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Glass transition, in which viscosity of liquids increases dramatically
upon decrease of temperature without any major change in struc-
tural properties, remains one of the most challenging problems in
condensed matter physics despite tremendous research efforts
in past decades. On the other hand, disordered freezing of spins in
magnetic materials with decreasing temperature, the so-called “spin
glass transition,” is understood relatively better. A previously found
similarity between some spin glass models and the structural glasses
inspired development of theories of structural glasses based on the
scenario of spin glass transition. This scenario, although it looks very
appealing, is still far from being well established. One of the main
differences between standard spin systems and molecular systems is
the absence of quenched disorder and the presence of translational
invariance: it often is assumed that this difference is not relevant, but
this conjecture still needs to be established. The quantities, which are
well-defined and characterized for spin models, are not easily calcu-
lable for molecular glasses because of the lack of quenched disorder
that breaks the translational invariance in the system. Thus the char-
acterization of the similarity between spin and the structural glass
transition remains an elusive subject. In this study, we introduced
a model structural glass with built-in quenched disorder that allevi-
ates this main difference between the spin and molecular glasses,
thereby helping us compare these two systems: the possibility of
producing a good thermalization at rather low temperatures is one
of the advantages of this model.
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Dramatic slowing of the relaxation process in almost all liquids
when supercooled below the melting temperature still lacks

a proper explanation (1, 2). The increase in relaxation time in deep
supercooled regimes is so impressive that it becomes extremely
difficult for the system to reach equilibrium in experimental time
scales, and eventually the liquid falls out of equilibrium with fur-
ther decreases in temperature to undergo a calorimetric glass
transition. Glass temperature is defined as a temperature at which
the viscosity of the liquids becomes 1013 poise (3, 4). It is clear that
this definition is ad hoc in nature and depends crucially on the choice
of parameter; the main question, which remains to be answered, is
whether there is a true thermodynamic transition below this calori-
metric transition or whether this is just a kinetic phenomenon (5),
with the viscosity diverging only in the zero temperature limit.
Many approaches to understanding this remarkable slowing in

the dynamics of supercooled liquids invoke the existence of a co-
operative length scale (6) associated with the collective rear-
rangements of particles and its divergence at the elusive glass
transition. The slowing is believed to be caused by the difficulty in
rearranging sets of ever-increasing numbers of particles collec-
tively while approaching glass transition. Progress made in recent
years in identifying such a length scale has been quite encouraging.
Developments include a dynamic heterogeneity length scale from
the analysis of a four-point density–density correlation function
(7–10), a point-to-set length scale (11), a patch length scale (12),
length scales associated with non-affine displacement of particles
(13), and length scales from finite size scaling of configurational
entropy (10) and density of states (14), to name just a few. Un-
fortunately, there still is no general consensus about the importance
of these length scales for glass transition and their relationship to

one another. The main hurdle in reaching such a goal is that these
length scales are accessible only through computer simulation
studies because of the protocols needed to compute them. So,
these length scales can be estimated only in a small-parameter
range in which they grow very modestly, thereby making it almost
impossible to see the divergence as one approaches the glass
transition. To further elaborate on this lack of general consensus
in the field of glass transition, it is worthwhile to mention the al-
ternative approaches to glass transition. In one of these approaches,
glass transition is described as a purely kinetic phenomenon that
happens solely as a result of dynamical arrest caused by the local
constraints (5). This, together with a recent study (15) in which the
relevance of static length scale on the glass transition is ques-
tioned, makes the whole picture of glass transition somewhat fuzzy
as well as interesting.
Despite all these caveats, there are some theories that are quite

successful in explaining the observed phenomena in glass transi-
tion. One of the leading contenders among them is the random
first-order transition (RFOT) theory proposed by Kirkpatrick,
Thirumalai, andWolynes, and developed further by others (16–23).
This theory, which is inspired by the similarity seen between the
dynamics of the p-spin glass model and those of the structural
glasses (24–30), predicts the existence of a symmetry-breaking
transition at the Kauzmann temperature from a supercooled liquid
to an ideal glass state and allows microscopic computations of the
phase transition (21). This theory, which is very much in the same
spirit as the phenomenological Adam–Gibbs theory (22) proposed
earlier, also suggests that p-spin glass models and structural glasses
may be in the same universality class. However, there is an inherent
difference between these two models, namely the existence of
quenched disorder in spin glasses. Lack of quenched disorder in
structural glasses makes it rather difficult to calculate quantities
such as spin glass–type order parameter and susceptibility. More-
over, the whole low-temperature phase cannot be accessed by
simulations. In a recent mean field and renormalization group
study (31, 32), it was proposed that with random pinning one can
explore the ideal glass phase, as in the temperature concentration
of the frozen particle plane there exists a critical point and one can
reach the glass phase from liquid phase without going through the
divergence in the structural relaxation time (32, 33). Similar studies
done in the mode-coupling theory (MCT) framework (34, 35) also
confirm this picture. All these studies and some other recent
studies (14, 21, 36–38) clearly show that exploring the glassy state in
the random pinning geometry may be very insightful, with the
added advantage of built-in quenched disorder. This may enable us
to do replica theoretic calculations for these kinds of particle
models to shedmore light on the soundness of the replica approach
to structural glasses.
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In general, a system of particles of equal size interacting via
a radially isotropic pairwise potential will have liquid-to-crystal
phase transition with decreasing temperature for dimensions d ≤ 3.
At higher dimensions, it was shown that crystallization is strongly
suppressed (39), so to form a glass it is very important for a di-
mension at least smaller than 4 to introduce frustration in the
system to prevent it from quickly falling into the crystalline global
minimum. In spin glasses, the random interactions between the
spins are the source of this frustration, and in structural glasses
compositional disorder—for example, different sizes of the par-
ticles or the asymmetric interaction between different types of
particles—usually generates the required frustration. Because of
the presence of these extra degrees of freedom, in general glass
models often are very hard to equilibrate at lower temperatures, as
one also must equilibrate these extra degrees of freedom. It would
be nice to have a glassy model system without extra degrees of
freedom. In this article, we propose to generate the required
frustrations by random pinning: we have studied a system in which
there is no randomness in the interaction potential and no com-
positional disorder. Our model system consists of particles of equal

size interacting via a purely repulsive potential (see Materials and
Methods for details on the potential used) with some fraction ρimp
of them frozen randomly in space. If a sufficient number of these
particles are frozen randomly in space at some high temperature
(T = 1.00 in this case; see SI Materials and Methods for details on
the pinning criterion), there is enough frustration in the system to
force the system to remain in disorder. As there are no other
degrees of freedom to equilibrate apart from the positions of the
particles, we expect that this model can be equilibrated to tem-
peratures lower than those of the usual models to study the lower
temperature phase of the supercooled liquid. With the quenched
disorder, this also is a very attractivemodel to compare with the spin
glass models. At a high density of quenched particles, no crystalli-
zation is present; however, the glass phase also is absent. We will
show there is an intermediate region with a small, but not too small,
fraction of quenched particles, where part of the usual structural
glass phenomenology survives and the system does not crystallize,
also at very low temperatures. Our construction differs from that of
refs. 31 and 32 in that the quenched disorder is crucial to avoiding
crystallization and finding a phase transition.

Fig. 1. (Upper Left) Pair correlation function g(r) for N = 512 system size for different temperatures. The curves for different temperatures are shifted
vertically for clarity. (Upper Right) Self part of the two-point correlation function Qs(t) for different temperatures. (Inset) α-Relaxation time τα calculated as
the time when Qs(t) goes to 1/e of its initial value. The line is the fit to the data using the VFT formula with TK ’ 0.17. The dynamic transition temperature
(MCT) is estimated to be Td ’ 0.394 (red dashed line). (Lower Left) Extracted static length scale from the replica overlap correlation functions (see Materials
and Methods for details). The red circles, green squares, and blue diamonds are from the system with N = 512, N = 2,000, and N = 4000, respectively. The
estimation of the length scale from N = 512 system size seems to have some finite size effects that almost disappear for N = 2,000 and N = 4,000 system sizes.
The black line is the fit to the data using the form ξ(T) ∼ jT − TKjγ, with chosen TK ’ 0.17 and γ ’ 0.50, and the red line with dot is the same fitting in which we
allowed all the parameters to vary, and the resulting TK ’ 0.38 and γ ’ 0.25. (Inset) Dependence of the relaxation time with the length scale for N = 4,000
system sizes. One can see some degree of universality in the relationship between relaxation time and length scale (see text for details). (Lower Right) Time–
temperature superposition for the Qs(t) for all system sizes N = 512, 2,000, and 4,000 for all the studied temperatures. The very nice collapse of the data
confirms that this model indeed has all the usual features of a glassy system. (Inset) Temperature dependence of τα for different system sizes.
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Results
It turns out that one needs to freeze around ρimp = 9% of particles
to get a system that will not show crystallization, at least for bigger
system sizes (N > 250). For smaller systems, this amount of frozen
particles is found to be insufficient to prevent the crystallization.
With ρimp = 11%, even the smaller system sizes do not show any
tendency to crystallize. So for the present study, we chose to work
with ρimp = 11% for all the system sizes studied. We restricted
ourselves to small system sizes, mainly because we wanted to
achieve full equilibration of the system to very low temperatures.
The studied system sizes are in the rangeN ∈ {100, 4,000}. In Fig.
1 Upper, we show the pair correlation function for different tem-
peratures to confirm that there is no sign of incipient crystalliza-
tion in this temperature range. In Fig. 1 Upper Right, we show the
self part of the average two-point density correlation function
〈Qs(t)〉 (see Dynamics for details) for N = 512 system size for
different temperatures in the range T ∈ {0.400, 1.000}. One can
see the nice development of the plateau in the correlation function
with decreasing temperature. In Fig. 1 Upper Right Inset, we show
the temperature dependence of the α-relaxation time, and the line
is the fit to the data using the Vogel–Fulcher–Tamman (VFT)
formula with the estimated divergence temperature TK ∼ 0.17 for
N = 512 system size. The dynamic transition temperature or the
mode-coupling cross-over temperature is estimated to be Td ∼
0.394 by a power fit. One should keep in mind that these extrap-
olated estimations of the divergence temperatures may not be very
reliable as the range of the data is not very big.
As our model is not translationally invariant because of the

presence of the quenched disorder, defining overlap between two
replicas becomes easy and unambiguous. For example, if we have a
system with translational symmetry, then in defining the overlap
between two replicas wemust account for the fact that two replicas
may be similar even though they may be translated or rotated in
space (40). We defined the overlap between two replicas using the
window functionw(x), which is 1 if x< 0.30 and zero otherwise.We
say the two replicas are similar if, for each particle at position~r in
replica 1, there is a particle of replica 2 within a sphere of radius
0.30 (see Replica Overlap and Extraction of Static Length Scale for
details). We also defined local overlap and calculated the corre-
sponding spatial correlation function to extract the static length
scale over which the replicas are similar. In Fig. 1 Lower Left, the
extracted static correlation length of two replicas [see Replica
Overlap and Extraction of Static Length Scale for details (41)]. The

finite size effect seems to die out quickly once we go to N = 2,000
system size for lower temperatures. The modest growth of the static
length scale in this temperature range is very similar to other glass
models. Fig. 1 Lower Right Inset shows the dependence of the re-
laxation time with this length scale (seeRelationship Between Length
Scale and Relaxation Time for details). The apparent universality
for the two cases with different frozen particle density also is in
agreement with the recent findings for usual glass models (42, 43).
To achieve equilibration at even lower temperatures, we imple-

mented parallel tempering simulation methods following ref. 44 but
restricted ourselves to systems up to N = 250. The details of the
simulation method and the parameters used are given in SI Mate-
rials and Methods, Parallel Tempering Methods. We parallelized the
parallel tempering method using message-passing interface rou-
tines to speed the simulation. We ran different replicas in different
computer cores and found that the system could be equilibrated to
very low temperatures within reasonable CPU time (∼12 h forN =
250 particles using 16 replicas in 16 cores). We checked to make
sure the system did not crystallize, even at the lowest temperature
studied. We believe parallel tempering methods work so well for
our model because it has only positions to equilibrate and does not
have any other compositional disorder that needs further equili-
bration. In Fig. 2 Left, we collapsed the probability distribution of
potential energy P(E, T) for different temperatures according to
the ansatz Eq. S3, on the probability distribution of the reference
temperature T0 = 0.425, to ascertain whether proper equilibration
is achieved in our simulations (see SI Materials and Methods, Par-
allel Tempering Methods for details). The nice collapse of the data
indicates that the equilibration is achieved with very good accuracy.
Fig. 2 Right shows the temperature dependence of the average
potential energy, and the inset shows the corresponding specific
heat calculated from the fluctuation of potential energy. Although
average potential energy does not show strong finite size effects,
one can see a somewhat strong finite size effect in the specific heat.
The nicely developed peak in the specific heat seems to be a pre-
cursor to a possible second-order phase transition, as also is seen in
ref. 23. The usual discontinuity in the specific heat seems to remain
rounded in a volume-independent fashion. Notice that at the
lowest temperatures, we have simulated the specific heat drops
to the Dulong–Petit value, suggesting that harmonic degrees of
freedom are the most relevant ones at these temperatures.
In Fig. 3, the temperature evolution of the distribution of

overlap q is shown for six different system sizes. One clearly can

Fig. 2. (Left) Collapse of distribution of energy P(E) for different temperatures on the distribution of P(E, T0) with T0= 0.425 in the parallel tempering run forN=
100 system size according to Eq. S3 to check the equilibration. The nice collapse confirms that very good equilibration is achieved using the parallel tempering
method for lower temperatures. (Right) Temperature dependence of the energy for different system sizes. One can see that thefinite size effect is not very strong
here. (Inset) Specific heat calculated from the fluctuation of potential energy for different system sizes. Some finite size effects may be seen here.

2754 | www.pnas.org/cgi/doi/10.1073/pnas.1222848110 Karmakar and Parisi

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1222848110/-/DCSupplemental/pnas.201222848SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1222848110/-/DCSupplemental/pnas.201222848SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1222848110/-/DCSupplemental/pnas.201222848SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1222848110/-/DCSupplemental/pnas.201222848SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1222848110/-/DCSupplemental/pnas.201222848SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1222848110/-/DCSupplemental/pnas.201222848SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1222848110


see the change in distribution from Gaussian to bimodal with
decreasing temperature. The distribution seems to deviate from
the Gaussian one at temperatures close to the temperature at
which the specific heat also shows a peak as a function of tem-
perature for that system size. The shape of the distribution as
a function of the temperature recalls what happens in mean field
theory in the replica approach: below the critical temperature,
a peak at higher values of q appears, whereas the low q peak has an
intensity proportional to the temperature.
In Fig. 4 Left, the temperature dependence of the overlap (see

Materials and Methods for details on definition) for different
system sizes is shown, and one clearly can see that for larger system
sizes, the overlap seems to change more sharply. The corresponding
susceptibility is given by χSG = (N − Nimp)[〈δq2〉], where 〈.〉 is the
thermal averaging and [.] means the averaging over the different
realizations of the disorder.Nimp is the number of impurity particles

in the system given by Nimp = ρimpN. In Fig. 4 Center, the suscepti-
bility shows dramatic variation with temperature, and at lower
temperatures the susceptibility also seems to change quite strongly
with system size. For system sizeN = 250, the susceptibility changes
by a factor of almost 50 compared with its high temperature value.
With these data, divergence of the susceptibility at lower temper-
atures in the thermodynamic limit cannot be established, but the
strong increase in its value with the system size is encouraging. We
have tried to collapse the susceptibility data for different system
sizes using the finite size scaling ansatz (L ≡ N1/3):

χSG =L2−ηF
�
L1=νjT −TK j

�
; [1]

with rather poor results. A better collapse is shown in Fig. 4
Right, with η ’ −0.1, ν ’ 1.0, and TK(L) now being a function of

Fig. 3. Temperature evolution of the probability distribution of overlap q for six different system sizes, N = 100, 150, 200, 250, 512, and 4,000.

Fig. 4. (Left) Temperature dependence of overlap for different system sizes. Bigger system sizes seem to show sharper changes of overlap q with tem-
perature. (Center) Spin glass susceptibility is plotted as a function of temperature for the studied system sizes. The strong variation with temperature is
remarkable. Notice the strong system size dependence of susceptibility at lower temperatures. Currently, we cannot say whether this susceptibility will di-
verge with decreasing temperature in a thermodynamic limit, as the system sizes studied here are still quite small. One must study bigger system sizes to
determine the possible divergence of the spin glass susceptibility at lower temperatures. (Right) Scaling collapse of the spin glass susceptibility using the
scaling ansatz Eq. 1. The exponents are η ’ −0.1, ν ’ 1.0 with TK as shown in the Inset.
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system sizeL. It is important to notice that as TK grows with system
size, it is reasonable that the divergence temperature will not go to
zero in the thermodynamic limit. The data seem to indicate
a possible nonzero temperature thermodynamical transition of
second order in nature. The inability to collapse the data with
a size-independent critical temperature may be the effect of the
strong finite size-scaling corrections: the system sizes studied here
are relatively small. A different scenario (in the thermodynamic
limit) would be a strong increase in the susceptibility approaching
the mode-coupling transition temperature followed by a cross-
over to a different behavior at low temperature. We noted that the
susceptibility data for N = 4,000, T ≥ 0.45 (that should have small
finite size effects) are well fitted by a power law, with a critical
temperature ∼0.4, i.e., the putative mode-coupling transition.
Much more extensive simulations are needed to better understand
the nature of the transition, if any.
These results are very similar to the one obtained for the finite

range p-spin glass model in 3D in ref. 23. At this stage, one should
take it only as a qualitative similarity. Further study is needed to
ascertain the universality classes of these models to compare them
quantitatively. These 3D p-spin glass models show a transition that
is neither discontinuous [1 replica symmetry breaking (RSB) type]
nor continuous (full-RSB type): the deep reasons for this behavior
are not clear (45). On the other hand, structural glasses are more
similar to the 1RSB-type (RFOT) transition, although first one still
must pinpoint the transition in structural glasses to make any con-
crete statement. Therefore, it is not clear presently whether the
current model is more similar to the spin glass or the structural glass
models. Qualitatively, it can be seen that this model has all the
typical behaviors of a usual glassy system. We hope this model will
help us bridge the gap between spin glass and structural glass and
shed some light on the mysteries of structural glass.
MCT calculations in similar geometry for the hard sphere sys-

tem in ref. 35 suggest that for a given packing fraction, there is
a critical density of the frozen particles and the time dependence of
the two-point correlation function will change from two steps to one
step. Although the precise pinning criterion is different from our
study, we want to determine whether one can qualitatively recover
some of these MCT predictions and to make sure we are not very

close to the critical density. We performed similar studies for dif-
ferent ρimp forN = 100 and calculated the overlap distribution P(q).
One clearly can see in Fig. 5 that there is no qualitative change in
behavior with different pinning densities. Although one does not
expect the MCT predictions to be strictly obeyed in real systems, it
seems one must go to a higher pinning density to clarify this con-
nection. In Fig. 5 Right, we show how 〈q〉 changes with ρimp as a
function of temperature, and the top right inset shows the corre-
sponding susceptibility.

Conclusions
We showed how a very simple particle model with random pinning
may be used to explore the glassy phase at a deep supercooled
regime, as well as how this model may be used to compute different
spin glass correlation functions to shed light on the relationship
between spin glass transition and structural glass transition, which
is the basis for most of the recent theories of structural glasses. This
model also may be used to determine the relationship between
different length scales, as in this model the length scale is calculated
directly from the spin glass order parameter correlation function. It
would be extremely interesting to arrive at a precise determination
of the phase structure of themodel and to compare it with accurate
numerical simulations.

Materials and Methods
Simulation Details. The interaction potential for rij ≤ xc is given by

ϕ
�
rij
�
=
k
2

��
rij
�−k + Xq

ℓ=0

c2ℓ
�
rij
�2ℓ�

; [2]

whereas it is 0 for rij ≤ xc, where rij is the distance between particles i and j,
and xc is the dimensionless length for which the potential will vanish con-
tinuously up to q derivatives. The coefficients c2ℓ are given in ref. 14. We
chose the parameters xc = 1.3854, k = 10, and q = 2.

Dynamics. We studied the dynamics using the two-point overlap correlation
functionQðtÞ= R

d~rρð~r; t0Þρð~r; t + t0Þ∼
PN

i;j=1wðj~riðt0Þ−~rjðt0 + tÞjÞ,whereρð~r; tÞ
is particle density at space point ~r at time t, and w(r) = 1, if r ≤ a and zero
otherwise. Average over the time origin t0 is assumed. The window function
[a = 0.30] is used to remove the fluctuations in particle positions due to small-

Fig. 5. Data for N = 100. (Left) Distribution of overlap P(q) system sizes for two different concentrations of frozen particles. There is no strong qualitative
difference between these distributions for two concentrations. (Right) Average overlap 〈q〉 as a function of temperature for different concentrations of
frozen particles. (Right Inset) Dependence of susceptibility on concentration ρimp.
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amplitude vibrational motion. In the definition of Q(t), the contribution due
only to the self-term is denoted asQs(t). The structural relaxation time τα is the
time where Qs(τα) = 1/e.

Replica Overlap and Extraction of Static Length Scale. In this section,we explain
how we have extracted the growing static length scale in this system. We
followed the method used in ref. 8, which is explained briefly below. We start
with the following definition of overlap between two replica: q= 1

N

PN
i=1qi ,

where qi =
PN

k=iwðxi − xkÞ with w(x) = 1 for x < 0.3 else 0. Now we define the
coarse grain variable as μðxÞ=P

iδðx − xiÞqi and defined f(r) = 〈μ(x)μ(y)〉, where
z = jx − yj. Now to remove the natural oscillation in the function f(r), we divide
the function by pair correlation function g(r) to define another function c(r) =
f(r)/g(r), and fit the function to c

~ðxÞ=a+ expð−x=ξÞ½b+ c cosðxd+ eÞ� to ex-
tract the length scale ξ. We extracted the correlation length scale for the N =
512, 2,000, and 4,000 system sizes, which have been equilibrated using stan-
dard molecular dynamics simulations using the Berendsen thermostat (46),
and we studied the system in the temperature window T ∈ {0.400, 1.000}. We
averaged the data over 20 different realizations of the disorder. For the last
three temperatures, T = 0.400, 0.420, and 0.450, we averaged the data over 40
realizations of the disorder.

Relationship Between Length Scale and Relaxation Time. We start with the
ansatz for the relationship between relaxation time τα and the static correlation

length ξ. ταðTÞ∝ exp
�
Δ0ξðTÞψ

T

�
, where Δ0 is a nonuniversal coefficient that

depends on the details of the glass former. Now at reference temperature T =
T0 (the highest temperature in this case), we define the typical length to be ξ0;

then, the relaxation time at that temperature is ταðT0Þ∝ exp
h
Δ0
T0

i
. Therefore, we

have the following relationship:

log
�
ταðTÞ
ταðT0Þ

�
=
Δ0ξψ

T
−
Δ0ξψ0
T0

=
Δ0ξψ0
T0

�ðξ=ξ0Þψ
T=T0

− 1
�
: [3]

As the prefactor Δ0 is not known a priori for different models, we chose
Δ0 = 1.0, 1.11 for ρimp = 0.090, and 0.110, respectively in Fig. 1. We also chose
ψ = 1.0 for these two cases.
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