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Although stretching of most polymer chains leads to rather
featureless force-extension diagrams, some, notably DNA, exhibit
nontrivial behavior with a distinct plateau region. Here, we
propose a unified theory that connects force-extension character-
istics of the polymer chain with the convexity properties of the
extension energy profile of its individual monomer subunits.
Namely, if the effective monomer deformation energy as a func-
tion of its extension has a nonconvex (concave up) region, the
stretched polymer chain separates into two phases: the weakly
and strongly stretched monomers. Simplified planar and 3D poly-
mer models are used to illustrate the basic principles of the
proposed model. Specifically, we show rigorously that, when the
secondary structure of a polymer is mostly caused by weak
noncovalent interactions, the stretching is two phase, and the
force-stretching diagram has the characteristic plateau. We then
use realistic coarse-grained models to confirm the main findings
and make direct connection to the microscopic structure of the
monomers. We show in detail how the two-phase scenario is
realized in the α-helix and DNA double helix. The predicted pla-
teau parameters are consistent with single-molecules experi-
ments. Detailed analysis of DNA stretching shows that breaking
of Watson–Crick bonds is not necessary for the existence of the
plateau, although some of the bonds do break as the double helix
extends at room temperature. The main strengths of the proposed
theory are its generality and direct microscopic connection.
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DNA overstretching | polymer force-extension

When pulled by the ends, a flexible linear polymer first
undergoes entropic elongation, where the work done by

the stretching force reduces the conformational entropy of the
chain (1, 2). In this well-understood (2) weak extension regime,
the polymer obeys Hooke’s law, and its elastic properties are
universal, in that they are insensitive to details of the chemical
structure and interactions within its monomers. As the polymer
chain is extended further and its end-to-end distance becomes
comparable with the chain contour length, the intrinsic elasticity
caused by deformation and interaction of individual monomers
begins to dominate the extension response (3). Because short-
scale chemical structures of real polymers differ substantially, as
do their observed responses to strong tension forces, one won-
ders if polymer stretching in this regime can still be described by
a universal principle? The question is important. Biopolymers
such as DNA are subjected to a range of mechanical manipu-
lations within the cell, and they may change their conformations
and undergo unexpected structural transitions (4–6). Knowledge
of elastic properties of biopolymers is required to understand the
structural dynamics of many important cellular processes (7–9).
These properties can now be measured quite accurately by mod-
ern experimental techniques such as atomic force microscopy and
optical tweezers.
For DNA (4, 5, 10–12) and polypeptides (13–15), these experi-

ments have revealed several peculiar features. When extended, the
(ds) DNA molecule exhibits the following behavior: until the end-
to-end distance reaches 0.9 of the contour length, the stretching
process is well-described by established phenomenological models
(2, 4, 16). However, then, when the molecule is subjected to forces
of 65 ÷ 120 pN (depending on experimental conditions), a sudden

structural transition occurs, in which the chain stretches up to 70%
beyond its canonical B-form contour length. The extension force
remains almost constant in this regime, which is manifested by
a characteristic plateau on the experimental force-extension curve.
Similar single-molecule stretching experiments have also been
performed on polypeptide molecules (13–15). It was found that
simple helical polypeptide structures, such as synthetic α-helices
(14) and myosin molecules (13), exhibit a force-extension plateau
similar to the plateau seen in DNA stretching experiments. In
contrast, these features are not observed in many nonbiological
polymers such as polyethylene.
Various microscopic models were proposed to explain these

observations, in particular the force-extension plateau, on a case-
by-case basis. For example, the force-extension plateau observed
in single-DNA molecule experiments (sometimes called the
overstretching plateau) is often explained by gradual unzipping
(force-induced melting) of the double helix, in which Watson–
Crick (WC) hydrogen bonds between base pairs break (10–12,
17–19). An alternative explanation involves cooperative transi-
tion of the whole structure into a new form called S-form, where
WC bonds remain intact (5, 20), but the helix unwinds to form
a straight ladder. In the case of polypeptides, the force-extension
plateau is attributed to α-helix unwinding (13, 21, 22). Phe-
nomenological descriptions based on various assumptions about
stable monomer states were also proposed (23). Still, no uni-
versal, microscopically based mechanism exists that can explain
why some polymers do and some do not exhibit a plateau in
force-extension experiments. Here, we propose such a mecha-
nism and show how the stretching properties of the polymer
depend on the balance between valent and nonvalent inter-
actions on the scale of individual monomers.

Results and Discussion
General Mechanism of Polymer Stretching Under Tension. Consider
a linear polymer chain of N � 1 identical interacting sites
(monomeric units). The effective site deformation energy E(Δl)
can be defined as follows. Consider a configuration of the chain
in which each site is stretched by the same amount Δl. Then, E
(Δl) is simply the total deformation energy of the chain divided
by N. Here, we show that the shape of the effective site de-
formation energy E(Δl) determines force-induced stretching
behavior of the chain in the general experimental scenario when
the force is applied to the chain’s ends and no restrictions are
imposed on deformations of individual sites.
In what follows, we will use the following convention. Exten-

sion of a single monomeric site or equivalently, extension of each
site of a uniformly stretched chain is denoted by Δl. In general,
including the case of nonuniform deformation, extension of site
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i is denoted by Δli. We use ΔL for the mean per site deformation
ΔL=N−1PN

i=1Δli.
If the function E(Δl) is convex down (Fig. 1, line 3), the most

favorable structure of the chain with fixed total deformationP
iΔli corresponds to each site i stretched by the same amount

Δli ≡ Δl (details in SI Text). The simplest example of such
a polymer model is a chain of beads connected by harmonic
springs. The total deformation energy of the chain in the case of
convex E(Δl) is NE(Δl). Nonuniform stretching is energetically
unfavorable in this scenario, because any putative decrease in the
total energy from understretching of a group of sites would be
offset by a larger increase in the energy of the remaining sites
that would have to overstretch to keep the total deformation of
the chain constant. In contrast, if the effective site extension
energy is nonconvex over some interval (Fig. 1, curve 1), two-phase
stretching becomes more favorable energetically: one part of chain
consists of pN sites (0 < p < 1) stretched strongly by Δlb, and
another part consists of the remaining (1 − p)N sites stretched
weakly by Δla < Δlb. Qualitatively, this regime becomes energeti-
cally favorable because the decrease of the chain energy (relative
to the uniform stretching scenario) resulting from understretching
of a group of sites is larger than the gain from overstretching of
the remaining sites. A detailed quantitative analysis is presented in
SI Text. Briefly, the mean deformation per site in this case is
ΔL= pΔlb + ð1− pÞΔla, and the total energy of the chain in this
nonuniform (NU) case equals NENUðΔLÞ=Nðð1− pÞEðΔlaÞ+
pEðΔlbÞÞ [contribution from phase boundary can be neglected for
long chains, N � 1, typically used in experiment (19)]. Because
the function E(Δl) is nonconvex, NENUðΔLÞ is less than
NEðΔLÞ=NEðð1− pÞΔla + pΔlbÞ—the total energy of the chain
in the uniform extension case with the same total deformation
(Fig. 1). In the nonuniform deformation regime, the chain exten-
sion is achieved by change in the relative fraction p of the strongly
stretched sites, not by extension of individual sites. As p increases
from zero to one, the mean deformation ΔL= ð1− pÞΔla + pΔlb
depends on p linearly and ranges from Δla to Δlb. The average per
site chain energy ENUðΔLÞ also depends on p linearly and ranges
from E(Δla) to E(Δlb)—that is, the stretching process is described
by a straight line connecting points Δla and Δlb (Fig. 1, red line).
The tension force dENU=dΔL, thus, remains constant, and the
characteristic plateau in the force-extension diagram appears.
Real polymer chains may appear more complex, but the chain

structure is always stabilized by interactions of two types: strong
valent and weak nonvalent. The former describes bond, angle,

and torsion deformations. The latter corresponds to soft non-
valent interactions. These interactions include various combi-
nations of electrostatic and van der Waals interactions, hydrogen
bonds in polypeptide α-helix, and stacking interactions between
neighboring base pairs in DNA. The main feature of realistic
nonvalent interactions potentials W(r) is the existence of in-
flection points. If nonvalent interactions contribute significantly
to the extension energy E(Δl), the function E(Δl) may also have
an inflection point and hence, a nonconvex region as in Fig. 1,
leading to a plateau in the force-extension diagram.
We, thus, propose a general mechanism for the observed two-

phase stretching of liner polymers based on convexity properties
of the effective potential energy of the monomeric units of the
polymer. As we will show, the mechanism is able to explain the
existence of force-extension plateaus for very different types
of polymers.

Stretching of a 2D Zigzag Molecular Chain. We begin by exempli-
fying the proposed mechanism of nonhomogeneous two-phase
stretching on a 2D zigzag chain (Fig. 2). Although arguably
among the simplest polymer geometries, it is often found in real
polymers: for example, polyethylene (PE) molecule has a stable
plane conformation of transzigzag. The 2D zigzag form is also
common in hydrogen-bonded chains . . .X–H. . .X–H. . .X–H. . .
of halides, where X = F, Cl, Br, I.
We consider a dimensionless model of 2D zigzag chain (details

in Methods and SI Text). In the limiting case of zero angle
bending potential «ϕ = 0 (Fig. 2), only nonvalent interactions
between next-nearest neighbors determine elastic response of
the chain. Numerical simulations of the zigzag reveal the cor-
responding effective site deformation energy E(Δl) of a single
monomer site (Fig. 3A). The function E(Δl) is not convex; its
convex hull is given by a tangent line at points Δla = 0.04 and
Δlb = 0.21. According to our general mechanism, a fraction of
the zigzag sites is expected to be in the weakly extended state
with the longitudinal step l0 + Δla, whereas the rest will be in the
strongly extended state with the step l0 + Δlb. The tension force
F = dENU=dΔL remains constant between Δla and Δlb, and the
force-extension dependence F(ΔL) has the typical plateau (Fig.
3B). The zigzag effective site extension energy E(Δl) remains
nonconvex until the strength of the angle potential reaches
a critical value («ϕ = 0.015). At this point, energetic benefit from
nonuniform stretching relative to uniform stretching vanishes. As
the angle bending potential becomes even stiffer, its relative
contribution to chain stretching overwhelms the contribution of
the weak nonvalent interactions that give rise to the nonconvex
behavior seen in Fig. 3A. The effective site extension energy
function becomes convex (Fig. 3C), and the stretching behavior
of the polymer is essentially the same as that of a harmonic
spring—single phase and uniform. These scenarios are further
illustrated in SI Text for a zigzag chain of n = 400 atoms.
Thus, two-phase stretching and force-extension plateaus can

be expected to occur in molecular chains in which secondary
structure is supported by weak nonvalent interactions. However,

Fig. 1. Two distinct forms of the effective site deformation energy E(Δl) of
an individual monomeric unit (site) that lead to qualitatively different
stretching scenarios of the linear polymer chain of N sites. The site extension
is Δl. Curve 1 is a nonconvex energy function (between Δla and Δlb) that
leads to nonuniform, two-phase stretching of the chain. Some sites extend
weakly by Δla, and some extend strongly by Δlb. The chain extension follows
the convex hull (red line 2) of E(Δl), with only the relative fraction of weakly
extended sites changing as the chain extends. The average (per site) energy
of nonuniform extension ENUðΔLÞ is less than that of the corresponding
uniform E(Δl) extension. Curve 3 is a convex function E(Δl) that leads to
uniform extension of all of the sites.

Fig. 2. Schematic of a 2D zigzag polymer chain. «ϕU(ϕ) and V(ρ) are the
valent angle bending and bond stretching potentials, respectively; W(r) is
the nonvalent interaction between next-nearest neighbors. The longitudinal
step of site n is ln.
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if the secondary structure is caused mainly by angle deformation,
then the stretching will be uniform. Such a scenario is typical for
PE transzigzag (24).

Stretching of the α-Helix. Consider a 3D molecular chain corre-
sponding to an ideal (1) α-helix (Methods and Fig. 4A).
Here, the softest valent potential is the torsional potential; we

vary its relative contribution «θ to the total energy while keeping
the other parameters fixed (Methods). Without the torsional ri-
gidity («θ = 0), the helix is stabilized only by hydrogen bonds,
connecting site i with sites (i + 3) and (i − 3) (1, 25, 26). The
effective site energy E(Δl) is shown in Fig. 5. On stretching, the
helix’s angular step (deformation) monotonously increases and
reaches its maximum value 180° when Δl = 0.16 (plane zigzag).
The function E(Δl) is not convex (Fig. 5, curve 1). Its convex hull
is described by a tangent at points Δla = 0.06 and Δlb = 0.17.
According to our general mechanism, a fraction of the helix is in
the weakly extended state with the longitudinal step l0 + Δla,
whereas the rest is in the strongly extended (plane zigzag) state
with the longitudinal step l0 + Δlb. As long as Δla < ΔL < Δlb, the
tension in the helix F = dENU=dΔL remains constant, leading to
the characteristic plateau in the force-extension diagram. If the
torsional rigidity is increased, the nonconvex shape of E(Δl) is
preserved until «θ = 0.0015 is reached. Beyond «θ > 0.0015, the
function E(Δl) becomes convex (Fig. 5, curve 3). In this regime,
only uniform stretching of the helix is possible.
These scenarios are explicitly verified by numerical simulations

for a helix consisting of N = 400 sites (Fig. 6). When the torsional
rigidity is zero («θ = 0) and nonvalent interactions dominate the
elastic response, the stretching is two phase. The distribution of
longitudinal extension Δln along the chain completely matches
the expectation based on the shape of E(ΔL) function—that is,
for ΔL ≤ 0.07, the chain is stretched uniformly, whereas for
0.07 ≤ ΔL ≤ 0.165, nonuniform stretching is observed. The
terminal regions of the chain are in a strongly stretched state,
whereas the central region is stretched weakly (Fig. 6A). The
transition boundary between the states is clearly seen in Fig. 4B.
As the helix is extended farther, the weakly stretched central
region shrinks and vanishes when ΔL = 0.17. Beyond that point,
the helix is stretched uniformly. The domain of the nonuniform
stretching regime decreases for higher torsional rigidity «θ =
0.0015 (Fig. 6B), and at even higher values, e.g., «θ = 0.002, only
uniform stretching is observed (Fig. 6C).
Thus, if the torsional rigidity is small enough, stretching of the

α-helix proceeds through a two-phase scenario with a typical
plateau region, where the tension remains constant. The scenario
is confirmed by all-atom molecular dynamics simulations (22) and

experiments (13, 14). The root cause of the nonuniform stretching
in this case is the typical form of the hydrogen bond potential (4),
which has an inflection point. In contrast, polymer helices that
have no hydrogen bonds, such as polytetrafluoroethylene helix, are
expected to stretch uniformly, without force-extension plateaus.

Stretching of the DNA Double Helix. The coarse-grained model (27,
28) used here to simulate stretching of the DNA double helix
(dsDNA) is semiatomistic: each nucleotide consists of six united
atom particles—three for the sugar-phosphate backbone and
three for the nucleobase (Methods and SI Text).
The corresponding effective site (base pair) energy E(l) as

a function of relative site extension is shown in Fig. 7A. To facil-
itate direct comparison with experiment, the energy is taken to
depend on the relative extension l/l0 instead of absolute deviation
Δl from equilibrium base pair length l0; l0 = 3.352 Å calculated
within our model agrees with the experimental value for B- form
of DNA. The function E(l/l0) is nonconvex between points la/l0 =
1.12 and lb/l0 = 1.84, and its convex hull is shown by red line in Fig.
7A. Thus, when the mean relative site extension L/l0 of a stretched
dsDNA fragment is between the above two values, a part of the
double helix is in the weakly extended state with the longitudinal
step la (Fig. 8A), whereas the rest of the base pairs are in the
strongly extended state with longitudinal step lb (Fig. 8B). The
corresponding force-extension diagram of the chain is shown in
Fig. 7B.
The proposed nonuniform stretching mechanism, so far ex-

plored without taking into account thermal fluctuations, holds at
room temperature: only the range of the dsDNA overstretching
plateau increases slightly (Fig. 7B, green dashed line). Critically,
the room temperature value of the tension at the plateau coin-
cides with the value obtained from the analysis of the minimum
energy (ground) states described above. As the model chain
stretches at room temperature, thermal fluctuations cause the
WC hydrogen bonds to break, as expected from experiment
(Fig. 9). In the plateau regime, the DNA double helix consists of
two fractions: a slightly stretched helix with hydrogen bonds in-
tact and a strongly stretched helix with some hydrogen bonds

A C

B D

Fig. 3. (A and C) 2D zigzag effective site deformation energy E(Δl) as
a function of site extension Δl from equilibrium. Convex hull of E(Δl) (red
line in A) represents two-phase stretching energy per one site, ENUðΔLÞ. (B
and D) Dependence of the tension force on mean site extension ΔL. Angle
deformation stiffness «ϕ (Fig. 2) is varied. (Left) «ϕ = 0. (Right) «ϕ = 0.02.
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broken (see SI Text). This exact behavior is observed in all-atom
simulations (29, 30).
An important question arises whether the breaking of the

hydrogen bonds between complementary bases is necessary (10,
11, 17, 18) for the observed overstretching plateau, or if the
unzipping of the helix is simply the consequence of the helix
stretching. Our analysis clearly shows that WC bond breaking is
not necessary for the appearance of the overstretching plateau.
First, the two-phase stretching behavior of dsDNA and the force-
extension plateau (Fig. 7B) with virtually the same characteristics
exist in the absence of thermal fluctuations when hydrogen bonds
are only weakened in the strongly stretched regime but not yet
broken. Second, in a computational experiment in which the
bond strength is artificially doubled to prevent breaking of WC
bonds at room temperature, we find virtually the same plateau
(see SI Text). These observations explain the somewhat puzzling
result of a recent single-molecule experiment, in which tor-
sionally relaxed DNA exhibited the same overstretching plateau
when its unzipping was inhibited (31). In the case of the dsDNA,
it is mainly the base stacking deformations that give the effective
stretching energy its nonconvex shape that are ultimately re-
sponsible for the onset of the two-phase stretching with the
characteristic plateau (see SI Text). Mathematically, base stacking
is described by a combination of power law functions—Coulomb
and Lennard–Jones potentials—that give it the nonconvex shape.
The plateau in dsDNA force-extension diagram was observed

previously in single-molecule stretching experiments (4, 5); the
plateau was found in the range of (relative) extensions 1.1 < L/l0 <
1.7. The position of the plateau agrees well with our result 1.12 <
L/l0 < 1.84 (Fig. 7B). The value of the plateau transition force
within our model is 0.2 eV/A = 320 pN, which is somewhat higher
than experimental estimates. A typical value of the force is often
reported to be about 65 ÷ 70 pN (4, 5, 19); however, one should
keep in mind that the experimental value was obtained in the type
of experiment where the DNA strands are pulled by the same type
(30 or 50) end, whereas the other two ends remain free. In contrast,
the simulations reported here correspond to uniform pulling by all
four ends. Experimentally, larger values of the plateau tension
were reported under the uniform pulling scenario: 105 ÷ 120 pN
(19, 32). Although this value is still less than one-half of the 320
pN predicted by our model, we note that the above experiment
used a specific, nonhomogeneous sequence. Many DNA prop-
erties are strongly sequence-dependent: for example, pure poly
(dG-dC) and poly(dA-dT) DNA sequences yield tension values
at the plateau that differ by a factor of two (32). Thus, only
semiquantitative agreement of our homogeneous (poly-A)
model with the above experiments may be expected. Reported

differences between earlier estimates based on all-atom room
temperature molecular dynamics simulations and experimental
values are also of the same order (5, 20); therefore, the nu-
merical agreement that we have obtained with experiment can
be considered as reasonable.

Conclusion
Although all polymers behave very similarly to each other under
weak tension, where their elastic properties are entropic in nature
and virtually independent of the structure of the monomers,
striking differences are observed in experiments when stronger
forces are applied and short-scale details start to dominate. We
show that these differences can be explained by a very general
mechanism based on convexity of the (effective) deformation
energy function of individual monomers. We show that, when this
energy is a convex function of the extension, the chain stretching
is single-phase uniform without a plateau in the force-extension
diagram. The scenario is realized in polymers such as poly-
ethylene, whose structure is supported by strong covalent inter-
actions. In contrast, when the secondary structure of a polymer is
mostly caused by weak noncovalent interactions, the deformation
function may become nonconvex, leading to two-phase stretch-
ing: a part of the chain is stretched weakly, whereas the other part
is stretched strongly. In this regime, extension of the whole chain
proceeds by increasing of the fraction of the strongly stretched
sites, and therefore, the tension remains constant. The force-
stretching diagram has the characteristic plateau seen in experi-
ment. Examples include α-helix polypeptide and DNA double
helix, consistent with earlier observations based on all-atom

Fig. 5. Effective site extension energy E of the helix as a function of longi-
tudinal site extension Δl from equilibrium. Torsion rigidities are «θ = 0 (curve 1)
and «θ = 0.002 (curve 3). The red line 2 is the convex hull of curve 1.

A

B

C

Fig. 6. Distribution of longitudinal extensions Δln of individual sites in
a stretched helix of N = 400 sites as a function of the mean (per site) helix
extension ΔL=N−1PN

nΔln. Three values of the torsional rigidity are consid-
ered: (A) «θ = 0, (B) «θ = 0.0015, and (C) «θ = 0.002. Dimensionless units.
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molecular dynamics simulations and previous single-molecules
experiments. We illustrate the general mechanism by numerical
simulations based on realistic coarse-grained models and atom-
istic potentials of several polymers from planar zigzag to the
more complex helix and B-DNA. Numerical modeling is in
complete agreement with the general mechanism and acceptable
agreement with experiment.
The main strengths of the proposed theory are its complete

generality and direct connection to microscopic structure of the
monomers. Our framework applies to any polymer in the strong
deformation regime where short-scale details dominate—to the
best of our knowledge, no such universal description was available
before. Although division of the polymer into two stretching
phases was discussed earlier in the context of phenomenological
models (21, 23), the second equilibrium state was assumed to exist
and be known a priori. Within our framework, no assumptions of
multiple stable equilibrium states (13, 21) or additional kinetic
arguments are necessary (21).

Methods
Computing the Force-Extension Diagram. The effective site deformation en-
ergy function E(Δl) (Fig. 1) is found by minimizing the total potential energy
H of the chain under the constraint that each site is stretched by the same

amount Δl: EðΔlÞ=N−1 min
Δli=Δl

fHg. This definition of E(Δl) includes con-

tributions from both short-range interactions within each site and short- and
long-range interactions between the sites.

Next, we consider the same chain of N � 1 effective sites but without the
Δli = Δl constraint (that is, with the possibility of nonuniform extension). The
dependence of the mean chain energy ENUðΔLÞ on its mean longitudinal
extension ΔL=N−1PN

i=1Δli is found by minimizing the total energy of the
chain H under the condition of fixed total deformation

PN
i Δli :

ENUðΔLÞ=N−1 min
N−1

PN

i=1
Δli  = ΔL

fHg. The resulting function ENUðΔLÞ is the convex

hull of the effective site deformation energy E(Δl) (SI Text). Unless otherwise
specified, the extension force (tension) is obtained as F =dENUðΔLÞ=dΔL. No
torsional constraints are imposed in any case. Unless otherwise stated,
polymer chain is modeled as quasi-1D crystal (SI Text).

2D Plane Zigzag. The 2D zigzag chain (Fig. 2) is specified by the distance
between its neighboring sites ρ0 and the zigzag angle ϕ0 (equilibrium lon-
gitudinal step is l0 = ρ0   sinðϕ0=2Þ). We consider dimensionless zigzag model,
and details of its parameters values are given in refs. 33–35 and SI Text.

The chain potential energy is given by

H =
X
n

�
VðρnÞ+ «ϕUðϕnÞ+WðrnÞ

�
; [1]

where V(ρn) is the valent bond energy between neighboring atoms n and
(n + 1) separated by distance ρn.

VðρÞ= 1
2
Kðρ− ρ0Þ2 [2]

has the bond rigidity K = 2. The «ϕU(ϕn) term is the deformation energy of
the angle between atoms (n − 1), n, and (n + 1), where «ϕ ≥ 0 is the angle
deformation stiffness:

UðϕÞ= ðcos  ϕ− cos  ϕ0Þ2: [3]

The last term W(rn) corresponds to weak nonvalent interaction between
atoms n and (n + 2) (next-nearest neighbors) separated by rn; its form is
typical for nonvalent interactions, and it may be used for description of
hydrogen bonds and van der Waals interactions alike:

WðrÞ= «hb

��
r0 −d
r −d

�6
− 1

�2
; [4]

where «hb ≥ 0 is the interaction energy, r0 = 2hx = 1.633 is the equilibrium
length, and d = 0.5 is the diameter of the inner hard core. The balance
between valent and nonvalent interactions is varied by changing the angle
stiffness «ϕ, while keeping other interactions fixed.

α-Helix. The model that we describe here (Fig. 4A) is similar to the ones (25,
26) used previously for analysis of ultrasonic soliton motion. The equilibrium
atomic helix coordinates

R0
n = ðR0   cosðnφ0Þ;R0   sinðnφ0Þ;nl0Þ; [5]

with n = 0, ±1, ±2, . . . being the atom number, R0 being the helical radius,
φ0 and l0 being the angular and longitudinal helix periods.

The chain potential energy is

H =
X
n

�
VðρnÞ+ «φUðφnÞ+ «θZðθnÞ+WðrnÞ

�
: [6]

The term V(ρn) gives the energy of interaction between neighbor sites n and
(n + 1), where ρn is the distance between them. The angle deformation
energy is described by «ϕU(ϕn), where ϕn is the angle between sites (n − 1), n,
and (n + 1) (the vertex is on site n). The third term «θ Z(θn) is the energy of
the torsional deformation (rotation) around nth bond:

«θZðθÞ= «θðcos  θ− cos  θ0Þ2; [7]

where «θ ≥ 0 is torsional rigidity; different values of «θ are considered while
keeping other interactions fixed. The function W(rn) is the energy of the nth
hydrogen bond connecting sites n and (n + 3). We consider a dimensionless
model of the helix (specific parameters in SI Text). The bond deformation
energy is described by the potential (2) with the rigidity K = 10. Hydrogen

B

A

Fig. 7. (A) Blue, effective energy E(l/l0) per base pair of extended poly(A)-
poly(T) DNA ground state. Red, the convex hull of E(l/l0). (B) The tension as
a function of the relative chain extension. Blue and red, in the ground state;
green dashed, at T = 300 K.

Fig. 8. Structure of dsDNA fragment in (A) weakly stretched (longitudinal
step is l = la = 3.75 Å) state and (B) strongly stretched (longitudinal step is l =
lb = 6.15 Å) state. Minimum energy (ground) states are shown.
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bond energy is given by Eq. 4, and angle deformation energy is described by
ref. 3.

DNADouble Helix. Thepotential energy of the double helix consists of four terms:

H=EA + EB + Est + E*
hb: [8]

The first two terms describe deformation energy of complementary strands
A and B, respectively, within the 12CG coarse-grained model (27). These
terms include essentially the same energetic contributions as in the case
of the α-helix: internal energy (bond stretching, angle bending, and tor-
sion twisting) plus nonvalent interaction between the grains within the
same strand. The last two terms are nonvalent interactions: Est is between

two neighboring base pairs, and E*
hbis between two complementary bases

(within the same base pair), including hydrogen bonds.
Within the framework of our coarse-grained model (27), the nitrogen bases

are treated most accurately at all-atom level. WC hydrogen bonds and stack-
ing interactions are modeled by Coulomb and van der Waals potentials taken
from current all-atom AMBER (36) force field widely used to model nucleic
acids. To make the computations feasible, solvent effects are treated by the so-
called implicit solvation model (37) at the generalized Born level often used in
all-atom simulations of DNA (38). Within the model, water is treated as
a continuum with the (room temperature) dielectric and hydrophobic prop-
erties of water; screening effect of salt ions is also taken into account. Hy-
drogen bonding with the solvent is present, albeit in an average sense. The
balance between solute–solute and solute–solvent h-bond strength is con-
trolled by adjusting Ehb—the interactions between complementary bases
taken from the all-atom AMBER-explicit solvent force field (36). Here, we use
E*
hb = c0   Ehb, with c0 = 0.4, which leads to quantitative agreement with ex-

periment (Fig. 9). Additional details of the calculation can be found in ref. 27
and SI Text. To avoid sequence dependence issues that do not affect the basic
physics, we consider homogeneous poly(A)-poly(T) sequence.

The tension at T = 300 K (Fig. 7B) is obtained as F =dÆHæ=dL, where〈〉de-
notes ensemble averaging over a molecular dynamics trajectory. The simula-
tion used a 500-bp poly(A)-poly(T) fragment in the 12CG coarse-grained rep-
resentation (SI Text). The same trajectory was used to obtain results in Fig. 9.

ACKNOWLEDGMENTS. The authors thank Erwin J. G. Peterman for helpful
discussion and providing the experimental data points in Fig. 9. This research
was supported by Russian Foundation of Basic Research Grant 08-04- 91118-a,
Civilian Research and Development Foundation Grant RUB2-2920-MO-07, and
in part, National Institutes of Health Grant GM076121 (to A.V.O.).

1. Grosberg AY, Khokhlov A (1994) Statistical Physics of Macromolecules (American
Institute of Physics, New York).

2. Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28(26):8759–8770.
3. Rief M, Oesterhelt F, Heymann B, Gaub HE (1997) Single molecule force spectroscopy

on polysaccharides by atomic force microscopy. Science 275(5304):1295–1297.
4. Smith SB, Cui Y, Bustamante C (1996) Overstretching B-DNA: The elastic response of in-

dividual double-stranded and single-stranded DNA molecules. Science 271(5250):795–799.
5. Cluzel P, et al. (1996) DNA: An extensible molecule. Science 271(5250):792–794.
6. Allemand JF, Bensimon D, Lavery R, Croquette V (1998) Stretched and overwound

DNA forms a Pauling-like structure with exposed bases. Proc Natl Acad Sci USA 95(24):
14152–14157.

7. Garcia HG, et al. (2007) Biological consequences of tightly bent DNA: The other life of
a macromolecular celebrity. Biopolymers 85(2):115–130.

8. Bustamante C, Chemla YR, Forde NR, Izhaky D (2004) Mechanical processes in
biochemistry. Annu Rev Biochem 73:705–748.

9. Nelson P (1999) Transport of torsional stress in DNA. Proc Natl Acad Sci USA 96(25):
14342–14347.

10. Williams MC, Pant K, Rouzina I, Karpel RL (2004) Single molecule force spectroscopy
studies of DNA denaturation by T4 gene 32 protein. Spectroscopy 18(2):203–211.

11. McCauley MJ, Williams MC (2009) Optical tweezers experiments resolve distinct
modes of DNA-protein binding. Biopolymers 91(4):265–282.

12. Gross P, et al. (2011) Quantifying how DNA stretches, melts and changes twist under
tension. Nat Phys 7(September 2011):731–736.

13. Schwaiger I, Sattler C, Hostetter DR, Rief M (2002) The myosin coiled-coil is a truly
elastic protein structure. Nat Mater 1(4):232–235.

14. Afrin R, Takahashi I, Shiga K, Ikai A (2009) Tensile mechanics of alanine-based helical
polypeptide: Force spectroscopy versus computer simulations. Biophys J 96(3):1105–1114.

15. Ritort F (2006) Single-molecule experiments in biological physics: Methods and
applications. J Phys Condens Matter 18(32):R531–R583.

16. Bustamante C, Smith SB, Liphardt J, Smith D (2000) Single-molecule studies of DNA
mechanics. Curr Opin Struct Biol 10(3):279–285.

17. Rouzina I, Bloomfield VA (2001) Force-induced melting of the DNA double helix 1.
Thermodynamic analysis. Biophys J 80(2):882–893.

18. Rouzina I, Bloomfield VA (2001) Force-induced melting of the DNA double helix. 2.
Effect of solution conditions. Biophys J 80(2):894–900.

19. van Mameren J, et al. (2009) Unraveling the structure of DNA during overstretching
by using multicolor, single-molecule fluorescence imaging. Proc Natl Acad Sci USA
106(43):18231–18236.

20. Lebrun A, Lavery R (1996) Modelling extreme stretching of DNA. Nucleic Acids Res
24(12):2260–2267.

21. Rief M, Fernandez JM, Gaub HE (1998) Elastically coupled two-level systems as
a model for biopolymer extensibility. Phys Rev Lett 81(21):4764–4767.

22. Zegarra FC, Peralta GN, Coronado AM, Gao YQ (2009) Free energies and forces in
helix-coil transition of homopolypeptides under stretching. Phys Chem Chem Phys
11(20):4019–4024.

23. Storm C, Nelson PC (2003) Theory of high-force DNA stretching and overstretching.
Phys Rev E Stat Nonlin Soft Matter Phys 67(5 Pt 1):051906–051906.

24. Zarkhin LS, Sheberstov SV, Panfilovich NV, Manevitch LI (1989) Mechanodegradation
of polymers. The method of molecular dynamics. Russ Chem Rev 58(4):381–393.

25. Christiansen PL, Zolotaryuk AV, Savin AV (1997) Solitons in an isolated helix chain.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 56(1):877–889.

26. Savin AV, Manevitch LI (2000) Solitons in spiral polymeric macromolecules. Phys Rev E
Stat Phys Plasmas Fluids Relat Interdiscip Topics 61(6 Pt B):7065–7075.

27. Savin AV, Mazo MA, Kikot IP, Manevitch LI, Onufriev AV (2011) Heat conductivity of
the DNA double helix. Phys Rev B 83(24):245406.

28. Kikot I, et al. (2011) New coarse-grained DNA model. Biophysics (Oxf) 56(3):387–392.
29. Harris SA, Sands ZA, Laughton CA (2005) Molecular dynamics simulations of duplex

stretching reveal the importance of entropy in determining the biomechanical
properties of DNA. Biophys J 88(3):1684–1691.

30. Li H, Gisler T (2009) Overstretching of a 30 bp DNA duplex studied with steered
molecular dynamics simulation: Effects of structural defects on structure and force-
extension relation. Eur Phys J E Soft Matter 30(3):325–332.

31. Paik DH, Perkins TT (2011) Overstretching DNA at 65 pN does not require peeling
from free ends or nicks. J Am Chem Soc 133(10):3219–3221.

32. Clausen-Schaumann H, Rief M, Tolksdorf C, Gaub HE (2000) Mechanical stability of
single DNA molecules. Biophys J 78(4):1997–2007.

33. Zolotaryuk AV, Christiansen PL, Savin AV (1996) Two-dimensional dynamics of a free
molecular chain with a secondary structure. Phys Rev E Stat Phys Plasmas Fluids Relat
Interdiscip Topics 54(4):3881–3894.

34. Manevitch LI, Savin AV (1997) Solitons in crystalline polyethylene: Isolated chains in
the transconformation. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics
55(4):4713–4719.

35. Savin AV, Manevich LI, Christiansen PL, Zolotaryuk AV (1999) Nonlinear dynamics of
zigzag molecular chains. Physics Uspekhi 42(3):245–260.

36. Case DA, et al. (2005) The Amber biomolecular simulation programs. J Comput Chem
26(16):1668–1688.

37. Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science
268(5214):1144–1149.

38. Tsui V, Case D (2000) Molecular dynamics simulations of nucleic acids using a gener-
alized Born solvation model. J Am Chem Soc 122(11):2489–2498.

1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

f H
B

 relative extension (L/L
0
)

theory
experiment

Fig. 9. Fraction of remaining hydrogen bonds, fHB, as a function of relative
dsDNA extension. Solid line, simulation at 300 K; black squares, experiment (19).
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