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Many long noncoding RNA (lncRNA) species have been identified
in mammalian cells, but the genomic origin and regulation of these
molecules in individual cell types is poorly understood. We have
generated catalogs of lncRNA species expressed in human and
murine embryonic stem cells and mapped their genomic origin.
A surprisingly large fraction of these transcripts (>60%) originate
from divergent transcription at promoters of active protein-coding
genes. The divergently transcribed lncRNA/mRNA gene pairs ex-
hibit coordinated changes in transcription when embryonic stem
cells are differentiated into endoderm. Our results reveal that tran-
scription of most lncRNA genes is coordinated with transcription
of protein-coding genes.

development | expression

The non–protein-coding portion of the mammalian genome is
transcribed into a vast array of RNA species (1), some of which

play important roles in cellular regulation, development, and dis-
ease (2). The long noncoding RNAs (lncRNAs) are of particular
interest because they are known to contribute to gene silencing (3),
X inactivation (4), imprinting (5, 6), and development (7–9), but
there is limited understanding of the genomic origin, regulation,
and function of lncRNA molecules in individual cell types.
Embryonic stem cells (ESCs) are widely used as a model system

to study transcriptional control of cell state during early de-
velopment (10–13), yet there is no catalog of lncRNAs in human
(h) ESCs, and it is not clear how lncRNAs are regulated in these
cells. Catalogs of lncRNAs have been recently described in vari-
ous murine (14, 15) and human cell types (16–19), but the ma-
jority were limited to spliced lncRNA species (14–16, 18) and
those distant fromprotein-coding genes (14–17). Because lncRNAs
tend to be cell-type–specific (16, 18), these catalogs likely contain
only a very small fraction of lncRNAs expressed in hESCs.
We describe here catalogs of human and murine ESC lncRNAs

and the genomic regions from which these RNA species arise. We
find that the majority of these lncRNAs originate from divergent
transcription of lncRNA/mRNA gene pairs and that many such
gene pairs are coordinately regulated when ESCs differentiate.

Results
lncRNAs Expressed in Human ESCs. We compiled a catalog of
lncRNA species expressed in hESCs as summarized in Fig. 1A. An
initial pool of RNA candidates was generated by sequencing pol-
yadenylated RNA species from hESCs and supplementing these
with EST data from the full-length long Japan (FLJ) collection of
sequenced human cDNAs, which contains transcripts expressed in
>60 human tissues, including embryonal tissue (20). An initial pool
of 170,162 ncRNA candidates (Dataset S1) was obtained after
removing protein-coding transcripts based on the National Center
for Biotechnology Information (NCBI) Reference Sequence
(RefSeq). This pool was further filtered by using multiple criteria
to identify lncRNAs. The RNA species were required to have a 5′
end that originates from a genomic site where there is corrobo-
rating evidence of active transcription initiation, to lack features of

protein-coding RNAs, to be at least 100 nucleotides (nt) long, and
to be derived from a unique genomic location (Fig. 1A).
The lncRNAswere required to have a 5′ end that originates from

a genomic site for which there is corroborating evidence of active
transcription initiation to enhance confidence that these were
complete, full-length species. Sequence assembly produces a 5′
end for each putative transcript that may originate from a genuine
transcription start site (TSS), from degradation of a longer tran-
script, or from incomplete sequence assembly. We used the pres-
ence of nucleosomes with histone H3 trimethylated at lysine 4
(H3K4me3), as defined by chromatin immunoprecipitation (ChIP)
sequencing (ChIP-seq) analysis in hESCs, to provide corroborating
evidence of active transcription initiation. Previous studies have
shown that the presence of this mark at protein-coding and non-
coding RNA loci provides reliable evidence of active transcription
initiation at these loci (12, 15, 18, 21–27). Thus, RNA species were
removed from the pool if they did not have 5′ ends located at such
sites. Furthermore, to enhance confidence that the RNA species
are expressed in hESCs, RNA species were removed from the pool
if sequence coverage in the hESC RNA sequencing (RNA-seq)
data fell below a threshold of 0.07 reads per kilobase of exonic
length per million. This threshold was chosen to minimize false
negatives (Fig. S1 and SI Materials and Methods) and ensure that
using H3K4me3 to define lncRNA 5′ ends did not bias the ge-
nomic distribution of selected RNA species (Fig. S1 and SI
Materials and Methods). Thus, we obtained a set of 72,406 RNA
species that contained a defined, active TSS in hESCs with high
confidence of expression.
To distinguish ncRNA species from transcripts that are likely

to encode proteins, the coding potential of each of the transcripts
was evaluated by using the Coding Potential Calculator (CPC)
(28). We filtered transcripts that had a positive protein-coding
potential based on the quality of the ORF and the results of
BLASTX searches against proteins curated by RefSeq. From
this filter, we obtained a set of 21,681 RNA species that have
limited coding potential.
Small RNA species were filtered from the pool by requiring

that transcripts be at least 100 nt long. The remaining pool con-
tained some redundant species, and these were removed or, if
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overlapping, compiled into loci. Finally, RNA loci were removed
if transcripts comprising them mapped to more than one geno-
mic location. We thus compiled a catalog of lncRNA species
expressed in hESCs that originated from 3,548 nonredundant loci
(Dataset S1).
The lncRNAs in the hESC catalog range in size from 105 to

687,089 nt and have a median size of 1,831 nt (Fig. S2A). These
lncRNAs accumulate to levels that are, on average, ∼10% that
of mRNAs in hESCs (Fig. S2B). The size range and average
abundance of lncRNAs in this catalog are similar to those de-
scribed previously for lncRNAs (16, 29). Approximately half of
the lncRNA loci contain spliced transcripts (Dataset S1). The
vast majority (73%) of the lncRNA loci in the hESC catalog have
not been previously identified (Fig. S2C).

Association of lncRNA Genes with mRNA Genes in hESCs. Inspec-
tion of the genomic positions of lncRNA loci revealed that the
majority (89%) are associated with the promoters, enhancers,
and bodies of protein-coding genes (Fig. 1B). Most lncRNAs
were found to originate within a 2-kb region surrounding the TSS
of protein-coding genes (65%), and others originate from anti-
sense transcription of protein-coding genes (5%), enhancers
(19%), and other more distant (>2 kb) sites from protein-coding
genes (11%) (Fig.1B).
Visual inspection of tracks at individual genes suggested that

many of the lncRNA species are transcribed divergently from
regions near the promoters of protein-coding genes. At the
CAPN10 locus, for example, lncRNAs originate ∼3 bp upstream
of the CAPN10 protein-coding transcript, and these lncRNAs
are transcribed in the antisense orientation relative to the pro-
tein-coding transcript (Fig. 1C). Analysis of the entire population
of lncRNAs revealed that the vast majority have 5′ ends that
occur within 2 kb of the TSS of protein-coding genes, and almost
all of these (95%) are transcribed antisense to the protein-coding
gene (Fig. 1D). The median distance between the TSS for the
lncRNAs and the TSS for adjacent protein-coding mRNAs was
329 bp. We refer to these closely associated lncRNA and mRNA
genes as lncRNA/mRNA gene pairs.
Previous studies have shown that mammalian RNA polymerase

II (Pol II) often initiates transcription divergently at active pro-
moters and that such transcription can generate low-abundance
antisense ncRNAs (30–32). To further study the possibility that
ESC lncRNAs may be derived from divergent transcription of
active protein-coding genes, we investigated whether transcrip-
tionally engaged RNA Pol II occurs in both orientations at active
lncRNA/mRNA gene pairs by mapping global nuclear run-on
(GRO-seq) data. GRO-seq data provide the positions, relative
levels, and orientation of transcriptionally engaged RNA Pol II
molecules genome-wide. These data showed that transcriptionally
engaged RNA Pol II molecules occurred immediately down-
stream of the TSS of protein-coding genes, as expected based on
prior evidence for RNA Pol II pausing in this region (13) (Fig.
2A). These data also show that RNAPol II molecules are engaged
in active transcription antisense to the protein-coding genes (Fig.
2A). Inspection of the data at individual genes shows that this
divergent transcription is associated with lncRNA/mRNA gene
pairs (Fig. 2B), consistent with the model that these lncRNAs are
produced as a result of divergent transcription from promoters
of active protein-coding genes.
Further analysis of GRO-seq data revealed that RNA Pol II is

engaged in transcription initiation at 66% of protein-coding
genes in hESCs (Fig. S2F and Datasets S3 and S4), which is con-
sistent with previous estimates based on other criteria (21). Most
(85%) of these active protein-coding genes showed evidence of
divergent transcription (Fig. S2G). However, only ∼10% of these
divergently transcribed genes produced lncRNA species that accu-
mulated to substantial levels. The divergently transcribed lncRNA/
mRNA gene pairs that produce detectable lncRNA species tend to
be transcribed at higher levels (based on GRO-seq data) than
those pairs whose lncRNAs do not accumulate (Fig. S2 H–J).
Although the number of transcriptionally engaged RNA Pol II
molecules was similar for mRNA and lncRNA in divergently
transcribed lncRNA/mRNA pairs (Fig. 2A), the steady-state levels
of the lncRNAs were much lower than those for mRNAs from the
gene pairs (Fig. 2C). Thus, although divergent transcription oc-
curs at most active protein-coding genes, only a small fraction of
lncRNAs produced by divergent transcription are sufficiently
stable to be detected under the conditions studied here. The
evidence that lncRNAs are less stable than mRNAs is consistent
with previous reports that lncRNA transcripts are subjected to
exosome-mediated degradation (33, 34).
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Association of lncRNA Genes with mRNA Genes in Murine ESCs.
Previous studies of murine (m) ESC lncRNAs focused primar-
ily on 226 transcripts that are located some distance from pro-
tein-coding genes and are spliced (14). We compiled a catalog of
1,664 lncRNA loci by combining unpublished and published
RNA-seq data from mESCs (Fig. S3A and Dataset S1) and by
filtering the results with criteria that enhance confidence in this
lncRNA population (Fig. S3A and SI Materials and Methods).
Inspection of the genomic positions of the murine lncRNA loci
revealed that the majority of lncRNAs are transcribed from sites
near or within actively transcribed protein-coding genes (Fig. 3A),
as in hESCs. Of the 1,664 lncRNA loci in the murine catalog,
62% originate within a 2-kb region surrounding the TSS, 9%
originate from antisense transcription of protein-coding genes,
and 27% are derived from transcription of enhancer elements
(Fig. 3A). As with hESCs, the vast majority of lncRNAs have 5′
ends that occur within 2 kb of the TSS of protein-coding genes,
and almost all of these (93%) are transcribed antisense to the
protein-coding gene (Fig. 3B and Fig. S3B). These promoter-as-
sociated lncRNAs range in size from 204 to 424,645 nt, with
a median size of 2,704 nt (Fig. S3C), and have three features of

mRNAs—they have a 7-methylguanosine cap and a poly(A) tail
(Fig. S3D and Dataset S5), and 30% have been subjected to
splicing (Dataset S1). Analysis of published GRO-seq data from
mESCs (12) showed similar levels of RNA Pol II engaged in
transcription of both the lncRNA and the mRNA at lncRNA/
mRNA gene pairs (Fig. 3C). As with hESCs, the lncRNAs from
these gene pairs accumulated to lower levels (average 10-fold)
than the mRNA species transcribed from the adjacent protein-
coding gene (Fig. 3D and Fig. S3E). Thus, as with hESCs, the
majority of lncRNAs in mESCs originate from divergent tran-
scription of lncRNA/mRNA gene pairs.

Coordinated Transcription of lncRNA/mRNA Pairs During Differentiation.
The observation that >60% of lncRNA genes in ESCs are tran-
scribed divergently from active protein-coding genes suggests that
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transcription of lncRNA/mRNA pairs may be coordinately regu-
lated. To investigate this possibility, we stimulated differentiation
of the hESCs into endoderm through activin treatment and studied

transcriptional events using RNA-seq and GRO-seq analysis. A
catalog of endodermal lncRNA loci was produced by using the
criteria for generation of hESC and mESC catalogs; this catalog
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contains lncRNA species that originate from 3,986 nonredundant
loci (Dataset S1 and Fig. 4). Approximately half of the lncRNAs
in the catalog are also expressed in hESCs (Fig. S2E). The endo-
dermal lncRNAs—the vast majority (73%) of which have not been
described in previous studies (Fig. S2C)—have characteristics
similar to the lncRNAs expressed in human and murine ESCs.
They range in size from 194 to 687,089 nt, have a median size of
2,068 nt, and accumulate to levels that are ∼10% of that of
mRNAs (Fig. S2 B and D). Approximately half of the lncRNAs
are spliced (Dataset S1).
Most endodermal lncRNA loci (67%) originate within 2 kb of

promoters of protein-coding genes (Fig. 4A). Other lncRNAs are
derived from enhancers (23%), antisense transcription of pro-
tein-coding genes (5%), and other more distant sites (5%) (Fig.
4A). Similar levels of RNA Pol II are engaged in transcription of
lncRNA and mRNA at lncRNA/mRNA gene pairs (Fig. 4B), but
lncRNAs typically accumulated to lower levels than mRNAs
(Fig. 4C). Thus, as with ESCs, the majority of endodermal lncRNA
species are produced from divergent transcription of protein-
coding genes.
To determine whether transcription of divergently transcribed

lncRNA/mRNA pairs changes coordinately during endodermal
differentiation, we compared the density of RNAPol II molecules
at these loci in hESCs and 48 h after differentiation toward en-
doderm. Strikingly, transcriptional induction of mRNA genes
during differentiation was coordinated with induction of as-
sociated lncRNAs (χ2, P < 4.8 × 10−22) (Fig. 4 D–F and SI
Materials and Methods), whereas repression of mRNA genes was
accompanied by repression of associated lncRNAs (χ2, P < 2.4 ×
10−94) (Fig. S4A and SI Materials and Methods). Similar GRO-seq
results were obtained only 1 h after activin treatment, indicating
that the coordinate changes in transcription of lncRNA/mRNA
gene pairs occurred rapidly (Fig. S4 B and C). Thus, changes in
transcription of lncRNAs in lncRNA/mRNA gene pairs tend to be
coordinated with changes in transcription of neighboring protein-
coding genes during differentiation of hESCs into endoderm.
These results suggest that coordinated regulation of lncRNA/
mRNA gene pairs may be a general feature of differentiation.

Discussion
We have found that the majority of lncRNAs in human and mu-
rine ESCs are produced from divergently transcribed protein-
coding genes and that the divergent lncRNA/mRNA pairs exhibit
coordinated changes in transcription as ESCs differentiate into
endoderm. The evidence for these conclusions comes from the
assembly of lncRNA catalogs in hESCs and mESCs, and GRO-seq
data for hESCs that are described here. These datasets should
provide a rich source of information for additional studies into
the functions of these lncRNA species and the control of their
expression.
Previous studies have described mammalian lncRNAs but have

not noted the striking extent to which lncRNA/mRNA gene pairs
contribute to the population of lncRNAs that are produced in in-
dividual cell types (1, 14, 16, 18, 35–38). Our findings have been
made possible by obtaining fuller coverage of lncRNAs in ESCs
through use of directional RNA sequencing and by inclusion
of both spliced and nonspliced lncRNA species, which, to our
knowledge, has not been used in previous studies to define
lncRNAs in a single cell type. There is some prior evidence that
lncRNAs can originate from regions upstream of coding genes
based on studies of a few genes (35). The evidence described
here reveals that the majority of lncRNAs are derived from
divergent transcription of active protein-coding genes.
The GRO-seq data for hESCs shows that divergent transcrip-

tion occurs at the vast majority of protein-coding genes where
transcription initiation takes place, but the RNA-seq data indi-
cates that only a small fraction of the divergent transcription events
produce substantial levels of steady-state lncRNAs. In ESCs,

divergent transcripts from the promoters of four protein-coding
genes have previously been analyzed for their sites of initiation,
presence of 7-methylguanosine cap, and length and level of
RNAs per cell (33). The steady-state level of all four divergent
transcripts ranged from two to four RNAs per cell, and these
levels were found to be controlled, at least in part, by exosome
degradation. Thus, divergent transcription most likely gener-
ates many lncRNA species that are then degraded by the exo-
some pathway.
The transcriptional control of ESCs has been the subject of

intense study, yet most of this research has been focused on
protein-coding genes. An implication of the finding that most
lncRNAs are transcribed divergently from active protein-coding
genes is that transcription of lncRNAs may often be coregulated
with the adjacent protein-coding gene. The coordinate regulation
of lncRNA/mRNA gene pairs during differentiation described
here supports this model. It is also possible that one or both of
the divergent transcripts regulate one another; previous studies
have reported that antisense lncRNA can regulate expression of
neighboring mRNA genes (5, 39, 40). Future studies of lncRNA/
mRNA gene pairs and the lncRNAs described here should pro-
vide new insights into the contributions of lncRNAs to the control
of cell state and the process of differentiation.

Materials and Methods
Cell Culture Conditions. H1 (WA01) hESCs were grown on matrigel (BD Sci-
ences) by using mTESR1 (Stem Cell Technologies) as described (41). hESCs
were differentiated toward endoderm by resting cells in RPMI with B27
supplement for 24 h followed by treatment with activin (R&D Systems). Time
points were measured from the time of activin treatment. V6.5 mESCs were
grown on irradiated murine embryonic fibroblasts unless otherwise stated.
mESCs were grown under conditions as described (42).

RNA-seq and Assembly of Transcripts. Polyadenylated RNA-seq libraries were
prepared for directional sequencing according to a modified version of the
Illumina paired-end mRNA-seq protocol (SI Materials and Methods) and se-
quenced on Illumina HiSEq 2000 (Table S1). Sequenced reads were aligned to
the human (hg18) or mouse (mm9) genomes by using TopHat (Version V1.2.0)
(43) using default settings along with “microexon-search” and “coverage-
search” parameters. Transcripts were assembled by using Scripture (Version
1.0) (29) and Cufflinks (44). Reads are available at the Gene Expression Om-
nibus (GEO) database (accession nos. GSE36799 and GSE41009).

ChIP-seq. ChIP of nucleosomes with H3K4me3 and H3K27Ac (48 h) was per-
formed as described (21) by using H3K4me3 (Millipore; 07-473), H3K27Ac
(Abcam; AB4729), and IgG (Millipore; 12-370) antibodies (Table S2). Illumina
protocols for library preparation, sequencing, and quality control were fol-
lowed as described in SI Materials and Methods. Libraries were sequenced
by using Illumina GAII or HiSeq2000. ChIP-seq data for hESC H3K4me3 and
H3K27Ac and for mESC H3K27Ac were obtained from GEO (accession nos.
GSM733748, GSM466732, and GSE24164, respectively). Reads were aligned
to NCBI Build 36 using Bowtie software. Enrichment was determined as de-
scribed (25). A summary of the enriched genomic regions (P < 10−9) for all
H3K4me3 and H3K27Ac datasets is provided (Dataset S2). Data sets generated
for this study are available from theGEOdatabase (accession nos. GSM896920,
GSM896921, and GSE41009).

GRO-seq. GRO-seq was performed as described (32) by using 5 × 106 cells from
biological replicates for each time point. Libraries were sequenced on Illu-
mina Hi-Seq2000 (Table S1). See SI Materials and Methods for further details.
GRO-seq reads are available from GEO (accession no. GSE41009).

Pipeline for Generation of lncRNA Catalogs. Toderive the initial pool of RNA for
hESCs,we integratedtranscriptsassembledfromtheRNA-seqreads in this study
with the FLJ (20) database. For mESCs, we integrated transcripts assembled
from the RNA-seq reads in this study with the set of previously assembled
transcripts (29) as well as annotated transcripts from FANTOM3 (45) and NIA
Gene Index (46, 47). Transcripts from all sources were further processed to
filter RefSeq-annotated protein-coding transcripts, pseudogenes, microRNA,
tRNA, rRNA, and small nucleolar RNA. Transcripts in the initial pool of RNA are
available in Dataset S1. Next, filters were applied to select for transcripts with
correct 5′ ends that met minimal read coverage threshold, remove transcripts
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with positive coding potential, select for long transcripts, and remove re-
petitive elements (SI Materials and Methods). We combined partially or fully
overlapping transcripts into lncRNA loci (Dataset S1) to reduce redundancy
that would result from multiple alternatively spliced isoforms originating
from the same genomic location or annotation of the same transcripts in
multiple databases.

Expression Abundance and Transcription State of Genes. The level of expres-
sion measured by RNA-seq and GRO-seq was calculated as described in SI
Materials and Methods.

Publicly Available Annotations. All previously published datasets that were
used for the analysis in this study are specified in Table S3.
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