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Abstract
Many studies have utilized the Inbred Long Sleep and Inbred Short Sleep mouse strains to model
the genetic influence on initial sensitivity to ethanol. The mechanisms underlying this divergent
phenotype are still not completely understood. In this study, we attempt to identify genes that are
differentially expressed between these two strains and to identify baseline networks of co-
expressed genes, which may provide insight regarding their phenotypic differences. We examined
the whole brain and striatal transcriptomes of both strains, using next generation RNA sequencing
techniques. Many genes were differentially expressed between strains, including several in
chromosomal regions previously shown to influence initial sensitivity to ethanol. These results are
in concordance with a similar sample of striatal transcriptomes measured using microarrays. In
addition to the higher dynamic range, RNA-Seq is not hindered by high background noise or
polymorphisms in probesets as with microarray technology, and we are able to analyze exome
sequence of abundant genes. Furthermore, utilizing Weighted Gene Co-expression Network
Analysis (WGCNA) we identified several modules of co-expressed genes corresponding to strain
differences. Several candidate genes were identified, including protein phosphatase 1 regulatory
unit 1b (Ppp1r1b), prodynorphin (Pdyn), proenkephalin (Penk), ras association (RalGDS/AF-6)
domain family member 2 (Rassf2), myosin 1d (Myo1d), and transthyretin (Ttr). In addition, we
propose a role for potassium channel activity as well as map kinase signaling in the observed
phenotypic differences between the two strains.
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Introduction
The heritability of alcohol use disorders, estimated to be approximately 0.5, suggests that
genetics plays an important role in determining an individual’s risk (Dick et al. 2009). One
possibility for how this risk manifests itself is in first response to alcohol (Schuckit 1980),
where it was demonstrated that a low level of response to alcohol is a strong predictor of
future alcohol use disorders (Schuckit 1994; Schuckit 2000). In animals, measures of acute
ethanol response from a single intra-peritoneal injection include: ethanol-stimulated activity,
metabolism, hypothermia, ataxia, and loss of righting reflex (LORR). The Inbred Long
Sleep (ILS) and Inbred Short Sleep (ISS) mouse strains were selected for differences in
LORR and show a large phenotypic divergence (McClearn & Kakihana 1981). Since this
phenotype is present in ethanol-naïve animals, it is likely that genetically mediated
differences in baseline gene expression could account for much of this phenotypic
difference.

The ILS and ISS mice have been extensively studied, and are phenotypically different
beyond ethanol-induced LORR (DeFries et al. 1989; Erwin et al. 1990; Gehle & Erwin
2000), for example, the strains differ in ethanol preference with the ISS mice consuming
more ethanol than the ILS mice (Saba et al. 2011). The underlying genetics of these
quantitative traits have been explored successfully using recombinant panels of mice to
identify regions of interest likely involved in LORR (Lore QTLs) on chromosomes 1, 2, 3,
8, 11, and 15 (Bennett et al. 2002; Bennett et al. 2008; Bennett et al. 2006; Christensen et al.
1996; Markel et al. 1997; Markel et al. 1996). Genes in these regions were sequenced to find
polymorphisms that may contribute to the observed phenotypes, and fifteen genes with
coding sequence differences were identified (Ehringer et al. 2001). Further, gene expression
studies, in both whole brain (Xu et al. 2001), and cerebellum (Maclaren & Sikela 2005)
identified many differentially expressed genes (DEGs) between the strains. Maclaren
identified several DEGs within Lore QTL regions with promoter region sequence
differences (Maclaren et al. 2006).

The current study utilized Next Generation RNA Sequencing (RNA-Seq) technology to
investigate baseline gene expression differences between these two strains. RNA-Seq
produces millions of short reads which, when mapped back to the genome, provide a
measure of gene expression as well as strain-specific sequence, at least for abundantly
expressed genes. It provides a higher level of resolution of gene expression than is possible
with hybridization microarrays. A high level of background noise, typical with microarrays,
does not limit RNA-Seq (Marguerat & Bähler 2010; Wang et al. 2009). RNA-Seq has also
been shown to improve network characteristics compared to microarrays (Iancu et al. 2012).
The purpose of this study is to identify both DEGs and networks of co-expressed genes for
future study of initial response to alcohol and risk of alcohol use disorders. While priority
will be given to genes previously identified in alcohol or drug studies, we will use multiple
bioinformatics resources to filter candidate genes depending on differential expression,
sequence differences, genome locations, and co-expression with other candidate genes.
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Materials and Methods
Statement on animal care

This study was conducted with approval from the Institutional Animal Care and Use
Committee at the University of Colorado Health Sciences Center (Denver, Colorado)
following guidelines established by the Office of Laboratory Animal Welfare. Measures
were taken to minimize discomfort.

RNA extraction
Mice were bred and housed at the specific pathogen free facility at the Institute for
Behavioral Genetics (University of Colorado, Boulder) under a 12-hour light/dark cycle
with ad libitum access to food and water. On post-natal day 60, twelve ethanol-naïve adult
male mice (n=6/strain) were sacrificed by cervical dislocation and whole brains were
removed. Six brains (n=3/strain) were further dissected to isolate the striatum. Total RNA,
from whole brains (WB, n=6, 3/strain) and striatum (ST, n=6, 3/strain) was extracted using
RNeasy midi kits (Qiagen, Valencia, CA), and quantity and quality were determined using a
NanoDrop™ spectrophotometer (Thermo Fisher Scientific, Wilmington, DE) and Agilent
2100 BioAnalyzer™ (Agilent Technologies, Santa Clara, CA). Ratios of absorbance at
260nm and 280nm were shown to be excellent (>1.8). RNA Integrity scores were also
shown to be excellent (>8.0).

Library preparation
The preparation of the cDNA library for RNA-Sequencing was conducted according to
Illumina (San Diego, California) protocol for quantitative RNA Sequencing on the Genome
Analyzer II (GAII) platform. Starting with 10 μg total RNA for each RNA sample, the
samples were enriched for poly-A RNA using Sera Mag Magnetic Oligo(dT) Beads™. The
poly-A enriched RNA samples were then fragmented with a 3M NaOAc solution at 94°C for
5 minutes. The samples were reverse transcribed with random primers, and end repair was
performed with T4 and Klenow DNA polymerase. Double stranded Illumina adaptors, with
a single thymine overhang, were ligated to the ends of the cDNA fragments by first adding a
single adenine to each 3′ end of the cDNA. Next, 200bp fragments were selected by agarose
gel electrophoresis and subsequent gel extraction with Qiagen Gel Purification kits.
Libraries were enriched with 15 cycles of PCR, and purified using QIAquick PCR
Purification kits (Qiagen). Each cDNA library was run on one GAII lane sequencing to
36bp.

Alignment
Raw 36 nucleotide reads were trimmed to 28nt due to inherent decrease in quality score
toward the 3′ end (Shendure & Ji 2008). Reads were mapped to the mouse reference
genome (mm9, Ensembl) using TopHat (v1.2.0, http://tophat.cbcb.umd.edu) (Trapnell et al.
2009). TopHat first maps reads using Bowtie (v0.12.7, http://bowtie-bio.sourceforge.net/)
(Trapnell & Salzberg 2009) alignment software, which utilizes a Burrows-Wheeler index of
the mouse genome (obtained from Bowtie source webpage, http://bowtie-
bio.sourceforge.net/) to rapidly align short reads. TopHat then uses the resulting read pileup
to deduce likely exon/intron boundaries, and identifies reads aligning across boundaries.
Reads with up to 2 mismatches were allowed, and reads were removed if they aligned to
more than 10 places in the genome. Visualization of read pileups was done using the
Integrated Genomics Viewer (IGV v2.1, www.broadinstitute.org/igv) (Robinson et al.
2011).
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Transcript assembly, quantification, and differential expression testing
To assemble transcripts and estimate abundance, output from TopHat and the annotated
reference genome (mm9, Ensembl) was analyzed using Cufflinks (v2.0.2, http://
cufflinks.cbcb.umd.edu/) (Trapnell et al. 2010) to construct the minimum number of
transcripts that explain the maximum number of reads. Since the sequenced sample had been
enriched for poly-A mRNA transcripts, a mask file was used to discriminate against
alignments in rRNA, tRNA, and small RNA genes. Once transcripts were assembled, their
abundances were estimated by counting the number of aligned reads contained in the
transcript, and normalizing both to the size of transcript and to the total number of aligned
reads in the sample (fragments per kilobase exon per million mapped fragments, FPKM).
Cuffcompare was then used to compile the set of transcripts from each group, and each
transcript was tested for differential expression using Cuffdiff. Data for the four groups of
three samples (ILS/WB, ILS/ST, ISS/WB, and ISS/ST) were input into Cuffdiff to calculate
each pairwise comparison of gene expression. Cuffdiff outputs estimates of the Jensen-
Shannon divergence of each pair to determine statistical significance. Due to the exploratory
nature of this study, we applied a less stringent correction for multiple testing, using a False
Discovery Rate (FDR=0.1). Since the Cuffdiff minimum threshold of 1000 reads allows
inclusion of intronic reads, reads aligning to close neighbors, and/or genes contained within
an intron, we wanted to ensure that we only included reads which aligned within the exon
structure, therefore we set a minimum expression level FPKM of at least 1 for genes to be
included in subsequent analyses. Minimum thresholds have been employed in previous
studies, and a minimum FPKM of 1 is consistent (Brooks et al. 2011; Graveley et al. 2010).
In addition, using the Ensembl annotation information, we identified expressed genes
(FPKM>1) with overlapping features, i.e. un-translated regions on opposite strands. Visual
examination of each of these cases resulted in removal of 139 genes from further analysis.

Weighted Gene Co-expression Network Analysis (WGCNA)
Weighted gene co-expression networks were generated using the statistical program R
(v2.11.1, www.r-project.org) and the WGCNA package (http://www.genetics.ucla.edu/labs/
horvath/CoexpressionNetwork/). Cufflinks output from all twelve samples were used for a
single WGCNA. Data were merged based on unique Ensembl Gene Id, and genes were
excluded if no group reached an average FPKM≥1. Briefly, WGCNA first attempted to
impute missing data using a k-nearest neighbors algorithm, then removed genes where
imputation was impossible, and removed genes with no variance in expression values. Next,
a signed similarity matrix was constructed by taking each pairwise gene-gene Pearson
correlation, adding 1 then dividing by 2. This was converted to a weighted adjacency matrix
by a power function, determined by a scale-free topology model (β=4). Therefore, the
adjacency matrix contained values from 0 to 1 for each gene, with 0, 0.5, and 1; signifying
negative correlation (0–0.5), no correlation (0.5), and positive correlation (0.5–1). Genes
were clustered based on hierarchical clustering of topological overlap matrix-based
dissimilarity, with the dynamic tree cutting algorithm cutreeDynamic, and the deepSplit
option set to 4. Gene clusters with a minimum of 20 genes were identified using a dynamic
tree-cutting algorithm, which identified 21 gene clusters (modules). Similar gene modules
were merged using the mergeCloseModules command, with a dissimilarity threshold of 0.1
(Pearson correlation greater than 0.9). Merging similar modules resulted in 16 remaining
modules used in downstream analysis. Hub genes in each module were determined by
ranking each gene by its module membership, calculated by WGCNA. Module robustness
was tested in two ways. First, average module adjacencies were calculated and compared to
the average adjacencies of randomly sampled “modules” of the same size. One thousand
permutations of randomly sampled modules were generated. Modules were considered
robust if average module adjacencies were significantly higher than the randomly generated
modules. Second, the intramodular and extramodular connectivity of each module was

Darlington et al. Page 4

Genes Brain Behav. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://cufflinks.cbcb.umd.edu/
http://cufflinks.cbcb.umd.edu/
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/


calculated and scaled according to module size. Modules with higher scaled intramodular
connectivity were considered robust.

Identification of relevant co-expression modules
To identify biologically relevant co-expression modules, we took the first principle
component of each module, or module eigengene, using the moduleEigengenes command
from the WGCNA R-package. Each module eigengene is representative of the gene
expression levels for each module, if the module were reduced to a single gene. An analysis
of variance of the resulting module eigengene values was used to identify module
eigengenes different due to strain, region, or an interaction. Significant p-values were less
than 0.05/16=0.003125. Each module was tested for enrichment of differentially expressed
genes using a hypergeometric distribution function in R, and p-values were corrected using
the p.adjust function in R, utilizing the Benjamini-Hochberg method (Benjamini &
Hochberg 1995). The set of differentially expressed genes had been determined using the
Cufflinks package as described above, and genes were included if significant at FDR=0.1.

Bioinformatics analyses
The set of differentially expressed genes were tested for functional group over-
representation with the Web-based gene set analysis toolkit (WebGestalt, http://
bioinfo.vanderbilt.edu/webgestalt) (Duncan et al. 2010; Zhang et al. 2005). Functional
groups based on Gene Ontology (GO) (Ashburner et al. 2000), Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa et al. 2011; Kanehisa & Goto 2000), and
WikiPathways (Kelder et al. 2012; Pico et al. 2008). Over-represented Lore QTL regions
were identified using a hypergeometric distribution function in R. Cis-regulation of
differentially expressed and WGCNA module Lore QTL hub genes was determined using
publicly available datasets at www.genenetwork.org. Expression QTLs were identified using
two LxS datasets, hippocampus (Aug07) and prefrontal cortex (Aug06), as well as two BxD
datasets, striatum (Dec10v2) and whole brain (Nov06). Peak LOD score for expression must
occur within 10Mb of gene locus to have been considered cis-regulated. Furthermore, since
multiple datasets were used to interrogate regulation of expression, and most datasets
contained multiple probes for each gene, cis- peaks had to occur in the majority of all the
probes and at least once in each dataset to be considered having evidence of cis-regulation.
MicroRNA binding sites were identified from www.microrna.org, visualizing all miRNAs
with good mirSVR scores. In addition, sets of differentially expressed genes and co-
expression modules were tested for over-representation of genes previously identified as
being significantly differentially expressed (at least 3-fold higher) by cell type—neuron,
astrocyte, or oligodendrocyte (Cahoy et al. 2008).

Identifying gene sequence differences
Cis-regulated differentially expressed genes in Lore QTL regions, as well as Lore QTL hub
genes from WGCNA modules were visualized in IGV to identify sequence differences
between strains. IGV incorporates annotated SNP information from dbSNP (build 128),
which we used to classify SNPs as known or novel. In addition, genes sequenced previously
(Ehringer et al. 2001) were visualized for confirmation of previous results.

Affymetrix microarray analysis
A reanalysis of previously published ILS/ISS striatal Affymetrix microarray results
(Radcliffe et al. 2006) was conducted as a validation study of the current RNA-seq DEG
results. Briefly, striatal tissue was dissected and total RNA was isolated from 15 naïve mice
from each strain. RNA was quantitatively pooled from 3 mice for a total of 5 microarray
samples for each strain. RNA preparation, array hybridization (Affymetrix 430 v2.0), and
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array scanning was performed using standard procedures; details can be found in Radcliffe
et al. (2006).

Two probe masks were created and implemented to eliminate erroneous probes from
calculations of transcript expression, thereby, increasing accuracy of expression estimates.
Probe sequences were obtained directly from Affymetrix and aligned to the mouse genome
(mm9) using BLAT (Kent 2002). First, individual probes that aligned to more than one
location or did not perfectly align were removed. Second, probes that targeted regions of the
genome harboring SNPs were eliminated because an “expression” difference detected from
these probes was more likely to represent differences in hybridization efficiency rather than
true differences in RNA expression levels (Walter et al. 2007). SNPs were identified from
the current RNA-seq data using Partek Genomics Suite (v6.6; St. Louis, MO). We were less
concerned about keeping probesets as ensuring that the retained probesets were of the
highest quality possible. A liberal statistical criterion was thus used to test for significance of
the SNPs (LOD>5.0) at the risk of increased type I errors for SNP identification, but at the
same time, increased type II errors for probe removal, which we felt was acceptable in this
case. Finally, probesets were required to consist of at least five probes. Following a global
scaling procedure (average signal intensity of each array was set to a default target signal of
500), probe level normalization was performed using the Robust Multi-array Average
method (RMA). Any RMA value that was less than 0.01 was converted to 0.01.

Results
Illumina GAII sequencing

Quantitative RNA Sequencing was completed on an Illumina GAII platform. Twelve
samples total were sequenced, 6 each of whole brain (WB) and striatum (ST). Three samples
from each region were from ILS mice, three from ISS mice. Whole brain data yielded short-
read libraries of 12.7 and 13.1 million reads on average in ILS and ISS strains respectively.
Striatum sequencing produced libraries of 26.9 and 26.5 million reads on average in ILS and
ISS strains (Table 1). Differences in library size are due to updates in Illumina software
occurring between sequencing dates.

Alignment
Approximately 0.02% of low-complexity reads were discarded prior to alignment. Of the
remaining reads, when alignment was constrained to 2 mismatches and 1 alignment,
between 72 and 75% of reads aligned to the mouse genome. When constraints were relaxed
to allow for up to 10 alignments, ~89% of reads were aligned. Over 70,000 (WB) and
80,000 (ST) unique exon-exon boundaries were identified (Table 1).

Differential expression
Using a minimum expression threshold of FPKM≥1 (in at least one sample) and a false
discovery rate (FDR=0.1), 90 genes were differentially expressed between strains in the
whole brain. In striatum, 336 genes were differentially expressed (Figure 1). Fifty-three
genes were identified as differentially expressed in both data sets. Of those, 52 were
differentially expressed in the same direction, while only one was higher in one strain
compared to the other depending on region. Eight WB DEGs and 31 ST DEGs reside in
previously identified Lore QTL regions. A complete list of all analyzed genes is given in
supplemental files (Supplemental Table S1). Noteworthy differences include 14 potassium
channel subunit ST DEGs, previously identified candidate genes—ras association (RalGDS/
AF-6) domain family member 2 (Rassf2) and myosin 1d (Myo1d), and genes previously
implicated in alcohol/drug response phenotypes—protein phosphatase 1 regulatory unit 1b
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(Ppp1r1b), opioid peptide precursor genes prodynorphin (Pdyn) and proenkephalin (Penk),
and transthyretin (Ttr).

Of the 336 DEG from the striatum, 297 had one or more valid probesets represented on the
Affymetrix array. These Affymetrix probesets were tested for DE using one-way ANOVA
(uncorrected; one-tail test). Over 90% of the Affymetrix probesets were expressed in the
same direction as the RNA-seq DEG (Supplemental Figure S1). Of these, 65.7% were DE at
p<0.05, 10.8% were DE at a p value between 0.05 and 0.1, and the remainder were DE at
p>0.1 (Supplemental Figure S1). A complete list of the Affymetrix probesets and their
expression levels is shown in supplemental table S2.

Over-representation analysis of differentially expressed genes
Utilizing the online resource WebGestalt, GO and KEGG functional group, and
chromosomal region over-representation was determined on the set of 90 differentially
expressed genes in WB, and the 336 differentially expressed genes in ST, with the reference
set of genes based on the total number of genes detected at FPKM≥1 and tested for
differential expression (12,678 genes in WB, 12,395 in ST). The results are shown in Table
2. Briefly, the most significant functional groups represented in whole brain include groups
related to ribosomes, extracellular regions, and the major histocompatibility protein complex
(corrected group p-values range from 9.19×10−6 − 0.0285). In striatum, the most significant
functional groups include those related to ribosomes, potassium channel activity, and signal
transduction (corrected group p-values range from 3.45×10−6 − 0.0482).

Additionally, LoreChr3 on chromosome 3 was enriched with WB DEGs (2 genes,
hypergeometric p=0.027). In striatum, Lore4 on chromosome 11 (13 genes, hypergeometric
p=0.041) was enriched (Table 2). The set of ST DEGs was also enriched for genes
previously shown to be at least 3-fold over-expressed in oligodendrocytes (26 genes,
hypergeometric p=0.0025) and neurons (96 genes, hypergeometric p<1×10−16). The set of
WB DEGs was enriched for astrocyte-related genes (10 genes, hypergeometric p=0.026).

Weighted gene co-expression network analysis (WGCNA)
A single WGCNA of all 12 samples produced 16 distinct clusters (modules) of similarly
expressed genes. The number of genes in each module ranged from 24 to 8,288. Each gene
was assigned to a colored module, and no grey module (representing non co-expressed
genes) was created (Supplementary Figure S2). Module robustness was tested using two
methods. First, in each module, permutation testing confirmed that average module
adjacency was always greater than the mean of 1000 randomly sampled “modules” of equal
size (all modules p<0.001). Second, all modules were shown to display higher scaled
intramodular connectivity compared to scaled extramodular connectivity (Supplemental
Figure S3).

WGCNA gene modules enriched with differentially expressed genes
To determine whether each module contained more differentially expressed genes than
expected, the number of observed differentially expressed genes in each module was
compared to the hypergeometric distribution of the expected number of differentially
expressed genes. Six modules were enriched with striatum DEGs (blue, cyan, green,
greenyellow, magenta, and yellow) (Table 3). Of the 336 striatal DEGs, 96 out of 3211 in
the blue module were differentially expressed (hypergeometric p=0.025), 8 of 76 in the cyan
module (hypergeometric p=3.67×10−4), 12 of 123 in the green module (hypergeometric
p=1.48×10−4), 12 of 171 in the greenyellow module (hypergeometric p=9.1×10−4), 9 of 87
in the magenta module (hypergeometric p=2.59×10−4), and 19 of 299 in the yellow module
(hypergeometric p=2.59×10−4). Four modules were enriched with whole brain DEGs
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(darkred, green, magenta, and yellow, Table 3). Of the 90 whole brain DEGs, 1 of 24 in
darkred were differentially expressed (hypergeometric p=0.042), 7 of 123 in green
(hypergeometric p=7.1×10−6), 10 of 87 in magenta (hypergeometric p=1.45×10−10), and 12
of 299 in yellow (hypergeometric p=5.27×10−7). All p-values have been adjusted for
multiple corrections according to the Benjamini-Hochberg method, using the p. adjust
function in R. A complete table of the WGCNA modules can be found in the Supplemental
Table S3).

Module eigengenes associated with strain/region differences
We calculated the 1st principle component (PC) of each module using the
moduleEigengenes command from the WGCNA R-package. The 1st PC, or module
eigengene, represents the sample-specific expression levels if each module were reduced to
a single gene (Hierarchical clustering of module eigengenes is shown in Supplemental
Figure S4). An analysis of variance (ANOVA) of the module eigengenes (Figure 2) resulted
in strain differences in four modules: green (F1,8=274.6, p=1.78×10−7), grey60 (F1,8=46.11,
p=1.39×10−4), magenta (F1,8=258.3, p=2.26×10−7) and yellow (F1,8=65.06, p=4.12×10−5).
Three modules were different by region—black (F1,8=78.03, p=2.13×10−5),, brown
(F1,8=24.62, p=1.11×10−3), and turquoise (F1,8=154.6, p=1.63×10−6). Two modules were
different for both strain and region: blue (F1,8=19.61, p=0.0022, strain; F1,8=146.43,
p=2.01×10−6, region) and greenyellow (F1,8=106.8, p=6.63×10−6, strain; F1,8=39.49,
p=2.37×10−3, region), No module eigengenes had significant strain × region interaction
effects. P-values were considered significant when less than 0.05/16=0.003125.

Cell type over-representation in WGCNA modules
Using genes identified as being significantly over-expressed, by at least 3-fold, in neurons,
astrocytes, or oligodendrocytes, we tested whether modules were enriched for these sets of
genes (Table 3 and Figure 2) (Cahoy et al. 2008). Of the 13,802 genes used in the WGCNA,
1,099 (neuron), 803 (astrocyte), and 556 (oligodendrocyte) had been identified as being
over-expressed by at least 3-fold in each cell type. The turquoise module was enriched with
721 neuron genes (hypergeometric p=5.45×10−4) and 522 astrocyte genes (hypergeometric
p=0.021). The brown module was enriched with 81 oligodendrocyte genes (hypergeometric
p=2.31×10−7). All p-values were adjusted for the Benjamini-Hochberg false discovery rate.

Gene module hub gene identification
WGCNA identifies networks of interconnected genes, and it is possible to further identify
the most interconnected genes in each module. The top five most interconnected genes (hub
genes) in the eleven modules either enriched for DEGs or different across strain or region
are listed in Table 3. Seventeen DEGs were identified as hub genes, 11 ST DEGs, 2 WB
DEGs, and 4 DEGs from both ST and WB. Nine genes located within Lore QTLs were also
hub genes. Of the six modules identified as different across strain, four had DEGs as hub
genes. In the blue module, phosphodiesterase 7b (Pde7b), nexilin, F-actin binding protein
(Nexn), and regulator of G-protein signaling 4 (Rgs4), all ST DEGs, are hub genes. Three
ST DEGs in the greenyellow module were hub genes, 6030458C11Rik, 4933439F18Rik,
and selectin P ligand (Selplg). Additionally, three genes in the green module,
A530054K11Rik, coatamer protein complex subunit beta 1 (Copb1), and transmembrane
protein 181b pseudogene (Tmem181b-ps), along with four genes in the magenta module,
Gm10516, folate hydrolase (Folh1), protease, serine 50 (Prss50), and ribonuclease A, family
1 (Rnasel), are differentially expressed in either ST, WB, or both.
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Functional group over-representation in WGCNA modules
Co-expression modules were analyzed using WebGestalt to test for functional group over-
representation (Supplemental Table S4). In the six modules modules differing by strain,
several signaling pathways were over-represented, including mitogen-activated protein
kinase (MAPK) signaling (blue, yellow), peroxisome proliferator activated protein (PPAR)
signaling (blue, greenyellow), transforming growth factor (TGF) beta signaling (blue,
greenyellow), nuclear factor κB (NF-κB) signaling (blue, magenta, yellow), and toll-like
receptor (TLR) signaling (blue, yellow). Genes involved in regulating the actin cytoskeleton
were enriched in blue, green, and yellow. Complement and coagulation cascades were
enriched in the magenta module. All group p-values range from 1.1 × 10−38 − 0.048 and
have been corrected for multiple testing and were significant at <5% false discovery rate.

Identification of cis-regulated Lore QTL genes
Utilizing publicly accessible databases of recombinant inbred gene expression data from the
online WebQTL tool (www.genenetwork.org), we identified differentially expressed genes
from both striatum and whole brain, as well as hub genes, in Lore QTL regions that have
evidence of cis-regulation. Each hub gene and DEG lying in Lore QTL regions was
interrogated. A total of 11 genes showed evidence of cis-regulation. Three DEGs, alanine-
glyoxylate aminotransferase 2-like 1 (Agxt2l1) located in LoreChr3, ras association
(RalGDS/AF-6) domain family member 2 (Rassf2) located in Lore2a and keratin 12 (Krt12)
located in Lore4 were differentially expressed in both WB and ST, and show strong
evidence of cis-regulation. Six genes differentially expressed in the ST, Lore1 genes
regulated endocrine-specific protein 18 (Resp18) and serine peptidase inhibitor, clade E,
member 2 (Serpine2), Lore3 gene centromere protein t (Cenpt), Lore4 genes Rap guanine
nucleotide exchange factor GEF-like 1 (Rapgefl1), myosin light chain 4 (Myl4), and keratin
9 (Krt9), Lore5 all show evidence of cis-regulation. The WB DEG and LoreChr3 gene
DNA-damage-inducible transcript 4-like (Ddit4l), as well as the grey60 module hub gene,
polymerase (RNA) I polypeptide B (Polr1b) also could be cis-regulated.

Sequence differences
Of the Lore QTL genes with evidence of cis-regulation, only Resp18 and Agxt2l1 did not
have any detectable sequence differences (Supplemental Table S5). Of note, an unnamed
missense single nucleotide polymorphism (SNP) in Serpine2, resulting in an isoleucine to
valine substitution (I313V) in both ILS and ISS mice was observed. Four missense SNPs in
Cenpt, three of which were unnamed were only observed in ISS. More unnamed SNPs were
observed in Myl4, Polr1b, and Ddit4l. Also notable are the multitude of polymorphisms in
3′ UTR of Rassf2. According to www.microrna.org, these polymorphisms could potentially
disrupt the binding sites of multiple miRNAs.

Fifteen genes previously reported to contain coding sequence differences were examined,
and each polymorphism was confirmed in twelve of the genes (Ehringer et al. 2001). Low
expression levels in Tgfb1 and Pth2r (named Pthr in original paper) made it impossible to
identify polymorphisms. Znf133 has since been classified as a pseudogene, although it is
expressed in our sample, and several single nucleotide polymorphisms are confirmed;
however, frame shift mutations could not be confirmed. Although there are numerous
sequence differences between the two strains, complete identification and classification of
polymorphisms was beyond the scope of the study.

Discussion
Loss of righting reflex in response to acute ethanol has been well studied in the ILS and ISS
strains, and respective QTLs have been identified and replicated using recombinant panels,
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both LSxSS and LxS (Bennett et al. 2002; Bennett et al. 2008; Bennett et al. 2006;
Christensen et al. 1996; Maclaren & Sikela 2005; Markel et al. 1997; Markel et al. 1996).
The goal of this study was to identify baseline differences in gene expression and co-
expression between these two selected inbred strains, which will provide insight into the
underlying biology that contributes to their differential sensitivity to alcohol. While previous
studies have identified candidate genes based on expression differences, this study uses
multiple methods, differential expression, Weighted Gene Co-expression Network Analysis,
identification of cis-regulated Lore QTL genes, and identification of sequence differences in
coding and un-translated regions. The use of RNA-Seq technology, as opposed to previous
use of microarray, provides higher dynamic range, lower background noise, improved
network characteristics, and the elimination of hybridization issues due to polymorphisms
and annotation (Iancu et al. 2012; Marguerat & Bähler 2010; Wang et al. 2009). In this
study, 90 genes in WB and 336 in ST samples were differentially expressed. We prioritize
genes that are located in previously identified Lore QTL regions for future study. Eight WB
and 31 ST DEGs are located in Lore QTL regions. While the total number of QTL genes is
no different than chance, two Lore QTL regions were enriched for DEGs, LoreChr3 on
chromosome 3 was enriched with WB DEGs and Lore4 on chromosome 11 was enriched for
ST DEGs. This could potentially signify regional differences in gene expression, and future
transcriptome examinations may identify regions enriched with other Lore QTL genes.

Two previously identified candidate genes (Maclaren & Sikela 2005), Rassf2 (ras
association (RalGDS/AF-6) domain family member 2), located in Lore2a, and Myo1d
(Lore4 gene myosin 1d) were identified by our analysis as differentially expressed in both
ST and WB. MacLaren sequenced the promoter region of Rassf2, finding several
polymorphisms (Maclaren et al. 2006). One advantage of RNA-Seq is the acquisition of the
genetic sequence of exons and untranslated regions (UTRs). Examination of the 3′ UTR of
Rassf2 shows distinct genotypes. ISS mice have the C57Bl/6J haplotype, while the ILS 3′
UTR shows many SNPs, several unnamed in dbSNP. Since the 3′ UTR is implicated in
post-transcriptional regulation, including microRNA binding sites, the polymorphisms could
account for some of the previously observed differences in expression. The observed ILS
polymorphisms disrupt the consensus sequences for binding sites of 9 miRNAs
(www.microrna.org). We were unable to detect expression levels for these miRNAs, so
whether they affect expression levels of Rassf2 remains to be seen. We present evidence that
several genes, including Rassf2, are cis-regulated, meaning that polymorphisms in gene
regions between the two strains could contribute to differences in gene expression. If these
are cis-regulated, it is likely that differences in gene expression could be explained by
genetic polymorphisms in either coding regions or UTRs. Furthermore, while synonymous
polymorphisms in exons may not affect protein function, they are indicative of distinct
haplotypes between strains and of possible polymorphisms in intergenic or intronic regions
that could affect expression. It is not clear how Rassf2 and Myo1d could influence ethanol-
related behavior. Rassf2 has been characterized as a pro-apoptotic gene, residing in the
nucleus and binding K-Ras, inducing apoptosis (Donninger et al. 2010). Differences could
also arise from the role of Myo1d in the development of the nervous system (Benesh et al.
2012). Taken together, it is possible that strain specific neural development could lead to
phenotypic differences.

Located in Lore2a is the DEG prodynorphin, Pdyn. More highly expressed in ST of ILS
mice, Pdyn is differentially expressed in other animal models of ethanol behaviors.
Consistent with our findings, low drinking ANA rats have increased levels of striatal Pdyn
compared to higher drinking AA rats (Nylander et al. 1994). Another opioid precursor gene,
proenkephalin, Penk, is also more highly expressed in the ST of ILS mice. While the
difference between strains in opioid signaling has not been explored in depth, it has been
shown that SS and LS mice differ in response to morphine injection and withdrawal (Brick
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& Horowitz 1983). Another QTL gene, in Lore4, Ppp1r1b, which codes for protein
phosphatase 1 regulatory unit 1b, also known as DARPP-32, has been implicated in the
neurobiological response to many drugs of abuse (Yger & Girault 2011). Ppp1r1b is
expressed in striatal medium spiny neurons (MSNs), and plays a large role in the cellular
response to dopaminergic signaling.

In addition to genes from Lore QTL regions, transthyretin (Ttr) on chromosome 19 was also
identified in both samples as being differentially expressed. Gamma-protein kinase C (PKC-
γ) null mutant mice and their wild-types have similar ethanol-related behaviors as the ISS
and ILS mice, and these differences were correlated with baseline Ttr expression, which is
higher in mutant mice (Smith et al. 2006). Similar to the ISS mice, PKC-γ null mutants are
less sensitive to acute ethanol than their wild-type littermates (Harris et al. 1995), and
voluntarily consume more ethanol (Bowers & Wehner 2001). Likewise, baseline expression
of Ttr in ISS mice is higher relative to ILS mice. While it is unknown whether a chronic
ethanol diet would increase expression of Ttr in the ISS mice, as in the PKC-γ null mutants,
future confirmation would further implicate Ttr in ethanol behavior. Also of interest are the
14 potassium channel subunits differentially expressed in the striatum; as potassium
channels have been implicated in responses to ethanol (Brodie et al. 1999; Hopf et al. 2011;
Hopf et al. 2010; Mulholland 2012) and the cumulative effect of differential expression of
all of these channels could contribute to the difference in ethanol sensitivity between the
strains.

While RNA-Seq is thought to offer several advantages over microarrays, it still suffers a
problem inherent to any massively parallel method: finding the appropriate statistical
balance between type I and type II errors. Validation by an independent method is one
approach and here we have used microarray data to validate the RNA-Seq DEGs. The
results are similar, perhaps slightly better, to a comprehensive comparison of RNA-Seq to
hybridization microarrays conducted by Bottomly et al. (2011); i.e., they found that 48.4%
of genotype-dependent RNA-Seq DEG were also DE on the Affymetrix platform and we
found that this was true for 65.7% of our RNA-Seq DEG, although our statistical criteria
was somewhat less stringent. In addition to the possibility of statistical errors, reasons for
less than perfect consistency between RNA-Seq and microarrays probably include the
broader dynamic range of RNA-Seq and, more importantly, the likelihood of genotype
effects on transcript isoform abundance meaning for microarrays, quantification of a given
transcript is dependent on probeset location (Bottomly et al. 2011). Indeed, we have seen
hints of evidence for strain-by-isoform interactions for some of the microarray probesets that
were not significant, although this particular RNA-Seq dataset is not ideal for a
comprehensive splice variant analysis.

Using WebGestalt to identify over-represented groups in our sets of DEGs, we identified
several distinct groups of differentially regulated gene systems. In ST, there were many
DEGs involved in signal transduction and synaptic signaling. In addition to functional
groups, we identified cell type specific (neurons, astrocytes, and oligodendrocytes) genes
over-represented in each set of DEGs. The set of ST DEGs was enriched for neuron and
oligodendrocyte genes. Specifically, the set of 127 DEGs up-regulated in ILS mice was only
enriched for neuronal genes, while the set of 209 DEGs up-regulated in ISS mice was
enriched for all three types of cells. This suggests that while there are differences in
neuronal processes between the two strains, there may be more important differences in glial
related processes. This holds up when looking at WB DEGs, as the set of WB DEGs is
enriched only for astrocyte related genes.

To further characterize strain specific differences in gene expression, we employed the
agnostic network analysis tool WGCNA, which clustered genes based on topological
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overlap dissimilarity. The results of the WGCNA display its usefulness at analyzing large
expression datasets. Gene modules were enriched for cell specific genes, and module
eigengenes highlight strain- and region-specific differences. However, there is a limitation
on the interpretations due to the small sample size in our study, even though each module
passed strict robustness testing. No hub genes were immediately identifiable as strong
candidate genes, however it is important to acknowledge that the WGCNA identifies
networks of related genes, and the effect of any single gene could be minimal. It differs in
this way from the differential expression analysis, where the genes with the largest
differences in expression, and possibly having larger effects, are identified. In this analysis,
we were less confident in some of the smaller modules where some samples appeared to be
outliers, but more confident of modules showing consistent expression levels within groups
(either regional or strain). These patterns of expression are striking, and show that genes can
be consistently co-expressed at different levels depending on region or strain.

Of the 16 gene co-expression networks (modules), three were enriched for ST DEGs, one
for WB DEGs, and three were enriched for both ST and WB DEGs. This made it possible to
identify not only DEGs, but also gene networks in which those DEGs reside. Functional
group over-representation of DEG-enriched modules revealed many genes related to
neuronal structure and function, as well as transcriptional regulation. Interestingly, these
modules were enriched for several signaling pathways, including MAP Kinase signaling
pathways, previously shown to regulate ethanol behaviors (Carnicella et al. 2008).

One module, turquoise, was enriched with neuron genes. Since this module eigengene
differed across region, and not strain, this module is most likely composed of neuronal genes
differentially expressed due to regional differences, and given that this is the largest module,
most of the co-expression differences can likely be due to brain regional differences. Of the
six modules different across strain, five were enriched for ST DEGs, while three of those
were also enriched for WB DEGs.

Utilizing RNA-Seq technology to identify gene expression differences and gene co-
expression networks has provided insight into the differences between ILS and ISS mice.
Genes previously identified as candidates from expression/QTL studies, Rassf2, Myo1d, and
drug response studies, Pdyn, Penk, Ppp1r1b, and Ttr are again implicated. While these
differences exist, this study is not designed to specify causal differences. Therefore, it is
important for future research to focus on manipulation, genetic or pharmacological, of genes
and gene networks to further elucidate the differences between these strains, in order to
understand the cause of ethanol-related behaviors.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Differentially expressed genes in whole brain and striatum.
Figure 1 displays the distribution of differentially expressed genes between strain in Whole
Brain (A) and Striatum (B) samples. The x-axis represents the natural log of the fold change,
with positive values corresponding to higher expression in ILS mice, and negative values
corresponding to higher expression in ISS mice. The y-axis represents the negative log of
the p-value of the difference in expression, with more significant differences corresponding
to higher numbers. Open circles (82 WB, 305 ST) represent genes significant at a False
Discovery Rate (FDR) of 0.1. X’s (8 WB, 31 ST) represent genes lying in Lore QTL
regions.
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Figure 2.
WGCNA module eigengene expression levels.
Figure 2 displays the calculated expression level of module eigengenes, the first principle
component of each module expression pattern. Individual mouse samples (bars) are in
groups of 3 for each set of whole brain ILS, striatum ILS, whole brain ISS and striatum ISS.
Only module eigengenes significant for strain or region differences are shown. Module
eigengenes reduce the expression value of all genes in the module to one value per sample.
An ANOVA of each module eigengene reveals modules different by region (A–C), both
region and strain (D–E), and strain (F–I). No module eigengenes had significant strain ×
region interactions.
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