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Abstract
Few investigations of health event clustering have evaluated residential mobility, though causative
exposures for chronic diseases such as cancer often occur long before diagnosis. Recently
developed Q-statistics incorporate human mobility into disease cluster investigations by
quantifying space- and time-dependent nearest neighbor relationships. Using residential histories
from two cancer case-control studies, we created simulated clusters to examine Q-statistic
performance. Results suggest the intersection of cases with significant clustering over their life
course, Qi, with cases who are constituents of significant local clusters at given times, Qit, yielded
the best performance, which improved with increasing cluster size. Upon comparison, a larger
proportion of true positives were detected with Kulldorf’s spatial scan method if the time of
clustering was provided. We recommend using Q-statistics to identify when and where clustering
may have occurred, followed by the scan method to localize the candidate clusters. Future work
should investigate the generalizability of these findings.
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1. Background
Disease cluster investigations often result in null findings (Schulte et al., 1987), prompting
some to argue there is little value in studying clusters of health events (Rothman, 1990).
This perception can be attributed to several factors: (1) historically, cluster investigations
were limited to pre-identified subjectively defined disease clusters, as opposed to systematic
examination of representative incidence data; (2) residential histories and thus disease
latency were ignored; and (3) cases are typically aggregated into arbitrary geographic units,
making results ecologic in nature, and subject to the modifiable area unit problem (Meliker
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et al., 2009; Rothman, 1990). In recent years, epidemiologists have collected detailed
address information as part of a residential history for the purpose of geocoding and
mapping residences, thereby permitting systematic examination of disease patterns over the
life-course. Accurate and complete historical residence locations can be used to overcome
the three main limitations described above.

Statistical approaches for investigating space–time patterns are being developed to aid in the
analysis of geocoded residential history data in epidemiologic studies. While dozens of
approaches are available for quantifying patterns on disease maps (e.g. Besag and Newell,
1991; Cuzick and Edwards, 1990; Kulldorff and Nagarwalla, 1995; Kulldorff et al., 2006;
Tango and Takahashi, 2005; Turnbull et al., 1990; Waller and Turnbull, 1993; Waller et al.,
1995), most of these tests were developed for spatially static datasets and do not account for
mobile populations. Recently, several methods have been developed for investigating space–
time patterns in mobility data (Jacquez et al., 2005; Sabel et al., 2009; Webster et al., 2006).
Our group has been involved in development of Q-statistics for evaluating space–time
clustering in residential histories of case-control data (Jacquez et al., 2005, 2006). The Q-
statistics utilize nearest neighbor calculations to evaluate local and global clustering at any
moment in the life-course of the residential histories of cases relative to the residential
histories of controls.

Given the exploratory nature of space–time clustering investigations, these Q-statistics can
be re-calculated whenever a participant changes residence and thus can result in hundreds or
thousands of local test statistics depending on the mobility of the population. As a result of
these multiple tests, interpreting statistical significance can be a challenge. Bonferonni-type
corrections are known to be overly conservative (Hochberg, 1988), with alternatives making
use of simulation studies of receiver operating curves and false discovery rate (FDR)
adjustments (Kleinman and Abrams, 2006; Narum, 2006; Read et al., 2007; Caldas de
Castro and Singer, 2005; Catelan and Biggeri, 2010). Approaches accounting for multiple
testing that combine information from two of the Q-statistics, Qi and Qit are presented.
These new approaches combine Qit and Qi to identify whether individuals with significant
clustering over their life course co-occur in space and time.

The number of nearest neighbors (k) used to calculate a Q-statistic is a user-defined
parameter. The selection of k is important, as a k too large can result in over-smoothing and
a failure to detect smaller clusters, while a k too small may result in an inability to
differentiate true and false positives (Cuzick and Edwards, 1990). Certain cluster and
population characteristics influence the most appropriate k and performance of the Q-
statistics; these include cluster density (number of cases relative to number of controls in the
cluster region), size of the overall population, size of the cluster, and mobility of the
population. Though we could not exhaustively evaluate each characteristic here because this
would require hundreds of thousands of simulations, we did explore a range of different
populations and geographies using different cluster sizes within multiple regions. In this
report we create a series of clusters across a range of these cluster and population
characteristics to examine performance of Q-statistics and sensitivity of results to choice of
k nearest neighbors. Simulations are run using residential history data from two large case-
control studies in the United States (US) and Denmark. Our objective is to use these
simulations to (1) guide development of protocols for using and interpreting Q-statistics
such that researchers can differentiate true local space– time clusters from false positives,
and (2) to provide guidance on specification of the appropriate number of k nearest
neighbors to use in an analysis.
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2. Methods
2.1. Background on Q-statistics

Jacquez et al. (2005) develop global and local tests for case-control clustering of residential
histories. Readers unfamiliar with Q-statistics may wish to refer to the original work; these
are described briefly here. Q-statistics rely on a matrix representation that describes how
spatial nearest neighbor relationships change through time. A person’s residential history is
represented as a space–time thread using a step function (Fig. 1).

To identify the location and timing of significant clustering, the following spatially and
temporally local case-control cluster statistic is used:

(1)

This quantity is the count, at time t, of the number of k nearest neighbors of case i that are
cases, and not controls. Individuals i and j have case-control identifiers, ci and cj defined to
be 1 if and only if a participant i is a case, and 0 otherwise. N is the total number of

participants (cases and controls) in a study. The term  is a binary spatial proximity metric
that is 1 when participant j is a k nearest neighbor at time t of participant i; otherwise it is 0.

Since a given individual i may have k unique nearest neighbors, the  statistic is in the

range 0–k. When i is a control, . When i is a case, low values indicate cluster
avoidance (e.g. a case surrounded by controls), and large values indicate a cluster of cases.

When , at time t all of the k nearest neighbors of case i are cases. The user must
specify the value for k before a statistic is calculated; guidelines on the specification of k is a
topic of this research.

We also wish to calculate a subject-specific statistic that integrates through time (Eq. (2)).

When integration is accomplished over a subject’s residential history we think of this as a
“life-course” statistic that assesses a tendency to have other cases, rather than controls
nearby over the life-course

(2)

A time-specific statistic that provides an overall measure of case clustering when all of the
participants are considered together is given in Eq. (3). It is the sum, over all cases, of the
subject-specific and time-specific measure of case clustering in Eq. (1)

(3)

Analogous to Cuzick and Edwards test (Cuzick and Edwards, 1990),  evaluates global
clustering of cases at time t, such that the amount of case-clustering observed when all of the
participants are considered together is evaluated. For convenience the summation is over the
n1 cases. We call this a “global” test since it is comprised as the sum of the local statistic
from Eq. (1)
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(4)

Eq. (4) provides a global test that sums over the complete set of life course statistics from
Eq. (2). It is used to evaluate whether there is significant life-course clustering of cases when
all of the participants are considered together.

The unit of time used for the input of the data and subsequent interpretation of the results is
user-defined (e.g. day, month, year,) and the local Q-statistics are thus capable of detecting
periodicities (e.g. seasonal effects) such as might occur when influenza outbreaks occur
during Fall and Winter months. However, the temporal resolution of the time-unit must be
fine enough to not average over the periodicity of interest. One cannot, for example, pick up
seasonal effects using an annual time resolution. For the analyses presented here, we input
data with temporal resolution in years.

To summarize, Eq. (1) ( ) is used to identify when and where an individual is a center of

a local cluster. Eq. (2) ( ) identifies which individuals tend to be centers of clusters over

their life-course, but not when those clusters occur. Eq. (3) ( ) identifies which time
periods display significant global clustering. Finally, Eq. (4) (global Q(k)) identifies whether
global clustering tends to occur over the entire residential histories, but not when or where
the clustering occurs. For brevity, the remainder of this paper dispenses with the superscript
(k), but it is understood the value of the statistic depends on the specification of k. We then
write Qit for the local statistic; Qi for the subject-specific life-course statistic, and Qt, the
time-specific large-scale spatial cluster statistic.

2.2. Inferential framework
It is now well recognized that an understanding of the evolution, persistence and change in
space–time disease patterns is essential in order to make inferences regarding possible
underlying disease processes (Gallagher et al., 2010; Lahra and Kooistra, 2010; Myers,
2010; Ostro et al., 2010; Tunstall et al., 2010). With this in mind one may speculate on the
kinds of disease models and processes that might give rise to different types of space–time
disease patterns.

Sohowmight one use the Q-statistics to gain insights into specific etiologic hypotheses?
Notice the subscript i is a case identifier, so Qit and Qi make statements regarding clustering
about individual cases. How might these be used to generate inferences regarding space–
time cluster processes?

Suppose we have n participants in a study, n1 of which are cases and n0 of which are
controls. The beginning of the study period is t = 0, the end is t = T. Consider the sets
defined as follows:

(5)

(6)

(7)
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Here Q̃it is the set of all Qit that are statistically significant at the type I error level α, Q̃i is
the set of all Qi that are statistically significant at α, and Q̃t is the set of all Qt that are
statistically significant at α.

Recall that Qt and Qi are global statistics that assess case-clustering at specific times (e.g.
Qt) and over the life course of specific cases (e.g. Qi) such that

(8)

and

(9)

(Eq. (9) is a simplified version of Eq. (3)). Hence the global statistics are the sums of the
local statistics Qit. Thus there is a mapping of sets of the local statistics Qit to sets of
significant statistics Q̃t and Q̃i. This mapping is comprised of those Qit that contribute to the
significant Q̃i (through Eq. (6)) and those Qit that contribute to the significant Q̃t (through
Eq. (7)). With this understood we now consider the following operations:

(10)

(11)

(12)

(13)

Notice the result of these operations will be sets of the local statistics Qit that contribute to
the sets of significant global statistics that are the operands of Eqs. (10)–(13). These
operations are represented in Fig. 2.

2.3. Assessing overall significance of cluster sets
Examples of etiologic patterns that may be detectable using the various described Q-
statistics and their intersections are provided in Table 1. For instance, wide-spread clustering
in the population at a specific time point (set B̃) could be suggestive of a Chernobyl-type
incident where there is massive exposure at a single time point.

The cluster sets defined by Eqs. (5)–(13) are constructed using the local space time statistic
Qit, the life course statistic Qi and the spatial clustering statistic Qt. The significance at a
given α level yields membership in the sets illustrated in Fig. 2. Notice that the number of
local statistics can be large, and the use of the nominal type I error α will yield false
positives. It thus is necessary to derive approaches for evaluating the significance of the
cluster types in Fig. 2 that are not subject to erroneous inference attributable to multiple
testing.
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Each cluster set defined in Table 1 is comprised of significant local statistics. For example
recall from Eq. (5) that Q̃it = {Qit |P(Qit ≤ α); 1 ≤ i ≤ n1; 0 ≤ t ≤ T}. The number of elements
in this set, |Q̃it |, in a setting where true clustering exists, is comprised of both true positives

and false positives (call this ). Hence if we can evaluate the probability of  under
the null hypothesis of random labeling of the residential histories as cases or controls, and
conditioned on the observed number of cases and controls, we will be able to evaluate
significance of the size of the cluster sets in Fig. 2 with a single test. Put another way, we
wish to evaluate the probability of observing the number of elements in the set Q̃it, an
approach that avoids issues of multiple testing that occurs with the many possible local tests.
Table 2 enumerates the test statistics we wish to evaluate, the cluster sets they correspond to,
and the probabilities we wish to evaluate.

The predicted probabilities of the first three test statistics in Table 2 should follow a
binomial probability. The general form of this probability is:

(14)

(15)

Here P(|Q̃|H0) is the probability of the cluster set denoted |Q̃| under the null hypothesis;
these correspond to the entries in the column “probability of test statistic” in Table 2. |Q̃| is
the cluster set being considered; these are the entries in the column “test statistic” in Table 2
and are the count of the number of significant clusters of that type. For example, recall that

 is the count of the number of participants that have significant clustering of cases about
them over their life course. Here n(Q) is the total number of occurrences of the statistic
under consideration, whether significant or not. For example, n(Qi) = n1, where n1 is the
number of cases in the study. Table 3 enumerates n(Q) for the different cluster types.
Finally, α is the desired type 1 error of the test, often set to α = 0.05.

As mentioned in the introduction, this research used simulated data to investigate the
performance of the described Q-statistics. The characteristics of each simulated population
are given in Table 4, and the background for this approach is explained in detail in Section
2.5. When we simulate data so there is no space–time case clustering, |Q̃it |H0| is the number
of false positives observed under the null hypothesis. Notice the total number of possible

tests as per Table 4 is , since the number of cases recorded in the data set will vary
from one time to another, and since a local test is calculated for each case at each time point
considered. The empirical type I error may then be estimated as

(16)

This can be calculated for Q̃i and Q̃t as
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(17)

(18)

In practice we thus can calculate the empirical type I error rate for a specific data set with a
given conformation of residential histories, number of cases and number of controls. We
also can calculate the observed distribution of p-values ≤ ∝ that are observed for a given set

(say ) under the null hypothesis and using a specific type I error (∝) and number of
simulation runs. Notice this distribution is bounded on the right side by ∝, and on the left
side by 1/nruns + 1, where nruns is the number of simulation runs conducted.

2.4. Adjusting for multiple testing
It is clear from Table 3 that the number of possible tests can become quite large, especially
for the local test Qit when there are many cases and individuals are moving fairly often. One
advantage of defining the cluster sets illustrated in Fig. 2 is that the underlying tests are

based on the number of elements in a set of a given cluster type, for example . Should

this statistic prove significant (e.g. ), we then may wish to identify those 

subsumed within the set  that are themselves statistically significant. This is a much
smaller number than the maximum number of Qi that can be calculated, yet we still have a
multiple testing issue. One simple approach is to rank the p-values for the individual Q-
statistics comprising the significant cluster set from smallest to largest, and the most extreme
p-value (the smallest) is then the most likely cluster. This is similar in spirit to the scan
statistic and other approaches that identify that most likely cluster as the one with largest
likelihood. From this ranking we also can winnow out those test statistics that we might
expect to be false positives at a given alpha, there are n(Q) (from Table 3) times alpha of
these. The remaining elements in the cluster set are those test statistics found significant at
the given alpha level, once the number of tests conducted is accounted for.

A second approach to adjusting for multiple testing is to use a traditional multiple test
correction to control the family-wide error for each Q-statistic such as a Bonferroni
correction or sequential methods like the Simes–Hochberg method (Simes, 1986; Hochberg,
1988; Hommel, 1988), but these approaches tend to be conservative, especially for
exploratory tests.

A third approach we have used with some success is to control for the false discovery rate
(FDR) (Benjamini and Hochberg, 1995). This approach evaluates the fraction of false
positives among all tests declared significant, controlling for family-wide Type one error.
Several variants of FDR approaches exist and an approach that allows us to optimally tune
the threshold p-value we use for significance to achieve the desired FDR (Storey and
Tibshirani, 2003) appears promising. This generates a q-value (no etymological relationship
with Q-statistics) for each p-value based on the overall distributions of p-values. The q-value
represents the proportion of false positives among significant tests if this particular p-value
is used as the significance threshold. Choice of a critical q-value thus is determined by the
desired FDR. An additional advantage is that this approach also estimates the total number
of true positives (not just detected positives) in the family of tests, a measure of family-wide
Type two error.
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A fourth approach, and the one evaluated in this research, is disease process and pattern
oriented, and for that reason seems most desirable. Here the idea is to identify the type of
pattern one wishes to detect based on the disease process being considered, and to then use
Table 1 to identify the type of cluster set one is interested in detecting. This requires some
knowledge of the disease process being studied sufficient to formulate a prior hypothesis
regarding the expected space–time patterns. In our studies, we simulate geographically-
defined areas of excess risk that persist for several years. We therefore expect to find both
clustering over the life course for cases that remain within the area of increased risk, and
subject and time-specific case clustering for cases that migrate rapidly in and out of the area
of elevated risk. Because the modeled risk areas are quite small and only a handful of cases
are impacted, we do not expect to see time-specific global clustering over all cases.
Returning to Table 1 and Fig. 2, this type of pattern corresponds to cluster set Ã, defined as
Q̃it ∩ Q̃i. Within such a hypothesis-driven framework, the problem of multiple testing
becomes less onerous, as we now can use significance of single cluster sets (e.g. set Ã,) as
detailed above to evaluate space–time pattern. One of the diagnostics we will explore in our
simulation design is the membership of cluster set Ã.

Specifically, we consider the significance of Qit and Qi together in order to identify when
individuals with significant clustering over their life course co-occur in space and time. This
hypothesis-driven approach based on space– time cluster processes to our knowledge has
not been explored before. Because they represent human locations as a space–time thread
(Fig. 1), Q-statistics are sensitive to clustering over the life course (using Qi which identifies
individuals who have an excess of cases about them over their entire residential history) as
well as clustering of cases at specific instances in time (using Qit which identifies local
spatial clustering of cases at specific time points, t). The intersection of those (1) cases with
significant clustering over their life course, with (2) cases who are constituents of significant
local clusters at given times, t, may allow us to identify cases that are consistently in areas of
higher rates and when, if only for a short time, they are detectable as clusters. Since we can
use a single statistical test to evaluate the size of cluster set Ã, this approach could reduce
the problem of multiple testing, although one still may wish to identify those individuals in
cluster set Ã that are the most unlikely under the null hypothesis and have the smallest p-
values.

Statistical significance of the individual subject and time specific Q -statistics is determined
by randomizing the case-control identifiers over the residential histories under the null
hypothesis of no association between places of residence and case-control status. Derivation
of the theoretical distributions of the individual Q-statistics has yet to be accomplished, and
therefore Monte Carlo simulations are used to generate distributions for hypothesis testing.
These randomizations are conditioned on the number of cases and controls, the residential
histories, and, for the local statistics, hold the case-identifier for the case being considered
constant. Only case-control status is randomized, maintaining the integrity of the individual
residential histories, which are then used to calculate the Q-statistics. The randomization
procedure is repeated over many iterations to build up the distributions of the Q-statistics
under the null hypothesis. When information on covariates and other risk factors is
available, the null hypothesis can account for them by employing the adjusted probabilities
of being a case as calculated from logistic regression (Jacquez et al., 2006), but this is not
used in these simulations. Note that the range of possible p-values is determined by the
number of randomizations of the null hypothesis applied. Given the computational power
and time required for these analyses, 999 randomizations was the maximum reasonable
number of iterations, generating a minimum p-value of 0.001. (At 999 randomizations each
test of the Denmark dataset required approximately 12 h). Given that we investigated more
than 50 individual simulation experiments (combinations of data sets, simulated clusters,
and parameter values) for Qi, we required our most stringent possible threshold, a Qi p-value
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of 0.001 to be considered significant. We only investigated Qit among those individuals
whose Qi is significant at the p = 0.001 level. We considered several possible p-values (0.05,
0.01, 0.001) for Qit; p = 0.05 showed the best performance with a high ratio of true positives
to false positives. We combined Qi results with those from Qit analyses to identify
membership in cluster set Ã, and to define the location and timing of significant clustering; a
detailed examination of results is presented using simulated clusters. We also compare this
combined Qi, Qit approach with SatScan (v.9.0.1) analyses.

2.5. Residential histories
Residential histories from two case-control studies were used to carry out simulations for
different types of populations. Information about these populations is provided so the reader
is familiar with population demographics; true case-control identifiers were not used in these
simulations.

2.5.1. Case-control mobility data in the United States—Residential histories from a
multi-center population-based case-control study of non-Hodgkin lymphoma (NHL) in the
United States (US) were used in the simulations. This study comprised four areas of the US
served by the National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results
(SEER) registries: the Detroit metropolitan area (Macomb, Oakland, and Wayne Counties),
King and Snohomish counties in northwestern Washington State, the state of Iowa, and Los
Angeles (LA) County (Chatterjee et al., 2004). Incident cases and controls, age 20–74, were
recruited during the period from July 1, 1998 to June 30, 2000, producing 2378 participants.
Participants were approximately evenly drawn from the four areas. For the purpose of these
simulations, we created a base dataset of 1189 individuals randomly assigned to be cases,
and 1189 controls.

Participants provided written residential histories of each home they lived-in for at least six
consecutive months, which were reviewed during an in-person interview. Participants lived
in eight or nine residences, on average over their lifetime, and most lived in single-family
homes at time of diagnosis or selection. There were 21,442 different homes reported for the
2378 participants, accounting for 99.6% of total person-years. The duration of residence and
exact street address were requested. If exact street address was not known, participants were
asked to provide their best attempt at a complete address. Addresses were geocoded using
Geographic Data Technology’s MatchMaker SDK Professional Version 4.3. The latitude
and longitude returned is based on the coordinate projection NAD 83 and is set to an offset
of 25′ from the centerline of the street segment. Of the residences within the study states,
74% were automatically geocoded or interactively geocoded with minor operator assistance.
The addresses not matched at the street-level were geocoded to zip code centroid yielding
cases and controls at the same location (8%); otherwise, the address was not matched (12%).
Geocoding efficiency decreased in areas outside of the study states due to more frequent
missing street information for older addresses. All geocoded locations were used in the
simulation analyses.

2.5.2. Case-control mobility data in Denmark—Residential histories from a testicular
cancer case-control study in Denmark were also used for simulations. The complete dataset
contains 1:1 matching of 3297 case-control pairs. Cases represent all males with primary
diagnosis of testicular cancer in Denmark from 1991 to 2003, and with complete residential
histories dating to 1971. Controls were matched on date of birth, and also had complete
residential histories. Residential histories beginning in 1971 were available from the Danish
Civil Registration System (CRS) and linked to case-control data. The addresses were linked
to a register of all official addresses in Denmark, resulting in geographic coordinates for
98% of the addresses (44,897/45,813). The remaining 2% of the addresses could not be
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geocoded. In the geocoding procedure of the 44,897 addresses that matched with the
register, 90% of the addresses of both cases and controls matched to the exact house
(defined within 5 m of the front door of the house). Five percent matched to the street level,
and the last 5% were geocoded to municipality centroid (average size of a municipality in
Denmark before 2007 was 158 km2).

Density and movement of populations are important considerations when designing statistics
specifically to incorporate residential mobility. In most populations, higher density areas
(urban) typically experience higher mobility than rural areas. The density and amount of
mobility could potentially influence the ability for Q-statistics to detect clusters. Therefore,
these characteristics are used to define cluster regions in the simulation studies, as further
described in the following section.

2.6. Simulation analyses
Clusters of multiple size and density were created in different geographic regions to evaluate
performance of the Q-statistics under a range of scenarios. As established metrics do not yet
exist for describing and characterizing space–time clusters, we defined quantitative
measures of our own which we think well-describe their primary characteristics (Table 4).
These are: number of cases: the number of cases in a cluster, cluster size: the percent of
cases in the cluster region out of the total number of cases in the study, cluster density: the
percent of cases in the cluster region out of the total number of participants in the cluster
region, and case mobility: the percent of person-years of cases in the cluster region out of
the maximum possible person-years of cases in the cluster region over a given time period.
These metrics were used to help assess the relationship between characteristics of clusters,
sensitivity to choice of k nearest neighbors, and performance of Q-statistics. A
comprehensive examination of the relative importance of these cluster characteristics would
involve creating a series of simulated clusters changing only one characteristic at a time.
Given five characteristics of clusters (size, density, mobility, location, number of cases),
two-to-three values for each characteristic, and the importance of investigating sensitivity to
different datasets and geographies, a comprehensive examination would require hundreds of
simulations using repeated analyses to investigate sensitivity to k. Given the impractical
magnitude of such an exercise, we created several simulated clusters with a range of
characteristics to begin to evaluate performance of the Q-statistics and sensitivity to k.

2.6.1. Simulated clusters in US case-control residential histories—Case-control
status was first randomly assigned to each individual’s residential history. No clusters would
be expected in this randomized dataset. We then randomly selected 500 cases and 500
controls to create a partial dataset to more efficiently run repeated analyses since very large
datasets can be computationally intensive. Four clusters were created in Iowa of increasing
size (Fig. 3). The created clusters overlap in order to maintain consistency with regard to
other cluster characteristics such as mobility, resulting in a more controlled test than placing
the clusters in different locations. We created a cluster by defining an area as being high-risk
from 1960 to 1975, such that almost everyone who lived in that area during the time period
was designated as a case (Table 4). We began with a cluster region composed of 5 cases and
0 controls, then expanded outward geographically to 12 cases and 0 controls, and then to 18
cases and 1 control, and finally, to 27 cases and 3 controls. These cases, on average spent 13
years in the cluster region, with many cases not moving for decades. Separate analyses were
run on each cluster. We note that these clusters are very small compared to many of the
simulation studies published to date, but in our estimation they are more realistic in
representing highly local elevations in disease risk.
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A second cluster region was added to the 500 case, 500 control dataset, and was located in
Northern California, including San Francisco, among a more mobile population. This mobile
population was selected to compare results with those from the residentially stable Iowa
clusters. The cluster included all 20 individuals (defined as cases) living in that area in 1960,
plus 23 other cases who lived in the area between 1960 and 1975. This resulted in a cluster
region comprised of 43 cases living in the area for an average of seven years each between
1960 and 1975, and another 25 controls who spent an average three years in the cluster area.
Simulation analyses were first run using just the created California cluster, and then using
both the California cluster region and the largest Iowa cluster region (N = 27 cases) to
determine whether Q-statistics behave similarly when using more than one cluster region.

The Iowa cluster simulation was expanded to the full dataset (N = 2378 participants) to
produce clusters characterized by a range of values for sample size, cluster size, cluster
density, and number of cases in a cluster. The randomized case-control dataset was used
along with the same Iowa cluster cases described for the partial dataset; the California
cluster was not included in these analyses (Table 4). Cases in the cluster regions came from
two sources: (a) those defined as Iowa cluster cases in the partial dataset plus (b) those
defined as cases by randomization of case-control status in the full dataset. There were 6
cases and 2 controls residing in the smallest geographic cluster area between 1960 and 1975.
In progressively larger cluster areas, there were 14 cases and 6 controls; then 23 cases and
12 controls; and finally, 33 cases and 15 controls.

2.6.2. Simulated clusters in Danish case-control residential histories—Clusters
were also created in the larger Danish dataset of 3297 case-control pairs (6594 residential
histories) to further examine impact of sample size, cluster size, cluster density, number of
cases in a cluster, and case mobility on Q-statistic performance. Like the US dataset, case-
control status was first randomized so that no clusters would be expected. We then selected
a relatively low-mobility area in a central region of Denmark and assigned everyone within
a square perimeter a case in 1971 (Fig. 4). The region was enlarged three times to create a
total of four different clusters to be tested (Table 4). Between 1971 and 1980 the four cluster
regions included 11 cases and 1 control, 41 cases and 10 controls, 90 cases and 21controls,
and 127 cases and 34 controls, respectively.

2.6.3. Cluster analyses—In both case-control datasets, the sensitivity of the clustering
statistics to k = 5, 10, 15 and 20 nearest neighbors was evaluated on each pre-defined cluster
and on the randomized dataset that did not contain any clusters. For each scenario, the global
statistic Q, the local statistics Qi and Qit, and the associated p-values were calculated. We
also analyzed each of the intersecting sets described in Eqs. (10)–(15) and shown in Table 2,
as a means of determining which individual Qit’s were driving the other statistics.

When multiple individuals were declared significant centers of local clusters by Qi and Qit,
we needed to assess whether they were part of the same cluster or part of unique clusters.
This assessment was based on the number of k-nearest neighbors used in calculating the Q-
statistics. For example, if k = 15 and two significant cases would be among each other’s 15
nearest neighbors, then they were defined as part of the same cluster; otherwise they would
be labeled as part of separate clusters.

The Q-statistics were calculated in SpaceStat (v.2), and circular spatial scan statistics were
calculated using SatScan (v.9.0.1), specifying the Bernoulli model for case-control data with
a maximum cluster size equal to 50% of the study population.
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3. Results
The global Q statistic (Eq. (4)) and the cluster set statistics (Tables 1 and 2) were
consistently significant in detecting clusters of size 18 and 27 in Iowa in the 500 case, 500
control dataset in the US (Supplementary Table 1). These statistics, however, were unable to
consistently detect the California cluster whose members had greater mobility compared
with Iowa; the Iowa clusters in the 1189 case, 1189 control dataset, where clusters were
smaller and less densely populated with cases than the Iowa clusters in 500 case, 500 control
dataset; or the clusters in the large 3297 case, 3297 control Danish dataset. This performance
of the global Q statistic is not unexpected, as global statistics are known to be insensitive to
local elevations in risk in a larger population. As a global statistic, Q is designed to be
sensitive to a clustering of residential histories of the cases relative to the controls that
affects a large number of participants and is persistent through time (a big signal). It thus
may prove to be more useful in studies of infectious diseases with an underlying contagious
process. The cluster set statistics, on the other hand, were developed to identify signals for a
range of different types of clusters. The cluster set statistics for Qt and for Qit, Qi (Ã, Table
1) were also able to detect the larger clusters in Iowa in the full dataset (Supplementary
Table 1); however none of the cluster set statistics were significant in detecting the clusters
in Denmark.

We also considered whether the local Qi and Qit statistics together might be able to identify
case members of the simulated clusters. Using a critical value of p = 0.05, each of these
statistics identified significant case members of the true cluster regardless of cluster size or
number of k nearest neighbors; however they also identified cases in many other regions as
significant, indicating type 1 error (not shown) and confirming the need to account for
multiple testing. Setting the critical value to p = 0.001 for Qi improved performance. All
significant Qi cases also were significant p < (0.05) for Qit during the time when the cluster
was simulated, indicating Qi and Qit together were able to identify where and when true
clusters occurred among strong clusters. Smaller critical values for Qit were investigated
(<0.01, 0.001), but these values did not improve differentiation of true positives from false
positives. Supplementary Table 1 shows, for each simulation, analyses and results for
increasing levels of k using Qi (p = 0.001) and Qit (p < 0.05) together to define a true
positive. The numbers of true and false positive individuals (i.e. significant Q-statistics in
and outside of the simulated cluster region) are reported, along with the size of the largest
false positive cluster. False positives were detected but never more than three in a given
cluster region under all simulation scenarios. Therefore, for interpretation in this rule set, a
benchmark of a cluster of at least four individuals in the simulated cluster region is
considered a “true” cluster. Although intuitive and useful for application to these simulation
results, using this type of a strict cutoff should be approached cautiously to other studies in
other regions. The strongest clusters, those defined as larger, more dense clusters in low
mobility areas, were detected more easily with 11–13 significant case members of a true
positive cluster for k = 10 or 15 in the Iowa 27 case cluster region of the 500 case, 500
control dataset, and 5–30 true positive cases for k = 5, 10, 15, or 20 in the 127 case cluster
region of the 3297 case, 3297 control Danish dataset. Among smaller clusters, those less
densely comprised of cases, or those containing more mobile populations, there was
diminished ability to differentiate true positives from false positives (Supplementary Table
1).

Results were somewhat sensitive to choice of k-nearest neighbors used for calculating the Q-
statistics within a range of k = 5–20. True positives were detected in the strongest clusters
for a range of k-nearest neighbors, although as the choice of k approached the number of
cases in the cluster, there was diminished ability to detect the cluster. For example, in the
Iowa 27 case cluster region of the 500 case, 500 controls dataset, there were 3, 13, 11, and 6
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significant case members of a true positive cluster for k = 5, 10, 15, or 20 nearest neighbors,
respectively. In the Denmark dataset there was an increase in the number of true positives as
the number of cases increased. Higher k’s (15 and 20) were more successful at locating the
larger clusters in this dataset than were the smaller k’s. For example in the cluster containing
90 cases and 21 controls ever living in the cluster region of Denmark between 1971 and
1980, a k of 10 found 2 true positives and 0 false positive. A k of 15 found 10 true positives
and 0 false positives.

Last, we compared results using the Q-statistics with those using the spatial scan method
implemented in SaTScan (Table 5). Importantly, whereas SaTScan is able to detect clusters
at different time periods, it is not able to incorporate residential mobility. SaTScan was run
using residential locations in the year of the greatest simulated clustering (1960 for the US
datasets, 1971 for the Danish datasets). Given this guidance, there was a good deal of
similarity in the results although SaTScan was able to detect clusters with a p-value <0.05
more frequently than the Q-statistics. Both methods were unable to detect cluster sizes
smaller than 15.

4. Discussion
This report presents the first simulation analyses of the recently developed Q-statistics for
examining space–time cancer clustering in case-control residential histories. Overall,
simulations indicate global Q and the cluster set statistics are conservative and exhibit type
II error, unable to identify the majority of the simulated clusters. This is not surprising for
global Q since global tests, by definition, are sensitive to clustering that affects most if not
all of the cases in the dataset, a scenario not considered in the simulation design. The cluster
set statistics, however, were designed to identify signals for a range of different types of
cluster sizes but were unable to detect any of the simulated clusters in Denmark. When
considered together, local Qi and Qit showed strong performance across the range of
geographic areas, identifying larger, denser true clusters, with few false positives, using a
critical value for Qi of p = 0.001 and p ≤ 0.05 for Qit only among those individual cases
significant for Qi. In our simulations, a critical value of 0.01, or 0.001 for Qit resulted in the
elimination of several true positives. Selection of these joint Qi, Qit statistics is a direct
consequence of disease process pattern theory we develop here (Table 1); for localized
cancer clusters we would expect to see local significance (Qit) and individual case
significance (Qi) when the cluster may persist for some time, or when there is little
residential mobility. The spatial scan method detected a larger proportion of the true
positives, but only after knowledge of when the clustering occurred was provided as prior
information. These results suggest using joint Qi, Qit statistics to identify when and where
clustering may have occurred, followed by the scan method to localize the candidate
clusters.

The computational time for each analysis when run on a single desktop can be quite high
(>12 h for a dataset of 6000 individuals). An analysis of the algorithm suggests a maximum
computational time of f(n) = O(n2)log(n); see Supplementary Table 2 and Supplementary
Fig. 1 for details on computational time). Therefore conducting a full sweep of Q-statistics
at many different k’s, or enough randomizations to calculate small p-values is
computationally unreasonable for many investigations. Within a small range of k’s (5–20)
and no more than 999 randomizations we found k of 15 is consistently useful as a starting
point. k = 5 proved less efficient at differentiating true and false positives, while, for smaller
clusters, larger k’s begin to over-smooth the data and reduce the cluster signal. For the
cluster simulations in Denmark it was determined that a k of 20 may provide more true
positives, though k = 15 also performed well. According to the patterns seen in our results, a
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cluster of four individuals or larger using k = 15 could safely be called a true positive and is
a good starting point for follow-up studies with these datasets.

When deciding if a dataset or scientific question can be appropriately approached with Q-
statistics, the two most important considerations are whether the population is sufficiently
large and sufficiently mobile. As our results have demonstrated, the larger a population, the
more statistical power there will be to detect true clusters and avoid false positives. In some
situations (e.g. some of the Iowa/California simulations shown here) small true cluster sizes
can be difficult to detect. If the disease under study is, for example, a rapidly moving
infectious disease, then it may be reasonable to assume a priori that there will be large true
clusters and therefore easier to detect. However, for chronic diseases where the presence of
true clusters cannot be assumed, it is especially important to use other methods (such as scan
statistics) to confirm findings, once Q-statistics have been used to focus in on potential times
when clusters may have occurred.

The strength of Q-statistics is their ability to incorporate human mobility. Therefore, if the
population under study is static, other cluster detection methods will perform well and the
comparatively high computational requirements of Q-statistics are not warranted. Mobility
may be defined on different temporal scales; for instance, movement over the course of a
week in an infectious disease study, or movement over the course of years in investigation
of a chronic disease. Investigators should examine the average number of location changes
per individual, and consider their scientific question to determine whether Q-statistics are
the best possible method. Some potential scenarios that may be appropriately approached
with Q-statistics are given in Table 1.

There is no established protocol for defining space–time clusters in mobile populations. In
the spatial-only realm, it is straightforward to define and calculate cluster size and cluster
density. When considering mobility, however, one must consider that cases may spend
different durations of time in a cluster region, and this needs to be incorporated into the
definition of a cluster. In these simulations, we characterized clusters by their number of
cases, size, density, and mobility. In creating many different types of clusters in two large
residential history datasets, we arrived at a rule of thumb to help distinguish true clusters
from false positives. This rule of thumb, a cluster of 4 or more individuals (Qi, p = 0.001 and
Qit p ≤ 0.05) using k = 15, however, was successful only for distinguishing dense, large, low
mobility clusters. Even when successfully identifying cluster regions, not all members of a
cluster region were identified as significant cases; this is a consequence of lower density
clustering around the edges of a simulated cluster region and the stringent p-value used for
determining significance. Smaller, less dense clusters were also not captured by this rule of
thumb; however at this stage in development of space–time cluster statistics, we feel this is
an acceptable compromise since it limits inquiry into false positives, thereby conserving
limited resources for more thorough investigations of true clusters.

While many scenarios and simulations were considered, one cannot explore the entire space
of possible clusters nor the entire span of possible geographies and populations; therefore
generalizability of these results is uncertain. Given differences such as edge effects,
population density, mobility patterns, case-control ratio, and cluster shape, size, and density,
additional research is needed to determine the broad applicability of our findings. In
addition, we have not yet examined sensitivity of Q-statistics to the influence of temporal
resolution, e.g. days, weeks, months, seasons, or years, or temporal orientation, e.g. age,
calendar year, or years prior to diagnosis (analogous to age-period-cohort modeling in
epidemiology) (Meliker and Jacquez, 2007). Other future research avenues include
quantifying the relative importance of cluster size, density, and case mobility in determining
characteristics of clusters detectable by Q-statistics, and exploring alternatives for multiple
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testing adjustments in Qit. Characterizing the influence of nonresponse and geocoding
incompleteness/inaccuracies on clustering patterns through time is also important in many
datasets. Comparing results of Q-statistics with other recently developed cluster detection
methods for mobile populations (Sabel et al., 2009; Webster et al., 2006) is an important
research direction.

We had hoped the cluster set statistic for joint Qit, Qi (Ã, Table 1) could be used to narrow
down which individuals to investigate for significant local Qi, and Qit clusters. However, the
cluster set statistics were not sensitive enough to detect several of the simulated clusters,
especially those in the large Danish dataset. Future investigations may identify
circumstances in which these cluster set statistics are able to assist in cluster detection.
These joint Qit, Qi statistics appear to be potentially important diagnostics of space–time
cluster processes.

Analysts looking to conduct Q-statistics on their own data can use these results to help guide
their analytic strategy. As a first step, we believe that researchers should conduct their own
set of simulation analyses similar to these in order to determine the best criteria (p-values,
number of k nearest neighbors) for identifying true positive clusters. Ideally, this could be
created using the researchers own data, specifically the geography in the study, observed
residential histories, and the actual number of cases and controls, along the line of
simulation designs used in cluster morphology analysis (Jacquez, 2009). If the user has an a
priori hypothesis about cluster size (which is rarely the case), then k can be specified at a
value smaller than the anticipated cluster size, and need not be explored. If a simulation
experiment is not practicable, based on results presented here we recommend starting with k
= 15 as an initial investigation. A cluster of 4 or more individuals (Qi, p = 0.001 and Qit p ≤
0.05) will point toward a region of potential clustering. Further comparisons can then be
made using FDR-adjusted Q-statistics if the dataset is not too large. Additionally, once a
cluster is identified during a known time period, spatial-only clustering methods could be
adopted for comparison (e.g. SaTScan) (Kulldorff et al., 2006). SaTScan was shown to be
highly useful at identifying true clusters after Q-statistics have narrowed the range of
possible years and locations.

Q-statistics, a space–time extension of the established Cuzick–Edwards’ test for clustering
in static case-control populations, enable scientists to investigate clustering in mobile
populations, overcoming many of the limitations of previous cancer clustering analyses
(Rothman, 1990). The real test of these statistics, however, is whether or not they will
identify space–time clusters which can be linked with potential environmental causes; future
analyses by our group for cancers of the testis, breast, and NHL, should help answer this
question.

In these simulations, Q-statistics have shown that they are able to perform well for detecting
large clusters in a wide variety of situations and that applying Q-statistics with a relatively
small range of k’s is sufficient to be able to separate false and true positive significant
individuals at centers of clusters. Results of these simulations produced a guide for
interpreting clustering results from analyses of these two case-control datasets; however,
additional work is needed to investigate whether this guide can be generalized to other case-
control study populations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig 1.
Residential histories as space–time step functions. The axes x and y define a geographic
domain (e.g. longitude and latitude decimal degrees), the t axis represents time (e.g. date).
The study extends from time t0 to time tT. The residential histories for persons i and j are
shown as step functions through space–time. For example, person i begins the study residing
at location xi, yi, t0. They remain at that geographic coordinate until the instant before time
t1, when they move to xi, yi, t1. The duration of time they reside at this first place of
residence is ω0.
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Fig 2.
Venn diagram illustrating types of space–time clusters that can be identified using Q-
statistics. The rectangle represents all Qit statistics in a study, significant or not. Each circle
represents cluster sets that are found statistically significant (e.g. excess of cases about case i
at time t, Q̃it ); over a cases life course (e.g. excess of cases about the residential history of
case i, Q̃i); and globally at a given time t when all cases are considered together (e.g. large-
scale spatial clusters at time t, Q̃t ). These cluster sets and their intersections (Ã; B̃; C̃; D̃)
can yield insights into and generate hypotheses regarding disease etiologies. When the
underlying Q-statistics have been adjusted for the risk factors and covariates found
significant in the parent case-control study, these cluster types identify where, when and to
whom to allocate unexplained (e.g. excess) risk (Table 1).
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Fig 3.
(a) Randomized case-control status for individuals in the NHL study in 1960; (b) simulated
cluster region in California, 1960; (c) four simulated cluster regions in Iowa, 1960.
Locations jiggled to preserve anonymity.
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Fig 4.
A large simulated cluster is framed in Denmark in 1971. Cases are represented as black
diamonds, while controls are white. Locations jiggled to preserve anonymity.
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Table 1

Description of cluster sets, summary space–time pattern descriptions, and example disease etiologies that may
give rise to those patterns.

Cluster set Description Pattern Example etiology

Q̃it Local case-time clustering Cases (i) that at times t
have a significant number
of nearest neighbors that
are cases

Infectious: contagious process such that infection spreads from a
case to its susceptible neighbors. Vector-borne disease process such
that individuals in specific areas have increased risk of infection
Chronic (e.g. cancer): increased cancer risk for individuals residing
in local areas over a defined time period Duration of elevated risk
must be sufficiently long relative to the duration of time individuals
live in the affected areas (e.g. exposure time must be sufficient to
induce disease response)

Q̃i Clustering over the life
course

Cases (i) who, over the
study period, have a
significant number of
nearest neighbors that are
cases

Infectious: the “typhoid Mary” or “super-spreader” process,
whereby case (i) (the super-spreader) is infectious over the study
period and transmits infections to nearest neighbors. Vector-borne
disease process where case i has behaviors that enhance the vector
life-cycle (e.g. provides water receptacles such as empty cans and
tires for container-breeding mosquitoes)
Chronic (e.g. cancer): a process whereby neighbors of case i have
increased cancer risk and such risk is elevated over the life course
of case i. An example would be behaviors that increase cancer risk
for others nearby such as second hand smoke. May also arise when
groups with elevated risk tend to move or remain together over their
life course (e.g. familial groups with common genetic and/or
behavioral risk factors)

Q̃t Temporal case clustering Large-scale spatial
clustering of cases at time
t. Clustering of cases
relative to controls is
significant at time t when
all cases and controls are
considered

Infectious: infection outbreak such that the infection impacts a large
portion of the study population; endemic phase of infection with
multiple local outbreaks Chronic (e.g. cancer): chronic disease with
an underlying infectious etiology (e.g. viral hypothesis of cancer)
that impacts a large portion of the study participants; disease risk
mediated by environmental exposures that vary across the study
area such that risk is elevated for a large number of study
participants. Duration of elevated risk must be sufficiently long
relative to the duration of time individuals live in the affected areas
(e.g. exposure time must be sufficient to induce disease response)

Ã Qĩt ∩ Q̃i Locations and times when
cases with significant
clustering over their life
course are members of a
geographically localized
cluster.
Includes both ephemeral
and persistent clusters.

Infectious: local geographic foci of periodic infections with long
infectious periods from which some of the infected and infectious
cases move away. Mobile infectious individuals infect others over
their life course, leading to an elevated Qi statistic; infectious
individuals who continue to reside in the area after an infectious
period lead to a significant Qi statistic
Chronic (e.g. cancer): local areas of persistent elevated risk that are
sustained for a sufficient period of time that (1) disease risk is
increased for individuals residing in the local area and (2) the
duration of residence of cases in the area is of sufficient length to
result in a significant Qi statistic

B̃ Qĩt ∩ Q̃t Local clusters of cases that
occur over a large portion
of the study area at time t

Infectious: large-scale outbreak at specific times, t, that may be
comprised of local pockets of infection. For vector-borne diseases
this can arise when large portions of the study area have suitable
vector habitat during some parts of the study period
Chronic (e.g. cancer): large scale exposures that occur at a specific
time(s) t. An example would be leukemia in response to the
Chernobyl and Hiroshima incidents

C̃ Qt̃ ∩ Qĩ Cases that have clustering
over their life course and
are part of large-scale
spatial clusters at times t
Includes cases whose Qit
are not statistically
significant, and some
whose Qit are statistically
significant

Infectious: large-scale outbreak at times t with at least some of the
resulting cases that (i) move together over their life course; and/or
(ii) remain infectious over their life course and continue to infect
their neighbors. For a vector-borne disease this may arise when
there is an initial large scale outbreak with some of the resulting
cases continuing to be disease reservoirs (e.g. pathogen sources)
whose infection can then be transmitted to others in the same family
or tribal group
Chronic (e.g. cancer): large scale exposures that occur at a specific
time(s) t with some of the resulting cases that (i) move together
through life course or (ii) continue to reside in the affected area over
most of the study period
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Cluster set Description Pattern Example etiology

D̃ Qĩt ∩ Q̃i ∩ Q̃t Cases that have clustering
over their life course, are
part of large scale clusters
at time t and whose local
clusters Qit are all
statistically significant.

Etiology is similar to set C̃, but is restricted to include only those
individuals that are centers of significant local clustering of cases at
times t. For infection, this may be indicative of index cases; for
chronic diseases this may indicate individuals who are within local
pockets of the largest exposure
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Table 2

Statistics to evaluate the overall significance of the size of the cluster sets.

Cluster type Cluster description Test statistic Probability of test statistic

Q̃it Local case-time

Q̃i Life course

Q̃t Temporal case clustering

Ã Qĩt ∩ Q̃i |

B̃ Qĩt ∩ Q̃t |

C̃ Qt̃ ∩ Q̃i

D̃ Qĩt ∩ Q̃i ∩ Q̃t
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Table 3

Number of possible test statistics including those significant and not significant for each cluster set. Here n1t is
the number of cases extant in the study area at time t.

Cluster type Cluster Description Test statistic Number of possible elements in each set (n(Q) in Eqs. (15) and (16)

Q̃it Local case-time

Q̃i Life course n1T

Q̃t Temporal case clustering T
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Table 4

Characteristics of the simulated cluster regions.

Number of cases Cluster sizea (%) Cluster densityb (%) Case mobilityc (%)

US Case-Control Dataset, Clusters Created in 1960

1000 Residential histories

Iowa 5 1.0 100 99

12 2.4 100 90

18 3.6 95 83

27 5.4 90 84

Californiad 43 8.6 63 47

2378 Residential histories

Iowa 6 0.5 75 87

14 1.2 70 80

23 1.9 66 84

33 2.8 69 78

Danish Case-Control Dataset, Clusters Created in 1971

6594 Residential histories

11 0.3 89 50

41 1.2 84 74

90 2.7 82 70

127 3.9 81 80

a
Cluster size: percent of cases in cluster out of total number of cases in study.

b
Cluster density: percent of cases in cluster region out of total number of cases and controls in cluster region from 1960 to 1975 in US dataset,

1971 to 1980 in Danish dataset.

c
Case mobility: percent of person-years of cases in cluster region out of maximum possible person-years from 1960 to 1975 in US dataset, 1971 to

1980 in Danish dataset.

d
California cluster included all cases in the region in 1960, plus more residentially stable cases in the region from 1960 to 1975, as described in

Section 2.
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Table 5

Summary table of Q-statistic and SaTScan detection of simulated clusters. (Please see Supplementary Table 1
for complete results).

Cluster region N cases in cluster k nearest neighbors Q-stats detecteda SaTScan detectedb

Iowa (500 cases, 500 controls) 0 5, 10, 15, 20 N N

5 5, 10, 15, 20 N N

12 5, 10, 15, 20 N N

18 5, 10 N Y

15 Y Y

27 5 N Y

10, 15, 20 Y Y

California (500 cases, 500 controls) 43 5, 10, 15, 20 N Y

California + Iowa (500 cases, 500 controls) 43 CA, 27 IA 5, 10, 15,20 Yc Y

Iowa (1189 cases, 1189 controls) 0 5, 10, 15 N N

6 5, 10, 15 N N

14 5, 10, 15 N N

23 5, 10 Y N

15, 20 N N

33 5, 10 N Y

15 Y Y

20 N Y

Denmark (3297 cases, 3297 controls) 0 5, 10, 15, 20 N N

11 5, 10, 15, 20 N N

41 5, 10, 15 N Y

20 Y Y

90 5, 10 N Y

15, 20 Y Y

127 5, 10, 15, Y Y

20

a
At least four individuals in a cluster with Qi < 0.001 and Qit < 0.05.

b
p-Value < 0.05.

c
Only the Iowa cluster was detected (not California).
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