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Recently, the highly invasive Asian tiger mosquito, Aedes albopic-
tus, rapidly displaced resident populations of the yellow fever
mosquito, Aedes aegypti in the southeastern United States and
in Bermuda. Although multiple mechanisms of competitive dis-
placement have been hypothesized, recent evidence of cross-in-
semination between these species in nature and the sterilizing
effects of male accessory gland products asymmetrically favoring
A. albopictus in interspecific matings support a role for satyriza-
tion (a form of reproductive interference) to explain the rapid
displacements. Because of the drastic reproductive loss of
A. aegypti females satyrized by A. albopictus males, we predicted
selection for prezygotic isolation in populations of A. aegypti sym-
patric with A. albopictus. Exposures in cages demonstrated that
female A. aegypti from populations in Florida sympatric with
A. albopictus for the past 20 y were significantly less likely than
nearby allopatric populations to mate with heterospecific males.
Cross-inseminations of A. albopictus females by A. aegypti males
were significantly less common, supporting the one-way direction
of displacements observed in nature. Our results indicate rapid
sexual selection leading to reproductive character displacement
and the potential for satyr-resistant A. aegypti to recover from
competitive displacements. These results have implications for in-
creased risks of dengue transmission where these vector species
meet worldwide.

Competitive displacement is based on the principle that two
species cannot simultaneously occupy the same niche, lead-

ing to population reduction of one by interspecific competition
(1). This phenomenon has been documented in nature, often in
the context of biotic invasions or species introductions for bi-
ological control (2–4). Both exploitative and interference com-
petition have been implicated in such displacements, which may
be mediated by noncompetitive factors (3).
Among mosquitoes, a recent example of competitive dis-

placement between vector species was the rapid reduction in
range and abundance of Aedes aegypti (Linnaeus) (5, 6) following
the invasion and spread of Aedes albopictus (Skuse) throughout
most of the southeastern United States in the 1980s (7, 8). De-
spite the potential impacts for public health—A. aegypti being
considered the primary vector of epidemic dengue (9), and
A. albopictus recently emerging as the most important transmitter
of chikungunya virus as well as frequently vectoring dengue (e.g.,
ref. 10)—our current understanding of the causative mechanisms
involved in this species displacement has proven to be inade-
quate for explaining the patterns observed in nature. Among the
possible mechanisms, the most widely cited is larval resource
competition (11, 12). However, it is considered unlikely that
larval competition alone could account for the rapid competitive
reductions of A. aegypti within 1–3 y in the southeastern United
States (7, 13, 14) or in Bermuda, where A. albopictusmore recen-
tly displaced A. aegypti with comparable rapidity (15). In addition
to larval competition, hypotheses to explain these displace-
ments include greater reproductive efficiency in A. albopictus
(16); apparent competition mediated by the intestinal gregarine
protozoan Ascogregarina taiwanesis (12); and asymmetric

reproductive interference between A. aegypti and A. albopictus
(4, 13). Greater reproductive efficiency in A. albopictus, although
possibly beneficial in the long term, does not adequately explain
the rapid declines of A. aegypti. Furthermore, surveys of larval
habitats (17) and manipulative field experiments (11) did not
support a substantial role for apparent competition as an ex-
planation for the outcome of these species interactions. In con-
trast, reproductive interference or “satyrization,” whereby males
of one species mate with females of a related species, producing
no viable offspring (18, 19), has been shown to be a strong
possible mechanism for population suppression and under cer-
tain circumstances can lead to population extinctions (18).
However, inconsistent results from cage experiments (13, 20)
and the absence of evidence of cross-matings in nature led to
waning confidence in satyrization as a plausible competitive
displacement mechanism in this system.
Following recent findings that A. aegypti and A. albopictus

mate bidirectionally in sites of sympatry in Florida (14) and that
heterospecific male accessory gland products render A. aegypti
but not A. albopictus females refractory to further insemination
by conspecific males (14), we here provide evidence that satyriza-
tion has led to reproductive character displacement of A. aegypti
by A. albopictus. In particular, we compare the frequency of in-
terspecific mating between A. aegypti and A. albopictus from
sympatric and allopatric populations, that is, populations where
the two species either have been exposed to interspecific mating
in the field or have not yet come in contact. Because the mistake
of mating with an A. albopictus male is extremely costly for
A. aegypti females [i.e., sterilization and loss of future re-
productive potential (14)], evolution should favor females re-
fractory to satyrization. A. aegypti populations that have been
exposed to this pressure therefore are likely to show a certain
amount of resistance, because avoidance mechanisms would be
expected to evolve over time (e.g., refs. 21–26). Consequently,
we hypothesized that rates of interspecific mating would be lower
in A. aegypti females sympatric with A. albopictus than in geo-
graphically isolated populations of A. aegypti that would be more
susceptible to cross-insemination.

Results
A. aegypti females from either allopatric or sympatric populations
were exposed to A. albopictus males from allopatric or sympatric
populations, and vice versa. Furthermore, intraspecific control
crosses were conducted simultaneously for each species. After
3 wk of exposure to interspecific or intraspecific males, females
were dissected for evidence of insemination.
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Female survivorship did not differ significantly among treat-
ments (F = 0.70, df = 15, P = 0.76) and averaged 76.11 ± 11.9%
(throughout, data are expressed as SEM).
Among surviving females, intraspecific (control) crosses

were 98–100% inseminated. On average, a significantly higher
proportion (0.43 ± 0.29) of A. aegypti females was inseminated
by A. albopictus males than in the reverse cross (A. albopictus
females × A. aegypti males) (0.12 ± 0.16) (F = 32.31, df = 1,
P < 0.001).
In crosses of A. aegypti females with A. albopictus males, the

origin of the female had a significant effect [χ(1)2 = 42.29, P <
0.001] on the likelihood of insemination, with females from al-
lopatric populations more likely to be inseminated than females
from sympatric populations (Fig. 1 A and C). This trend was
consistent between group 1 and 2 [χ(1)2 = 0.15, P = 0.70] of A.
aegypti females (Key West, FL/Vero Beach, FL and Miami, FL/
Fort Pierce, FL); however females of the second group (Miami/
Fort Pierce) mated less readily overall (Fig. 1). The origin of the
A. albopictus males had no effect on the insemination rates of
females in the first group (Key West/Vero Beach) [χ(1)2 = 0.08,
P = 0.77] but did significantly affect the frequency of inse-
mination in females of the second group (Miami/Fort Pierce)
[χ(1)2 = 24.88, P < 0.001], with sympatric males (Vero Beach)
inseminating significantly more females than their allopatric
(East St. Louis, IL) counterparts (Fig. 1 A and C). The significant
group effect [χ(1)2 = 30.69, P < 0.001] therefore can be attributed
mainly to the origin of the males. The three-way interaction

(female origin, male origin, and group) was not significant
[χ(1)2 = 0.56, P = 0.45].
In the reverse crosses of A. albopictus females with A. aegypti

males, the origin of the females also had a significant effect
[χ(1)2 = 110.47, P < 0.001], with females from allopatric pop-
ulations (East St. Louis) showing a lower insemination rate than
those from sympatric populations (Vero Beach). This effect was
consistent across groups [χ(1)2 = 0.80, P = 0.37], although
females in the second group (crossed to Miami/Fort Pierce
males) showed slightly lower insemination rates (Fig. 1 B and D).
The origin of the A. aegypti male had no influence on the

likelihood a female would be inseminated [χ(1)2 = 0.03, P = 0.86].
The significant group effect [χ(1)2 = 7.32, P = 0.007] in this set of
crosses therefore is attributable mainly to the response of the
females (Fig. 1 B and D). Again, the three-way interaction (fe-
male origin, male origin, and group) was not significant [χ(1)2 =
2.06, P = 0.15].

Discussion
Species Origins and Competitive Displacements. A. aegypti origi-
nated in Africa and was introduced to the Americas between the
15th and 18th centuries (27), in all probability on ships involved
in the slave trade, leading to its establishment across the south-
eastern United States. A. albopictus is of Asian origin and arrived
in the New World relatively recently. It was first established in
Houston, TX, in the mid 1980s (28) and spread rapidly across the
southeastern United States (29, 30) into areas occupied by
A. aegypti. The range expansion of A. albopictus coincided with

Fig. 1. Frequencies of insemination in interspecific exposures of A. aegypti (aeg) and A. albopictus (albo) mosquitoes from allopatric (a) and sympatric (s)
populations. “F” (female) and “M” (male) denote the sex of the mosquitoes in a particular cross. Light gray columns represent exposures in which the female
is from an allopatric population; dark gray columns represent crosses in which the female is from a sympatric population. (A and B) Group 1: A. aegypti strains
are from Key West (a) and Vero Beach (s), and A. albopictus strains are from East St. Louis (a) and Vero Beach (s). (C and D) Group 2: A. aegypti strains are from
Miami (a) and Fort Pierce (s), and A. albopictus strains are as in Group 1. See Table 1 for details of strain origins.
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rapid declines and extinctions of A. aegypti populations (5, 6, 31–
34). However, the mechanisms examined to date have not been
adequate to account for the rapidity of A. aegypti extinctions.
We propose that asymmetric reproductive interference or

satyrization has played an important role in these competitive
displacements and could be key in explaining the rapid population
declines of A. aegypti. Furthermore, our results provide an ex-
ample of rapid directional evolution in nature which potentially
could help explain the maintenance of distributions of A. aegypti
and A. albopictus in places where they coexist around the world
while shedding light on some of the discrepancies between results
of earlier work that led to a decline in interest in satyrization as
a driving mechanism for species displacement. We discuss our
results with regard to their epidemiological implications as well as
their significance for the evolutionary biology of A. aegypti.

Mating Behavior and Reproductive Character Displacement. Both
A. aegypti and A. albopictus belong to the subgenus Stegomyia and
share similar life histories and mating behavior; aggregating at
vertebrate hosts (often humans) during similar diurnal peak ac-
tivity periods (35, 36), where mating is initiated in flight, most
likely following both visual and auditory cues (37, 38). Although
the two species cannot produce viable hybrids (39), these simi-
larities in mating strategy may increase the likelihood of errant
interspecific mating when the species first come in contact.
Cage populations of laboratory strains of A. aegypti typically

achieve 100% insemination within 72 h after teneral females and
males are placed together (40). Despite the longer exposure times
needed to achieve interspecific inseminations in our experiments,
results showed a significantly higher interspecific insemination rate
in female A. aegypti from allopatric (44.37–54.96%) populations
than in females from populations with a history of sympatry
(32.33–41.54%) with A. albopictus. This decrease in the frequency
of interspecific mating in sympatric populations suggests that se-
lection to avoid errant mating, which causes effective sterilization,
is high enough for the development of prezygotic mating-avoid-
ance mechanisms in A. aegypti females. Development of similar
mating barriers forming within mosquito species complexes has
been documented, e.g., in the A. albopictus subgroup of Southeast
Asia (26), and was studied extensively in Drosophila species by
Dobzhansky and his successors, who reported that sympatric
populations were more refractory to interspecific mating than
allopatric populations of the same species (41, 42).

Asymmetric Satyrization and Mate Choice. Therefore, acting in
combination with previously documented mechanisms, such as
larval competition, satyrization may be key to population reduc-
tions of A. aegypti, particularly when the two species first come in
contact. A simulation model applicable to arthropod pests and
vectors predicts reproductive interference to be much more
powerful, even at low frequencies of interspecific mating, than
Lotka–Volterra competition when the two mechanisms operate
jointly to cause competitive displacement and extinction (18, 19).
Furthermore, A. albopictus females generally were far less

likely to mate interspecifically in cages (mean = 11.74%) than
A. aegypti females (mean = 43.30%), corroborating earlier
reports of unequal bidirectional mating (13) and favoring the
observed asymmetry of satyrization in this species pair.
In contrast, the origin of A. aegypti males had no influence on

the likelihood that a female A. albopictus would be inseminated.
This asymmetry in the response between the sexes is not sur-
prising, because the pressure for female A. aegypti to protect
their reproductive potential (against sterilization) will be stron-
ger than the cost to males of an incompatible mating (time,
energy, and gamete expenditure). Our results, however, do add
to the growing evidence suggesting that the traditional assumption
that the mating system of A. aegypti is driven predominantly by
male scramble competition (i.e., the first male to seize a female

also will mate successfully with that female) may be too simplistic.
Instead, the relatively rapid development of mating barriers sug-
gests a more complex system in which female choice is exercised.
Recent work on acoustic courtship in this species, which assesses
the harmonic convergence of wing beat frequencies in courting
mosquitoes (43), also supports this view.

Rapid Evolution and Species Distributions. The development of re-
productive character displacement, evident from comparisons of
allopatric strains of A. aegypti and strains that were colonized
from sites of sympatry with A. albopictus, is an example of rapid
evolutionary change, the sympatric strains in our study having first
come in contact as recently as 20–22 y ago. Artificial selection
experiments as well as numerous examples from the field
(reviewed in refs. 44 and 45) demonstrate the wide-ranging po-
tential for fast evolutionary change, and mathematical models
predict that such rapid change in interspecific interactions signif-
icantly affects population structure and dynamics. As discussed by
Thompson (45), many of the best-documented examples of such
rapid directional evolution have involved introduced species and
are informative examples of the rate at which populations can
adapt to fluctuating environmental conditions and the speed at
which evolution continually can reshape community structure. In
the case of interactions between A. aegypti and A. albopictus, rapid
rates of adaptation could affect the stability of distribution pat-
terns of these two species in areas where they frequently co-occur
around the world (4, 46). Satyrization may suppress A. aegypti
populations, whereas the development of resistance to satyrization
may allow recovery. In combination with other biotic and
abiotic factors (47, 48), this interplay could account for the
observed patchy distributions of these two species where they
encounter one another (e.g., refs. 49 and 50).
Furthermore, the high variability in the rates of insemination

may explain the discrepancies in past laboratory mating trials
(13, 20). The conflicting results may be caused, in part, by the
tested populations displaying varying levels of adaptation to
satyrization pressure. However, differences in experimental pro-
tocol, such as cage size, exposure time, and sex ratio, also may
have contributed to the variation among results.

Vector Displacements and Arbovirus Transmission. The epidemio-
logical implications of the competitive displacement of A. aegypti
by A. albopictus should be considered. Assessing the speed at
which mate-choice preferences or avoidance mechanisms de-
velop may help predict future changes in the distribution and
abundance of vector populations and, by extension, the risks of
arbovirus transmission. If, for example, strong mating barriers
and therefore satyrization-resistant populations are established,
A. aegypti may be able in the future to recolonize areas from
which it was displaced by A. albopictus.
Although a recent meta-analysis confirmed A. aegypti to be the

primary outbreak vector of epidemics of severe dengue (51),
A. albopictus has been documented as the principal vector of den-
gue where A. aegypti is rare or uncommon [e.g., in China (52–54),
Bangladesh (55), and South India (56, 57)] as well as in recently
invaded areas of Africa in the native range of A. aegypti (10).
With regard to dengue fever, if A. albopictus is less of a public
health threat than A. aegypti (51), then in dengue-endemic
regions the displacement of A. aegypti by A. albopictus may lower
transmission rates. In turn, a reduced prevalence of dengue may
result in lower herd immunity in the resident human population.
In this case, the reinvasion of satyrization-resistant A. aegypti,
after a period of absence, could cause a resurgence of disease.

Methods
Sympatric and allopatric A. aegypti and A. albopictus were obtained in 2011
from field collections of aquatic immatures from artificial containers, such as
discarded tires or cemetery vases, using a turkey baster (Table 1). Individuals
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were identified to species, sorted, and reared separately to adulthood in
insectaries at the Florida Medical Entomology Laboratory. Each colony was
established from no fewer than 100 individuals, except for the A. aegypti
line collected from White City Cemetery, Fort Pierce, which was established
from 30–40 individuals.

Adults used in the experiments were second generation (F2), except for the
allopatric strain of A. albopictus, which was F5. Second-generation mosqui-
toes were used to avoid maternal effects (58). Experiments were carried out
in screened, plastic BugDorm (BioQuip Products Inc.) cages (30 × 30 × 30 cm)
in an insectary maintained at 27 ± 0.62 °C and 89 ± 5.28% relative humidity
under a 14-h light:10-h dark photoperiod.

Larvae were reared from hatch to pupation in pans containing 1 L of tap
water (100 larvae per pan) and were provided with 0.6 g of a 1:1 brewer’s
yeast/egg albumin mix on day 1. Pupae were sexed according to morpho-
logical differences in their external genitalia and segregated by species and
sex in small containers (10–20 pupae per container) for emergence. If a mis-
take in sexing was detected after emergence, the container was discarded.
Three days after emergence, adults were transferred to BugDorm cages (150
females crossed with 150 males per cage) and left to cohabit for 3 wk.

Experiments were conducted in two sequential rounds (groups 1 and 2;
Table 1). The groupings of the allopatric/sympatric lines of A. aegypti (Key
West/Vero Beach and Miami/Fort Pierce) were arbitrary (based on strain
availability) and therefore were treated as a blocking effect in the
statistical analysis.

In each group (Table 1), A. aegypti females from either allopatric or
sympatric populations were exposed to A. albopictus males from allopatric

or sympatric populations. The reciprocal crosses between A. albopictus
females and A. aegypti males also were performed, giving a total of eight
combinations. Each cross combination was replicated in three sequential
repeats. Additionally, three conspecific cages containing males and females
of either A. aegypti or A. albopictus were set up as controls.

Females were dissected 3 wk after initial exposure, and the presence of
sperm in one or more spermathecae was recorded as an insemination.
Mosquitoes were provided a 10% sugar solution throughout the ex-
posure periods.

Statistical Analyses. Data were analyzed with JMP version 7.0 (www.
jmpdiscovery.com).

To detect variations in insemination frequency between A. aegypti and
A. albopictus females, the proportions of females inseminated were Arcsine
transformed and analyzed by ANOVA. The effect of population origin
(sympatric vs. allopatric) of males and females on the likelihood of cross-
mating was analyzed with a nominal logistic model, including “group” as
a blocking effect. Differences between crosses in adult survivorship were
analyzed by ANOVA.
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