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Abstract Myoelectric control has been extensively

applied in multi-function hand/wrist prostheses. The per-

formance of this type of control is however, influenced by

several practical factors that still limit its clinical applica-

bility. One of these factors is the change in arm posture

during the daily use of prostheses. In this study, we

investigate the effect of arm position on the performance of

a simultaneous and proportional myoelectric control algo-

rithm, both on trans-radial amputees and able-bodied sub-

jects. The results showed that changing arm position

adversely influences the performance of the algorithm for

both subject groups, but that this influence is less pro-

nounced in amputee subjects with respect to able-bodied

subjects. Thus, the impact of arm posture on myoelectric

control cannot be inferred from results on able-bodied

subjects and should be directly investigated in amputee

subjects.

Keywords Electromyography � Myoelectric control �
Kinematics estimation � Upper limb prosthesis

1 Introduction

Electromyography (EMG) has been used as the control

source for powered upper limb prostheses for several

decades. However, myoelectric controlled prostheses have

still limited functionality since the number of reliable

functions per channel pair never exceeds three [16].

Research has thus focused on pattern recognition algo-

rithms. These methods achieve high performance ([95 %

accuracy in [10 motion classes) in laboratory conditions

[15]. Despite good laboratory performance, EMG pattern

recognition for prosthetic control has practical limitations

(see [10] for a recent review). One of the problems is that

pattern recognition of the EMG does not provide simulta-

neous and proportional control of multiple functions, but

only sequential and on/off activation. Simultaneous and

proportional myoelectric control over multiple degrees of

freedom (DoFs) can be achieved with alternative approa-

ches, for example based on the synergistic structure of

muscle activation [9, 13, 14]. With this method, three DoFs

of the wrist [9], [14] as well as hand open/close [13] could

be estimated from the EMG with good accuracy in both

able-bodied subjects and trans-radial amputees.

Another problem identified when applying pattern rec-

ognition methods is that when the arm position changes

with respect to the training measures, the performance

drops substantially (up to 40 % reduction in classification

accuracy) [3]. This is due to the influence of arm position

on the muscular activation pattern when performing wrist/

hand tasks [5, 7, 12]. This influence is also very relevant for

the translation of myoelectric control algorithms to clinical

prostheses and needs further investigation for regression

methods aimed at the estimation of hand kinematics for

simultaneous and proportional control mentioned above.

Therefore, in this study, we investigate the effect of arm
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posture on the simultaneous and proportional myoelectric

control over multiple DoFs of the hand/wrist in both able-

bodied and amputee subjects. Compared to previous stud-

ies that limited this analysis to a finite number of classes

sequentially classified and to able-bodied subjects only, the

results of the current study will elucidate the effective

impact of arm posture on the prosthetic users and on

algorithms that allow a more advanced and intuitive control

with respect to sequential on–off methods.

2 Methods

2.1 Subjects

Three individuals (2 males, 1 female; age range 31–42

years; referenced A1–A3) with unilateral trans-radial

amputation participated in the experiment. All amputee

subjects are users of conventional myoelectric prostheses,

which articulate only one DoF. The information on the

amputee subjects is summarized in Table 1.

In addition, 5 able-bodied subjects (2 males, 3 females;

age range 24–40 years; all right-handed, referenced H1–

H5) participated in the experiments. The eight subjects

signed informed consent forms prior to their participation.

The experimental protocol was approved by the local ethics

committee of the Region North Jylland, Denmark.

2.2 Experimental procedure

The experimental setup was similar to the one described in

[8]. During an experimental session, the subject sat in a

custom-made chair, with the elbows resting on two arm-

rests (Fig. 1). The elbow supports were adjusted so that the

subject felt relaxed, and his/her shoulders and upper arms

were in symmetric positions. Since each experimental

session was long, the elbow supports were used so that the

muscles of the upper limb (mainly the deltoid muscles)

would not fatigue during the session. No support was

provided to the forearm muscles during the experimental

session. Eight cameras of an optical motion capture system

(Qualisys AB, Gothenburg, Sweden) were placed in a

circular pattern around the subject. The positions and ori-

entation of the cameras were optimized to provide the

maximum coverage of all markers during the intended

movements.

During a recording session, the subjects were instructed

to maintain their upper arms and forearms in 3 positions:

POS1 with the elbows flexed at 90� and the arms 30�
abducted from the torso; POS2 with the elbows flexed 90�
and arms 75� abducted from the torso or to an extent

comfortable for the subjects; and POS3 with the arms fully

extended forward, perpendicular to the frontal plane. In

each position, the subjects were asked to perform a series

of hand movements that involved bilateral mirrored acti-

vations of the three DoFs of the wrists: flexion/extension

(DoF1), radial/ulnar deviation (DoF2), and wrist pronation/

supination (DoF3). The able-bodied subjects were

instructed to perform mirror movements of their limbs

while the amputee subjects were asked to imagine per-

forming with the amputated limb the same movement

performed with the intact limb. At the beginning of an

experimental session, the subjects familiarized themselves

with the protocol by performing the mirrored bilateral

movements, with instruction from the experimenter. Then,

the subject was instructed to perform two sets of move-

ments for each arm position. In a particular continuous

movement task (called a run), two or three DoFs were

articulated concurrently. A total of seven runs were per-

formed at each position (Table 2). The subjects were

instructed to perform the runs at low to medium speed,

which was subjectively controlled by the subject. The time

it took to move from the neutral position to the maximal

range of motion and come back to the neutral position was

Table 1 Summary information on the amputee subjects

Sub.

ID

Age

(years)

Time since amputation

(years)

Position of

amputation

A1 34 3 ca. 17 cm distal from

elbow

A2 42 8 ca. 20 cm distal from

elbow

A3 35 7 ca. 20 cm distal from

elbow

Fig. 1 The experimental setup. The elbow supports for both sides

were adjusted according to the three arm positions. In the position

shown, the subject’s elbow is flexed 90� and armis abducted 75� from

the torso (POS2)
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between 1 and 2 s. The maximal range of motion at each

DoF was determined by the subject. The marker trajecto-

ries in the 3D space were visually inspected by the

experimenter after each run. The run was repeated if the

trajectories were deemed unsatisfactory due to excessive

gaps in the acquired marker trajectories. Each run finished

when the last complete movement (from neutral position to

the maximal range of motion) was completed after 65 s,

resulting in approximately 40–50 full repetitions of the

movements. This duration was chosen to avoid fatigue and

obtain a sufficient number of repetitions of the movements.

Consecutive runs were separated by resting periods of

2–3 min, to avoid fatigue. The tested positions as well as

the runs within a position were randomized for each

subject.

2.3 EMG recordings

Seven pairs of Ag–AgCl surface bipolar electrodes (Ambu

NeuroLine 720) were placed on each forearm, with 23 mm

inter-electrode distance. The electrode pairs were placed

along the proximal/distal direction. At the intact side of the

amputee subjects, the electrode pairs were placed around

the thickest part of the forearm. This position is usually

approximately 1/3 distal, measured from the olecranon

process to the styloid process of the ulna. The electrode

pairs were placed in a circle around the forearm with equal

inter-pair distance, similarly to [14] and [8]. The first pair

was placed approximately 1 cm medially from the ulnar

bone and the remaining six pairs were positioned sequen-

tially in the pronation direction. At the amputated side of

the amputee subjects, the electrodes were placed on the

same place as at the intact side, whenever possible. For the

able-bodied subjects, the electrodes on both sides were

placed as for the intact side of the amputee subjects. A

reference armband (placed on one of the wrists for the able-

bodied subjects and on the wrist of the intact side of the

amputee subjects) was used as the common reference point.

For improved line-interference rejection, all electrodes

were connected via shielded cables to an EMG amplifier

(EMG-USB, 128-channel, OT Bioelettronica), where the

EMG signal was sampled at 2048 Hz and amplified at 2 k,

with 12-bit AD resolution.

2.4 Kinematics recordings

Passive-reflective markers (diameter 12 mm) were placed

on both arms of the subjects. For the amputee subjects,

seven markers were placed on the following anatomical

landmarks at the intact side: one on the shoulder (promi-

nent point of the Scapular Acromion); two at the elbow

(prominent points of the medial and lateral epicondyle of

humerus, denoted by MEP and LEP); two at the wrist

(distal styloid processes of ulna and radius, denoted by

STU and STR); and two at the hand (distal laterally and

medially prominent points of the second and fifth meta-

carpal bone, denoted by RMC and UMC). At the ampu-

tated side, the first five markers were placed at the same

place as the intact side, and the two additional markers

were placed on the distal end of the stump, over the

prominent points of the ulna and radius bones (found by

palpation). For able-bodied subjects, seven markers were

placed on both arms, at the same places as the intact limb

of the amputee subjects. The 3D coordinates of the markers

were acquired at 256 Hz, with error smaller than 0.5 mm

(as indicated during the Qualisys calibration procedure).

An external synchronization signal (20 Hz square wave,

±5 V) was provided to both the EMG acquisition system

and the motion capture system so that the EMG traces and

the kinematics could be synchronized offline.

2.5 Data processing

The EMG and kinematics data were processed offline. The

EMG signals were band pass filtered (10–450 Hz, second

order Butterworth filter), and then resampled at 1,024 Hz.

To estimate the kinematics at the wrist joint, the time

domain (TD) feature set (mean absolute value, mean

absolute value slope, zero crossings, and slope sign change)

[6], and the 6-order autoregressive coefficients (AR) [4]

(obtained by LMS linear prediction filter), namely the

TDAR feature set, were used. For detailed information

regarding these features, please refer to [12] and [13]. The

analysis windows had duration of 100 ms and were over-

lapped by 60 ms.

The angular displacements for each of the three DoFs

were calculated from the coordinate system illustrated in

Fig. 2. The origin of the system is at the center of the wrist,

midway between the STR and STU, denoted by O. The

Table 2 The descriptions of the seven runs of movements at each

position

Set Description Active DoFs

1 Combined activation of two DoFs,

in which one DoF was articulated

sinusoidally, and the other was

fixed at positions close to

maximal range of motion

Run 1: DoF1 ? DoF2

Run 2: DoF2 ? DoF1

Run 3: DoF1 ? DoF3

Run 4: DoF3 ? DoF1

Run 5: DoF2 ? DoF3

Run 6: DoF3 ? DoF2

2 Cyclic movements of DoF1 and

DoF2, while alternating the

direction of DoF3; unconstrained

dynamic wrist movements

Run 7:

DoF1 ? DoF2 ? DoF3

Run a continuous movement, set a group of runs, DoF1 wrist flexion/

extension, DoF2 wrist radial/ulnar deviation, DoF3 wirst pronatin/

supination
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z-axis set as the center axis of the forearm, positive in the

proximal direction, pointing from O to E, the midway

between MEP and LEP; the y-axis set as the dorsopalmar

axis, positive in the anterior direction; and the x-axis set as

the mediolateral axis of the wrist, positive in the lateral

direction. Denoting the mid-point between RMC and UMC

by H, and its projection on the three axes by Hx, Hy and Hz,

the angles of the three DoFs are calculated by the following

equations:

a1 ¼ a tan
Hy

Hz

� �
ð1Þ

a2 ¼ a tan
Hx

Hz

� �
ð2Þ

a3 ¼ ]ðx
*
; l
*

Þ; ð3Þ

where x
*

is the vector from STU to STR, and l
*

is the vector

from MEP to LEP. The range of a1 is ±90�, where a

positive/negative angle indicates wrist flexion/extension.

The range of a2 is ±90�, where a positive/negative angle

indicates radial/ulnar deviation. The range of a3 is between

0� and 180�, where an angle greater/smaller than 90�
indicates pronation/supination. The kinematic data were

offline low-pass filtered (6 Hz, second order Butterworth

filter). All kinematic data were re-sampled to 1,024 Hz,

and synchronized with the corresponding EMG signal

through the common synchronization signal.

Multi-layer perceptron (MLP) artificial neural networks

were used to learn the association between the EMG fea-

tures and the kinematic signals. The inputs to the MLPs

were the EMG features, obtained using 100 ms long

analysis windows with 60 ms overlap between two adja-

cent windows. The targets of the MLPs were the mean of

the respective angle of the corresponding analysis win-

dows. Three MLPs were used to estimate the three joint

angles of the three DoFs. The number of neurons in the

hidden layer was determined to be three, as reported in

previous studies [8], where the number of EMG channels,

EMG features and estimation target were similar to the

current study.

2.5.1 Contralateral training of the MLPs

The MLP can be used to learn the wrist kinematics of one

side (for example the intact side) from the EMG features

from the other side (for example the amputated side), in

both able-bodied [13] and amputee subjects [8]. This

contralateral training approach for MLPs was used also in

the current study. The inputs to the MLP were the EMG

features from the amputated side for amputees or the

dominant side for able-bodied subjects. The targets of the

MLPs were the joint angles of the contralateral side cal-

culated using Eqs. (1), (2), (3).

2.5.2 Effect of arm positions

The MLPs were trained using data from one arm position

and tested in all positions. For each position, the randomly

selected 4/5 of data of each run from that position were

used for training data for the MLP. The rest 1/5 data from

each run were used as testing data, resulting in a 5-fold

cross-validation. All the data from the other two positions

were also used as the testing data. The cases are referred to

as intra-position when the training and testing data were

from the same arm position and inter-position when the

training and testing were from different arm positions.

2.5.3 Activated DoFs

Since the seven runs (Table 2) articulated different DoFs,

four analysis scenarios based on the activated DoFs were

considered. The analysis scenario referred to as DoF12

Fig. 2 The positions of the markers and the coordinate system used

to calculate the three joint angles
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indicates that only DoF1 and DoF2 were used for the

analysis (runs 1 and 2). Similarly, the analysis scenario

DoF13 used only runs 3 and 4, and so on. When all the

seven runs were used in the analysis, the scenario was

called DoF123.

2.5.4 Effection of positional pooling

It has been shown in [3] that pooling data from different

arm positions in the training phase significantly improved

the classification accuracy for pattern recognition-based

myoelectric control algorithms. The effect of this type of

positional pooling was also investigated in the current

study. For each fold of the 5-fold cross-validation, the

training data from all three positions were pooled together

to form the pooled training data for the current fold. MLPs

with the same structure were used, and the testing data sets

were the same as in the individual positional training

schemes described above. The positional pooling analysis

was done for all four analysis scenarios DoF123, DoF12,

DoF13, and DoF23.

The performance of the MLPs of various configurations

was measured by the multivariate R2 index, proposed by

[1]:

R2 ¼ 1�

PD
i¼1

PNi

t¼0

ðdaiðtÞ � aiðtÞÞ2

PD
i¼1

PNi

t¼0

ðaiðtÞ � aiðtÞÞ
2
: ð4Þ

where D is the number of DoFs considered, Ni is the

number of data points in the ith DoF, daiðtÞ is the estimated

angles, and aiðtÞ is the temporal mean of the measured

angle, aiðtÞ. The numerator and the denominator of the

fraction on the right-hand-side of (4) is the mean square

error (MSE) of the estimation and the variance of the tar-

gets, respectively. This measure has shown to be less

biased when the target angles have very small values,

compared with the conventional MSE measure in estima-

tion problems [1].

2.6 Statistical analysis

As shown in the results section, the intra-position R2 values

were greater than those of the corresponding inter-position

values. The main statistical analysis aimed at investigating

the effect of arm position on the two subject groups, thus

we eliminated from this analysis the variability due to the

differences between the intra-position cases and inter-

position cases. Two-way ANOVA was therefore performed

on the R2 values normalized with respect to the respective

intra-position R2 values. The analysis scenarios DoF123,

DoF12, DoF13, and DoF23 were analyzed by separate

ANOVAs. Each ANOVA had two factors: testing arm

positions (AP) and subject group (ST). The significance

level was set to 95 %. The factor AP had three levels (three

testing positions) and the factor ST had two levels

(amputee and able-bodied subjects). For each of the four

analysis scenarios, a full ANOVA with interaction was

performed first. Since no statistically significant interac-

tions between the two factors were found in all scenarios

(see results), only the main effects were reported. Post hoc

multiple comparisons (Tukey–Kramer) were performed

when the main effects were significant.

3 Results

Figure 3 shows a representative example of recorded EMG

signals and estimated joint angles for an amputee (A2)

performing movements that articulate the DoF1 and DoF3

(run 4) concurrently. The intra-position and inter-position

R2 values for the two subject groups are summarized in

Table 3. In all cases, the intra-position R2 values were

significantly higher than the corresponding inter-position

values (p \ 10-3). This is likely due to the fact that muscle

activities were indeed different when performing the same

hand movements, while at different arm positions. The

relative R2 values of all analysis scenarios with respect to

the respective intra-position values are summarized in

Fig. 4.

There was no interaction between the factors AP and

ST. The results of subsequent ANOVA on the two main

factors are summarized in Table 4. The testing position did

not have a significant effect for DoF12, DoF13, and

DoF23, and it was only significant for DoF123. These

results means that there was no statistical difference of the

relative R2 values among the three testing positions, i.e., no

one particular testing position resulted in a better perfor-

mance than other testing positions. On the other hand, the

subject group influenced the performance for DoF12,

DoF13, and DoF23, but not for DoF123. Interestingly,

when changing arm position, the amputee subjects had

relatively higher performance (with respect to the respec-

tive baseline values) than intact-limb subjects in DoF13

and DoF23 (rightmost column in Table 4). It is important

to note that among the three DoFs, the third DoF (supi-

nation/pronation) is the most functional one for trans-radial

amputees, followed by the first DoF (flexion/extension).

When the training data from all three positions were

pooled together to form the pooled training sets, the R2

values significantly improved, regardless of the training

scenarios and subject group, as shown in Fig. 5. This

improvement due to positional pooling is expected as the

MLPs became positional aware with pooled training. This

improvement is similar to positional pooling effect

Med Biol Eng Comput (2013) 51:143–151 147

123



reported for pattern recognition-based myoelectric control

algorithms [3].

4 Discussion

We analyzed the effect of arm position on the performance

of a direct joint kinematics estimation algorithm from

surface EMG. The results showed that arm position does

have a significant effect on the estimation performance for

both trans-radial amputees and able-bodied control sub-

jects. On average, the intra-position R2 values were 61.3

and 62.9 %, for amputee and control subjects, respectively,

and decreased to 46.1 and 34.0 % for the inter-position

cases. This is due to the fact that the surface EMG char-

acteristics of forearm muscles are influenced by the arm

posture [5, 7, 12] and by the load at different directions

[17]. These factors are relevant when the arm moves to

different positions, or the support of the limb changes.

Indeed, in a recent study [3] on able-bodied subjects, arm

position was shown to significantly influence the perfor-

mance of pattern classification-based myoelectric control

algorithms. The results of the current study confirmed that

such an effect is also relevant for algorithms based on the

simultaneous and proportional control of multiple DoFs.

A further result of the current study is that, for the

simultaneous and proportional control approach, arm posi-

tion has a smaller influence for amputee subjects than for

able-bodied subjects. The inter-position R2 values (with

respect to the intra-position values) of the amputee group

were significantly greater than those of the able-bodied

subject group in the DoF13 and DoF23 scenarios (Table 4).

This difference might be due to the anatomical differences

between the amputees and the able-bodied subjects. The

forearm contains many muscles whose relative position may

change considerably during dynamic movements, at least in

normally limbed subjects. As a consequence, muscles can

slide beneath the skin with respect to the electrodes when

changing the arm position. This sliding may in turn alters the

thickness of the biological tissue separating the muscles from

the electrodes and thus, the recorded EMG patterns [11]. Due

to the amputation, the remaining muscles are usually shorter

in length, and fixed at the stump. As a consequence, there is

much less variability in the muscle fiber length when the

residual limb is in different positions. The fact that muscles

or tendons are fixed in place to the bone in amputees may also

reduce the possibility of relative shifting between muscles
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Fig. 3 Representative EMG signals from an amputee subject (A2). In

both panels, the measured joint angles (thick dashed lines) from the

intact side are plotted against the estimated angles (thin solid lines). In

the lower portion, the corresponding 7-channel EMG signals from the

amputated side are shown, from which the estimated angles were

obtained. In panel A, the arm position was POS1, and the ANN used

was trained in the same position (an intra-position case)

(R2 = 72.4 %). In panel B, the arm position was POS3, the ANN

used was the same as for panel A (an inter-position case)

(R2 = 56.2 %)

Table 3 Summary of the R2 values (mean ± sd)

Intra-position

(%)

Inter-position

(%)

Amputees subjects DoF123 61.3 ± 9.26 46.1 ± 16.8

DoF12 66.6 ± 8.66 49.8 ± 16.4

DoF13 74.8 ± 8.65 58.7 ± 14.7

DoF23 76.6 ± 8.89 53.0 ± 17.2

Able-bodied

subjects

DoF123 62.9 ± 6.87 34.0 ± 14.8

DoF12 86.2 ± 5.38 73.9 ± 6.03

DoF13 74.5 ± 8.16 48.0 ± 17.9

DoF23 71.2 ± 6.22 39.9 ± 19.7
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and electrodes, as well as changes in muscle geometry,

which are more pronounced in normally limbed subjects. It is

also worth noting that the drop in performance for able-

bodied subjects when DoF3 was involved may be partly due

to the fact that the EMG activity from the biceps muscle was

not recorded. The biceps brachii is a powerful supinator

especially when the forearm is flexed [2], as in the present

experimental setup. However, this muscle was excluded to

mimic a real life scenario, in which commercial hand pros-

thesis electrodes are mounted in the socket and thus record

EMG signals only from the forearm muscles at the stump.

The amputees may rely less than able-bodied subjects on the

biceps activation because they are trained to use myoelectric

prostheses with forearm muscle activity.

Another difference between amputees and able-bodied

subjects when changing arm position is that the change in load

due to gravity is not applied directly to the tendons of the

muscles of amputees, contrary to able-bodied subjects. This

could lead to lower gravity-compensatory muscle activities in

amputees than for able-bodied subjects when arm posture is

changed, with consequent less variability in EMG features and

sensitivity of myoelectric control to arm position changes.

Despite the smaller influence for amputees, the arm

position did have an effect on the kinematics estimation in

both groups, so that this issue may be relevant in practical

implementations. One way to reduce this effect is to

include the data from different positions during the training

of the ANN. A similar approach was investigated by [3] for

pattern recognition-based algorithms, where the authors

showed that when data from multiple positions were

pooled together in the training phase of the classifier, the

classification error was reduced significantly, as expected.

In the current study, similar improvement due to positional

pooling was also demonstrated. However, it would be
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Fig. 4 Mean R2 values. The results from the amputee subjects are

presented in the top row, and the results from the able-bodied subjects

are in the bottom row. The four columns, from left to right, are the

analysis scenarios DoF123, DoF12, DoF13, and DoF23. Because the

baseline values (training and testing with data from the same position,

the diagonal in each plot) varied significantly among the different

scenarios, the R2 values in each row were normalized with respect to

the respective baseline values to illustrate the effect of arm position

Table 4 The results of the ANOVA in all analysis scenarios

Analysis scenario AP (arm pos.) ST (sub. type) Post hoc comp. for AP (arm pos.) Post hoc comp. for ST (sub. type)

DoF123 p = 0.0283 p = 0.147 POS2 [ POS1 n/a

DoF12 p = 0.256 p = 0.009 n/a Amputee \ control

DoF13 p = 0.91 p = 0.0259 n/a Amputee [ control

DoF23 p = 0.0869 p = 0.0088 n/a Amputee [ control

For post hoc comparison, only the significant comparisons are listed

Med Biol Eng Comput (2013) 51:143–151 149

123



impractical to include an excessive number of arm posi-

tions during the experimental (training) protocols. There-

fore, this problem remains currently relevant and without a

practically applicable robust solution.

In conclusion, this study showed that arm position has

an influence on the accuracy of kinematics estimation from

EMG in both able-bodied and amputee subjects. Interest-

ingly, this effect was less pronounced for amputees, thus

the impact of this issue in practical implementations may

be less important than expected when analyzing able-

bodied subjects only. Nevertheless, algorithms that deal

with the influence of arm posture in myoelectric control are

needed for clinical applications.
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