolysis produces 2 net ATP molecules per glucose using the reactions catalyzed by
phosphoglycerate kinase and pyruvate kinase, which are [1, 3-bisphosphoglycerate + ADP
⇔ 3-phosphoglycerate + ATP] and [phosphoenolpyruvate + ADP + H+ ⇔ pyruvate + ATP]
respectively. This mode of ATP production is called substrate-level phosphorylation as it
uses the chemical energy liberated from a substrate. In intact cells, this can be slowed down
by a limitation in NAD+ supply [5], because the reaction upstream to phosphoglycerate
kinase is catalyzed by an NAD+-dependent enzyme, glyceraldehyde-3-phosphate
dehydrogenase [glyceraldehyde-3-phosphate + Pi + NAD+ ⇔ 1,3-bisphosphoglycerate +
NADH + H+]. If the cytosolic NAD+ pool is completely reduced to NADH by
glyceraldehyde-3-phosphate dehydrogenase, the NAD+ will become limiting. Therefore,
NAD+ must be regenerated in cytosol to permit continued operation of glycolysis. Cytosolic
NAD+ is regenerated using lactate dehydrogenase and NADH redox shuttles [6]. Lactate
dehydrogenase reduces pyruvate into lactate by using an NADH [pyruvate + NADH + H+

⇔ lactate + NAD+]. Conversion of glucose to lactate is favored when oxygen is limiting.
However, even in the presence of excess oxygen nearly all mammalian cells convert a
significant fraction of pyruvate into lactate. The fraction of pyruvate converted into lactate is
higher in proliferative and tumor cells than in differentiated cells [7]. Apart from hypoxic
conditions, genetic and drug-induced OxPhos deficiencies can also up-regulate pyruvate
conversion into lactate. Therefore, release of lactate by cells provides a surrogate for real-
time measurements of glycolysis [8].

OxPhos, the process of making ATP by consuming oxygen (i.e. respiration), is the major
source of ATP in animal cells. It is carried out by five multimeric enzyme complexes (I–V)
with the help of electron carriers (ubiquinone and cytochrome c) and electron donors
(NADH and FADH2). Complexes I to IV constitute the respiratory chain, which establishes
H+ gradient across the inner mitochondrial membrane. This gradient is established by
Complexes I, III and IV, which pump out 4, 4, and 2 H+ respectively while transferring
electrons liberated from NADH and FADH2 oxidations (Fig. 1). The H+ gradient is also
known as proton motive force (Δp) and has two components- the mitochondrial membrane
potential (Δψm) and pH gradient (ΔpH) [9]. The potential energy of Δp drives ATP
synthesis by Complex V, a rotary motor that makes 3ATP/rotation while using 2.7H+/ATP
[10]. After accounting for the expense of inorganic phosphate (Pi) and adenine nucleotides
exchange, the net cost of making 1 ATP molecule is thought to be 3.7 H+ [10]. Thus, 10
NADH and 2 FADH2 generated from complete oxidation of 1 glucose molecule can produce
about 30 ATP molecules via OxPhos. However, in reality the actual number will be lower
than the calculated value due to H+ leak across the inner mitochondrial membrane.

Other fuels such as fatty acids, ketone bodies and amino acids also support OxPhos.β-
oxidation of fatty acids generates acetyl-CoA, NADH and FADH2, which can support the
TCA cycle and OxPhos (Fig. 1). β-oxidation derived FADH2 feeds electrons to Complex III
via an electron transferring flavoprotein-ubiquinone oxidoreductase [9]. Both the TCA cycle
and β-oxidation are feedback inhibited by NADH buildup. Therefore, β-oxidation is not
sustainable without functional Complex I. Ketone bodies such as acetoacetate and β-
hydroxybutyrate also support the TCA cycle and OxPhos. Amino acids oxidation can also
support OxPhos. Before entering the TCA cycle, amino acids are converted to pyruvate
(Ala, Ser, Gly, Thr, Cys, Trp), acetyl-CoA (Leu, Ile, Lys, Phe, Tyr, Trp, Thr), α-
ketoglutarate (Glu, Gln, Pro, His, Arg), succinyl-CoA (Met, Ile, Val), fumarate (Phe, Tyr),
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or oxaloacetate (Asp, Asn) [3]. While all amino acids can enter TCA cycle, the oxidation of
glutamine is a major contributor to OxPhos [11]. Clearly, the relative use of glucose,
glutamine or other fuels will depend on catabolic and anabolic needs of cells [3]. For
example, branched chain amino acid metabolism plays an important role in mammary
epithelial cell physiology during lactation. The branched chain amino acids (Leu, Ile, Val)
are metabolized to produce glutamate, glutamine, aspartate, alanine, and asparagine to be
secreted in milk [12,13].

OxPhos is involved in a dynamic relationship with the TCA cycle and glycolysis. In real-
time, inhibition of OxPhos with oligomycin up-regulates glycolysis and slows down the
TCA cycle ([11,14,15]; unpublished data, C. Kim and N. Yadava). Oligomycin is a
Complex V inhibitor. Respiratory chain defects result in auxotrophy for asparagine and CO2
due to blockage of the TCA cycle [16–18]. The CO2 auxotrophy is due to feedback
inhibition of the NAD+-dependent pyruvate and α-ketoglutarate dehydrogenases. The
asparagine auxotrophy is thought to be due to a limitation in oxaloacetate production. The
requirement of asparagine clearly underscores the interplay between anabolism and OxPhos
via the TCA cycle. Although OxPhos is the major source of ATP production, cells with <8%
respiratory activity can meet their total ATP demand by glycolysis alone. As long as glucose
supply is not limiting even complete OxPhos deficiency does not impair growth and
proliferation of cells [11,19]. In respiration-competent lung fibroblasts ~40% of ATP is
derived from OxPhos supported by glucose and glutamine oxidations [11]. The contribution
of OxPhos to cellular ATP pool is expected to vary with tissue type. When OxPhos is
suppressed due to hypoxia or the presence of inhibitors, glutamine can undergo reductive
metabolism without any ATP production [20,21]. Tumor cells use this pathway of reductive
glutamine metabolism (carboxylation) to produce citrate for lipid synthesis [21]. Citrate
breakdown by ATP-citrate lyase following export from mitochondria into the cytoplasm
provides acetyl-CoA for fatty acid synthesis [citrate + ATP + CoA + H2O ⇔ acetyl-CoA +
ADP + Pi + oxaloacetate]. ATP-citrate lyase inhibition suppresses tumor cell growth [22].
Citrate production in mitochondria is limited by oxaloacetate and acetyl-CoA availability
(Fig. 1). However, citrate exit from the TCA cycle will limit oxaloacetate production.
Therefore, anaplerosis (filling-in) of the TCA cycle with oxaloacetate will be required.
Glutamine oxidation is a major contributor to oxaloacetate pool in tumor cells. This is clear
from the elimination of glutamine dependence of tumor cells in the presence of glucose by
pyruvate carboxylase over expression [23]. Pyruvate carboxylase converts pyruvate into
oxaloacetate [pyruvate + HCO3

− + ATP ⇔ oxaloacetate + ADP + Pi]. Therefore, apart from
glutamine dependence tumors may have pyruvate carboxylase up regulated [24]. The
relative dependence on pyruvate carboxylase vs. glutamine metabolism for citrate synthesis
may vary in different tumors.

Integrity of the OxPhos system is critical for optimal energy production, but functional
assembly of OxPhos system is a very complicated process. Nuclear and mitochondrial
genomes encode 45, 4, 11, 13, and 16 subunits of Complexes I, II, III, IV and V,
respectively. The mitochondrial –(mt)DNA-encoded subunits are ND1-6 and ND-4L of
Complex I; Cyt b of Complex III; COI-III of Complex IV; and ATP6 and ATP8 of Complex
V. These 13 proteins are translated within mitochondria using a protein translation
machinery similar to prokaryotes [25]. Thus, OxPhos system is vulnerable to antibiotics that
inhibit bacterial protein synthesis. MtDNA also encodes 22 tRNAs and 2 rRNAs that
constitute the mitochondrial protein synthesis system with nuclear-(n)DNA-encoded
ribosomal proteins and other factors [25]. Between 2–10 assembly factors are required for
the assembly of individual OxPhos complexes [26]. The final number of assembly factors
for any given complex is not yet settled. The formation of super-complexes adds another
layer of complexity to the OxPhos system. This also requires additional proteins such as
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HIG2A [27,28]. Over 143 genes (89 structural proteins, 30 assembly factors, 22 tRNAs and
2 rRNAs) are directly involved in OxPhos system biogenesis [26].

3. Evidence for impaired metabolism in breast cancer
Metabolic reprogramming is a common feature of the majority of cancers. Increased
glycolysis in cancer was suggested by Otto Warburg over 90 year ago [29,30]. Warburg
proposed that an “irreversible injury” to the OxPhos system could lead to metabolic shift
towards glycolysis (the Warburg effect) thereby causing cancer development [29]. His
observations offered the premise for using 2-fluoro (18F)-2′-deoxyglucose-positron
emission tomography (FDG-PET) in cancer staging and monitoring [31,32]. The FDG signal
is suggested to be proportional to the rate of glycolysis in viable cells and reports the
relatively increased demand for glucose in tumors [33]. While the success of FDG-PET in
diagnosis of primary breast cancers is variable, it has shown increased glucose uptake in
metastatic breast cancers [34]. The redox scanning technique based on cryogenic NADH/
flavoprotein fluorescence, which reports OxPhos activity in cells, has also revealed
alterations in mitochondrial metabolism [35,36].

The Warburg hypothesis predicts that impaired OxPhos or mitochondrial dysfunction should
be a common feature of cancer cells. To validate this hypothesis, several studies have
examined mutations in mtDNA, which is relatively more vulnerable to damage than nuclear
nDNA. A large number of mtDNA mutations in breast and other cancers have been
identified [37–47]. Mutations in DNA polymerase-γ (POLG) that is involved in mtDNA
replication result in reduced OxPhos activity due to mtDNA depletion/mutation in breast
cancers [48]. The strongest support for the Warburg hypothesis has come from germ line
mutations in Complex II genes [49–53]. Mutations in genes encoding Complex II subunits
and assembly factor(s) predispose to hereditary paraganglioma/phaeochromocytoma
syndrome [51–53]. Complex II germ line variants also modify breast and thyroid cancer
risks in Cowden and Cowden-like syndrome [54]. A survey of COSMIC (catalogue of
somatic mutations in cancers) database shows over 26 Complex I genes mutated in different
cancers with ≤1% frequency (unpublished observations, N. Yadava). In ductal-breast
carcinoma, somatic missense mutations have been found in several Complex I genes such as
Ndufa2, Ndufa3 and Ndufa8.

Functional analyses of OxPhos in cancers are relatively rare. Almost complete loss of
Complex I (mostly due to mtDNA mutations) is associated with renal and thyroid tumors
[43,55]. While mtDNA mutations in the regulatory regions are expected to result in multiple
deficiencies of OxPhos, the amino acid altering mtDNA mutations affect Complex I more
frequently (>50%) [46]. Mutations in ND4 (C12084T) and ND5 (A13966G) subunits affect
Complex I function and influence metastatic properties of MDA-MB-231 breast cancer cell
line [56]. The ND3 polymorphism (G10398A) associated with aggressive breast cancer in
African-American women also alters Complex I activity [57]. A few other studies also
suggest impaired OxPhos in breast cancers [58,59]. Expression of the nuclear-encoded
NDUFS3 subunit of Complex I is associated with breast cancer invasiveness [60]. Its
increased expression may be a compensatory response to OxPhos deficiency. This is not
unexpected because the NDUFS3 subunit enters into Complex I assembly very early to
facilitate additions of other subunits [61]. Reduced expression of the β-subunit of Complex
V (β-F1-ATPase) in cancer is often accompanied by an increase in glyceraldehyde-3-
phosphate dehydrogenase. A bioenergetic signature derived from the relative expressions of
β-F1-ATPase and glyceraldehyde-3-phosphate dehydrogenase has high prognostic value for
breast and other cancers [62,63]. Reduced β-F1-ATPase and increased inhibitory factor 1
(IF1) and uncoupling proteins (e.g. UCP2) levels suggest that OxPhos efficiency is
compromised in breast cancer cells [64,65]. A few studies also suggest metabolic
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interdependence between stromal fibroblasts and cancer cells. In this relationship fibroblasts
provide nutrients (e.g. lactate) to tumor cells [66–68]. Whether metabolites shuttling is used
for bioenergetic or other purposes remains to be clearly resolved. It is possible that limited
NADH production in cancer cell mitochondria or a partial OxPhos deficiency force cells to
switch their reliance on NADH redox shuttles. Lactate use via reversal of lactate
dehydrogenase will support redox-shuttles by generating NADH. If respiration is primarily
supported by the glycerol-3-phosphate shuttle (GPS) in cancer cells (Fig. 1), then substantial
respiratory activity with less ATP yield is expected because only 6 H+ are pumped out per
FADH2 oxidation vs. 10 per NADH oxidation.

4. Cancer development and altered metabolism
Cancer development is a multistep process involving over 4 rate-limiting stochastic events
[69,70]. Somatic mutations, failures of negative regulatory feedback for proliferation and
contact inhibition, senescence and the corruption of signaling pathways (an inhibitory
pathway becoming promoter) are key events that occur at different stages of tumorigenesis.
These events confer several hallmark capabilities in cancer cells. Six of these capabilities
were described in the year 2000 by Hanahan and Weinberg [69]: (i) sustaining proliferative
signaling, (ii) evading growth suppressors, (iii) resisting cell death, (iv) enabling replicative
immortality, (v) inducing angiogenesis, and (vi) activating invasion and metastasis.
Reprogramming of energy metabolism (vii) and evading immune destruction (viii) have
been added to this list as emerging hallmark capabilities [70]. They are intricately linked and
enabled by genomic instability, epigenetic modifications, and tumor-promoting
inflammation [70]. Activation and suppression of signaling molecules such as B-Raf, Akt/
PKB, mTOR, Ras, Myc, PTEN, pRB, p53, HIF1, NF-κB etc. are thought to result in
acquisitions of the hallmark capabilities [70,71]. Whether modest changes in metabolism
alone can alter multiple signaling pathways in otherwise normal cells and give them cancer
hallmark capabilities remains to be elucidated.

Apart from a secondary role, impaired mitochondrial metabolism may also play a primary
role in cancer development. Observations that mtDNA mutation/depletion enhance
tumorigenicity and metastatic potential have confirmed the secondary role of mitochondrial
dysfunction [56,72,73]. Assuming that metabolic alterations are a consequence of
transformation, the majority of studies have focused on the effects of tumor suppressors and
oncogenes on cellular metabolism to explain the Warburg effect [74–78]. This subject has
been discussed in several reviews [7,79,80]. It is noted that while tumor suppressors
promote oxidative metabolism, the oncogenes favor glycolysis, and they have opposing
effects on glycolysis and OxPhos. Altered functions of tumor suppressors and oncogenes
reprogram the metabolism of transformed cells to meet their anabolic demands [7,79,80].
The idea that altered metabolism may play a primary role in cancer development is gaining
momentum [81]. Alterations in activities of enzymes such as pyruvate kinase (PKM2) and
isocitrate dehydrogenase (IDH1, 2), and others are thought to enhance cellular
transformation. The associations of heritable polymorphisms with the risks of breast and
other cancers suggest that mitochondrial dysfunction could play a causative role in
tumorigenesis [44,45,54,82]. Two recent studies suggest that mitochondrial dysfunction can
predispose to tumorigenesis. One is based on maternal transmission of mtDNA mutations
originated in mice due to haploinsufficiency of mitochondrial helicase mSuv3 [83]. The
other is based on a Complex I deficient model due to a mutation in the mtDNA-encoded
ND6 subunit [84]. However, it remains to be determined whether a primary OxPhos defect
can predispose to mammary tumorigenesis. The observations of mtDNA and p53 mutations
together in the majority of breast and other cancers support a causal link between
mitochondrial dysfunction and cancer development [45,85,86].
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Mitochondrial dysfunction may promote cancer development by conferring hallmark
capabilities: (i) by suppressing p53 and PTEN function [87,88], (ii) activating AKT1 and
HIF1α pathways [87,89–91], (iii) inducing extracellular matrix remodeling for invasion
[73,92], (iv) providing resistance to cell death [88,93], (v) shifting metabolism towards
glycolysis [94], and controlling inflammation [95]. Mitochondrial proteins such as SIRT3 (a
protein deacetylase), CHCHD4 (a component of disulfide relay system regulating electron
transport to cytochrome c), and NDUFA4L2 (a hypoxia inducible Complex I inhibitor) are
clearly implicated in regulating both tumorigenesis and cellular respiration [96–98].
Impairments of the OxPhos system are linked with changes in cellular redox status, reactive
oxygen species (ROS) levels, bioenergetics and ionic homeostasis. These changes in cellular
physiology are linked with regulations of different pathways including p53 and AKT
[54,87,99]. Both p53 and AKT are involved in early events of mammary epithelial cell
transformation [100,101].

There is a possibility that declining OxPhos function could play a causative role in increased
cancer incidence with age. The Yadava laboratory has shown that OxPhos deficiency can
suppress p53 expression/function in several cell types [88]. The p53 suppression by OxPhos
deficiency is a reversible phenomenon. Ablation of Complex I provides protection against
γ-radiation induced apoptosis when glucose is not limiting in different cells including a
mouse mammary epithelial cell line TM40A (unpublished, S. Compton and N. Yadava)
[88]. The suppression of p53 is not limited to Complex I deficiency as inhibition of
mitochondrial protein synthesis and Complex II-deficiency also result in reduced p53
expression/function (unpublished, C. Kim and N. Yadava, [88]). In mice the mtDNA
mutation rate is linked to premature aging and p53 function declines with age [102,103].
Mitochondrial dysfunction is suggested to play a causative role in aging and other diseases
including cancer [104]. As noted above, there is evidence for predisposition to
tumorigenesis by mtDNA mutations in mice [83,84]. Therefore, there is a possibility that
functional decline of p53 mediated by reduced mitochondrial function could predispose to
cancer [88,103]. Even modest impairments of mitochondrial function can significantly
suppress p53 function [88]. In humans, germ line mutations in the TP53 gene result in Li-
Fraumeni syndrome, which is characterized by a strong predisposition to a spectrum of
cancers with breast cancer being the most common in women [105]. Furthermore, studies
with p53 knockout mice have clearly demonstrated the critical role p53 plays in tumor
prevention [106–108].

The relationship between p53 and metabolism is quite complicated. While it has been
observed that basal levels of p53 promote mitochondrial metabolism, p53 activation
following telomere dysfunction reduces mitochondrial biogenesis [76,109]. p53 is also
reversibly suppressed by OxPhos deficiency [88]. The accepted view is that p53 suppresses
glycolysis and promotes oxidative metabolism in proliferating cells (Fig. 2A) [110]. Positive
regulation of TIGAR is primarily associated with negative regulation of glycolysis [77]. P53
promotes OxPhos by modulating Complex IV biogenesis [76], mtDNA copy number [111]
and mtDNA maintenance [112]. Therefore p53 function loss is thought to cause a metabolic
shift toward glycolysis (Fig. 2B). Suppressing p53 in the presence of OxPhos deficiency
may not be in the best interest of cells because it may result in bioenergetic crises. From this
point of view, a negative regulation of p53 by mitochondrial dysfunction in not unexpected
[88]. It is possible that p53 and mitochondrial function act together to maintain cellular
homeostasis and when their coordination is lost pathological consequences result.
Alterations in p53 can also affect other signaling pathways such as AKT and NF-κB, which
make mammary epithelial cells susceptible to oncogenic transformation [100,101,113,114].
Alterations in the AKT and NF-κB pathways can influence cellular metabolism and cell fate
[115–117].
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P53 primarily functions as a transcription factor that regulates genes implicated in a variety
of cellular processes such as cell cycle arrest, DNA repair, apoptosis, senescence,
autophagy, metabolism, oxidative/redox stress, angiogenesis and many more relevant to
normal physiology and pathology [118]. P53 prevents cell proliferation when conditions are
not favorable such as in the presence of acute DNA damage or oncogene activation [119]. In
addition to acting as a transcription factor, p53 protein also acts directly to regulate cell fate
[120–122]. This regulation is tissue- and stimulus-specific [123]. It remains to be explored
whether variation in mitochondrial metabolism influences cell-specific properties of p53.

Mitochondrial dysfunction may result in genetic and epigenetic changes. Complexes I, II
and III produce reactive oxygen species (ROS) when electron transfer is impaired [124–
126]. Hypoxia, OxPhos deficiencies, high Δp, NADH/NAD+ and ubiquinone (reduced/
oxidized) influence ROS homeostasis [127]. Increased ROS production due to OxPhos
deficiency can result in genomic instability [128]. Additionally, alterations in the dTTP
nucleotide pool due to OxPhos deficiency can also cause genomic instability [129].
Mitochondrial proteins such as Sirt3, CHCHD4 and NDUFA4L2 directly link OxPhos
activity with hypoxic response, which plays an important role in cancer development [96–
98,130]. ROS are thought to play major role in breast tumorigenesis. This is supported by a
study showing that catalase expression in mitochondria can suppress invasive breast cancers
in mice [131]. Catalase is an enzyme that degrades hydrogen peroxide (H2O2). Oxidative
stress, particularly in stromal fibroblasts, is suggested to drive breast cancer development
[132]. It is associated with the loss of caveolin-1 (Cav-1) in stromal fibroblasts [133,134].
Cav-1 deficiency is associated with cholesterol localization to mitochondria, which results in
impairment of OxPhos and oxidative stress [135–137]. Hypoxia and OxPhos deficiency
induce reductive glutamine metabolism that provides growth advantages [20,21,81]. The
relationship between mitochondrial function and epigenetic changes have been recently
described [47,81,138]. DNA methylation and histone acetylation that impart epigenetic
influences are linked with mitochondrial metabolism [139,140].

5. Host and environmental factors affecting mitochondrial metabolism
Genetic alterations, polymorphisms and stochastic changes in expression of over 143 genes
may exert influence on mitochondrial function [26,141]. nDNA and mtDNA polymorphisms
are linked with breast cancer risk [44,45,54,142]. While polymorphic variations can directly
affect the function of a protein, they are expected to differ in severity based on interactions
between nDNA- and mtDNA-encoded subunits of OxPhos complexes. This possibility is
clearly exemplified by mutational analysis of the MWFE (or NDUFA1) subunit of Complex
I, which interacts with mtDNA-encoded proteins [19,143].

In addition to genetic factors, inflammation can play a significant role in suppressing
mitochondrial metabolism. Thus, chronic inflammation very often associated with obesity/
metabolic syndrome may facilitate cancer initiation and progression by suppressing OxPhos
[144,145]. Inflammation can occur through localized secretion of factors such as TNFα,
Wnt and leptin, which impair OxPhos [146–150]. Inflammation and oxidative stress are
linked with TNFα-mediated damage to OxPhos system in ob/ob mice via protein nitration
[151]. Often Complexes I, III and IV are affected by inflammatory cytokines. The Yadava
Laboratory has found that low levels of TNFα (10 ng/ml) that do not induce cell death can
reduce the levels of NDUFS3 subunit of Complex I in HEK293 cells (Fig. 3A). In primary
human mammary epithelial cells (HMECs), TNFα exposure causes 30–40% reduction in
Complex I-dependent respiration (Fig. 3B). The effect of TNFα could be seen even with 1
hr exposure suggesting that mitochondrial metabolism of HMECs is highly susceptible to
inflammatory cytokines. Apart from TNFα, local macrophages can also secrete Wnts that
promote epithelial-to-mesenchymal transition (EMT) and stem cell like behavior in breast
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cancer cells [152,153]. Interestingly, exposure to Wnts has also been shown to inhibit
OxPhos and enhance glycolysis through the down-regulation of Complex IV subunits [150].
Thus, inflammation may influence cancer progression though alterations of mitochondrial
metabolism.

A reciprocal relationship may exist between mitochondrial metabolism and inflammation.
As noted above, while inflammatory cytokines can suppress mitochondrial function, there is
a possibility that mitochondrial dysfunction can alter immune response. Immune cells
carefully modulate their metabolism during development and activation, which often
involves extensive proliferation. It is suggested that during proliferation metabolism of T-
lymphocytes switches toward glycolysis [154]. Switching back from glycolysis to OxPhos
supported by β-oxidation is linked with establishment of the memory T-cells [155]. During
the contraction phase, the T-cells that cannot utilize OxPhos fail to form memory T-cells.
Other immune cells, such as dendritic cells, also exhibit a similar switch to glycolysis upon
toll-like receptor (TLR)-induced maturation [156]. Mitochondrial function also affects
cytokine production from macrophages in response to lipopolysaccharides (LPS)-
stimulation [157], and positively modulates MHC class I antigens expression on the cell
surface [158]. Thus, diminished OxPhos activity in tumor cells may protect them by
reducing MHC class I expression. MtDNA-variants are known to affect transplantation
outcomes [159,160]. Additionally mitochondria-derived peptides may result in an
inflammatory response [161,162]. P53 and NF-κB pathways that regulate inflammatory and
autoimmune responses may also exert their influence on the immune response via altering
cellular metabolism [76,77,117,163]. Taken together there is sufficient evidence to suggest
that mitochondrial metabolism may play an important role in regulating immune response.
Thus, it is possible that inflammation-induced mitochondrial dysfunction can sustain
inflammation by altering properties of local immune cells and protect tumor cells by
immune avoidance. Although, a transient exposure to inflammatory cytokine IL-6 is found
sufficient to promote MCF10A cells transformation with 100% efficiency, the role of
impaired oxidative metabolism in this process remains to be explored [113].

The effect of hormones on mitochondria provides a possible link by which endocrine
disrupting chemicals can influence the outcome of breast cancer and other diseases[164]. Of
particular interest are estrogens that regulate glycolysis, the TCA cycle and OxPhos in a sex-
specific specific manner [165]. Estrogens regulate mitochondrial biogenesis and function
both directly and indirectly [166]. Humans are exposed to a host of estrogenic compounds
that occur naturally (e.g. isoflavones enriched in soy products). In addition, industrial
contaminants (e.g. BPA) and agricultural chemicals (e.g. atrazine, permethrins) have been
shown to have estrogenic activities. These compounds interact with a complex estrogen
signaling pathway composed of 2 isoforms of estrogen receptors (ERα and ERβ) that act as
transcription factors in the nucleus. These receptors form homo- and hetero-dimers, which
bind promoters of target genes to either enhance or inhibit transcription depending on the
presence of co-activators or co-repressors [167,168]. Estrogenic ligands show selectivity in
binding to ERα and ERβ resulting in differences in transcriptional responses, effects on
target genes and cellular behavior [169–171]. However, these estrogen receptors can also
localize to membranes and activate distinct signaling cascades referred to as “non-genomic”
signaling. Functional estrogen receptors are also found in mitochondria [165,172,173]. The
effects of estrogenic compounds vary greatly in tissues depending on the complement of
receptors.

Lipophilic compounds of natural and synthetic origins, to which humans are often exposed,
can cause mitochondrial dysfunction [174]. Agricultural chemicals such as pesticides are
known to inhibit OxPhos [175]. Use of rotenone, a common pesticide, is linked with
Parkinson’s disease in rodents and humans [175,176]. Pyrethrins are commonly used to

Yadava et al. Page 8

J Mammary Gland Biol Neoplasia. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



control insects. While these compounds break down quickly, residues can persist when used
in poorly ventilated areas. Following treatment with insecticides, pyrethrins are detectable in
cows’ milk [177]. Pyrethroids such as permethrin and cyhalothrin were shown to inhibit
Complex I activity at picomolar levels [178]. Atrazine, a common herbicide, has estrogenic
activity, and thus, it may also have significant consequences for mammary gland
development. Although in utero exposure can alter mammary gland development in
neonates by increasing the number of terminal end buds, this effect was transient [179].
Nonetheless, long-term exposure may have implications for breast cancer risk in women
through its presumed estrogenic effects [180,181]. Atrazine’s herbicidal activity is due to its
inhibitory action on photosystem Complex II in chloroplasts, which can also inhibit OxPhos
[182]. As modest OxPhos-deficiency results in a near complete abrogation of the tumor
suppressor p53 activity (unpublished data C. Kim and N. Yadava; [88]), the oncogenic
effects of environmental contaminants may be related to their inhibitory effects on
mitochondrial function.

6. Conclusion
Glycolysis, the TCA cycle and OxPhos are engaged in a dynamic relationship, which is
primarily controlled by ATP demand (Fig. 1). Normal cells switch their metabolism from
glycolysis toward OxPhos and vice versa based on their energetic needs and fuel
availability. Glycolysis can alone supply sufficient ATP via substrate level phosphorylation
for cellular growth and proliferation[11]. Thus, OxPhos is not essential as long as glucose
entry into glycolysis is not limited and the ATP-demand does not exceed the capacity of
glycolysis [11,183]. In proliferative and tumor cells, increased demands for nucleotides such
as NADPH and lipids synthesis are thought to favor a metabolic switch toward glycolysis
resulting in the Warburg effect [7,30]. The modification of breast cancer risk by genetic
polymorphisms affecting the OxPhos system suggests that impaired mitochondrial
metabolism could play a causative role in breast cancer development [44,45,54,142]. Several
observations with cell lines showing promotion of cancer hallmark capabilities indicate that
mitochondrial dysfunction could play a primary role in tumorigenesis. Two studies show
that mice bearing mtDNA mutations are indeed predisposed to tumorigenesis [83,84]. The
vulnerability of the OxPhos system to host factors (e.g. age, inflammatory cytokines) and
environmental factors (e.g. pesticides, natural and synthesis compounds) may increase the
susceptibility to breast cancer. We propose that the suppression of p53 by mitochondrial
dysfunction could play a key role in enhanced breast cancer susceptibility [88].
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Figure 1. An overview of cellular metabolism showing the links among glycolysis, the TCA cycle
and OxPhos
Glycolysis is linked with the TCA cycle and OxPhos via pyruvate and redox shuttles (MAS,
GPS). CI-V: Complexes I–V; ETC/RC: electron transport chain/respiratory chain made up
by C-IV; OxPhos system: oxidative phosphorylation system made by CI-V (or RC + CV).
Ubiquinone (Q) and cytochrome c (cc) are electron carriers; MAS: malate-aspartate redox
shuttle; GPS: glycerol-3-phosphate redox shuttle. Numbers indicate selected enzymes- 1:
lactate dehydrogenase (LDH); 2: pyruvate dehydrogenase (PDH); 3: pyruvate carboxylase
(PC)- an anaplerotic enzyme; 4: citrate synthase (CS); 5: aconitase; 6: isocitrate
dehydrogenase (IDH3: NAD+-dependent shown; IDH1, 2: NADP+-dependent not shown);
7: α-ketoglutarate dehydrogenase (KGDH); 8: succinyl-CoA synthase (SCS: ATP, GTP-
dependent); 9: succinate dehydrogenase (SDH or Complex II); 10: fumarate hydratase or
fumarase (FH); 11: malate dehydrogenase (MDH). Broken thin lines indicate reactions
generating electron donors (NADH and FADH2) and the solid thin lines indicate reactions
oxidizing NADH and FADH2.
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Figure 2. Relationship between the tumor suppressor p53 and metabolism
A) p53’s relationship with glycolysis and OxPhos in normal cells. B) p53’s relationship with
glycolysis and OxPhos in cells with OxPhos deficiency. Because p53 is suppressed by
OxPhos deficiency, its negative and positive effects on glycolysis and OxPhos would be
removed.
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Figure 3. Effect of inflammatory cytokine TNFα on Complex I (CI)
A) Effect of TNFα (10 ng/ml) on CI subunit NDUFS3 expression in human HEK293 cells.
(B) Effect of TNFα (10 ng/ml) on CI function in human mammary epithelial cells
(HMECs). Primary HMECs (passage 3, 50,000/well) were permeabilized with 1 nM PFO
(perfringolysin-O) and then glutamate and malate (10 mM each) were added with 1 mM
ADP (GM+ADP) to measure CI-dependent oxygen consumption rates (OCR). Relative
OCR is shown after setting the basal rate before PFO addition to 100%. OCR was measured
using a 24-well Extracellular Flux (XF24) Analyzer from Seahorse Bioscience (Billerica,
MA). CI_Ctr, CI_TNF01, and CI_TNF24 show CI-dependent respiration in control, 1 hr and
24 hr TNFα-treated HMECs. Respiration rates were measured in a Ca2+-free buffer. The
measurement of respiration in PFO-permeabilized cells is a novel method (unpublished, C.
Kim, A. Heuck and N. Yadava).
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