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Abstract
In mammals, after a period of growth inhibition, body growth often does not just return to a
normal rate but actually exceeds the normal rate, resulting in catch-up growth. Recent evidence
suggests that catch-up growth occurs because growth-inhibiting conditions delay progression of
the physiological mechanisms that normally cause body growth to slow and cease with age. As a
result, following the period of growth inhibition, tissues retain a greater proliferative capacity than
normal, and therefore grow more rapidly than normal for age. There is evidence that this
mechanism contributes both to catch-up growth in terms of body length, which involves
proliferation in the growth plate, and to catch-up growth in terms of organ mass, which involves
proliferation in multiple non-skeletal tissues.

Introduction
Growth impairment can result from many systemic disorders, including endocrine,
nutritional, gastrointestinal, cardiac, pulmonary, and renal disease. If these conditions
resolve, growth velocity often does not just return to normal but actually exceeds the normal
rate for age, causing the child’s body size to re-approach the pre-illness growth trajectory
(1). This tendency to rapid linear growth that occurs after a period of growth inhibition is
termed catch-up growth. Clinically, this phenomenon has been observed in a variety of
circumstances including hypothyroidism, malnutrition (celiac disease, anorexia nervosa) and
glucocorticoid excess (2). It occurs both in terms of height, implying rapid growth at the
growth plates, and in terms of organ size, implying rapid growth in multiple other tissues.

Catch-up in the growth plate
Bone elongation is the result of chondrocyte proliferation and further differentiation in the
growth plates. Growth plates are found in tubular bones and vertebrae but not in the
intramembranous bones of the face and skull. The growth plate is composed of three
principal layers, the resting zone, the proliferative zone, and the hypertrophic zone (3).
Resting zone chondrocytes act as progenitor cells, capable of producing clones of
proliferative chondrocytes (4). These proliferative cells, which are aligned in columns
parallel to the long axis of the bone, replicate repeatedly but then undergo terminal
differentiation and enlarge to form the hypertrophic zone. This hyperplasia and hypertrophy
of chondrocytes, combined with cartilage matrix synthesis contributes to generation of new
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cartilage. The newly formed cartilage is then invaded by blood vessels and bone cells and
thus remodeled into bone tissue. The net effect is bone elongation. The regulation of skeletal
growth at the growth plate is complex and involves systemic and local mechanisms,
including hormones, genetic and growth factors, environment and nutrition (5).

Catch up growth occurs at the growth plate. Transient impairment of longitudinal bone
growth is followed by accelerated bone elongation. Because bone length determines overall
body length, this accelerated growth at the growth plate is responsible for catch-up growth in
terms of body stature. Catch-up growth in children’s height following illness or malnutrition
was described more than 50 years ago (6;7).

Professor Tanner, one of the pioneers in the field of childhood growth, hypothesized that
catch-up growth involves a central nervous system mechanism that compares actual body
size to an age-appropriate set point (8). According to this “sizostat” hypothesis, a circulating
factor is produced by growing tissues in a concentration that reflects the size of the child. A
central nervous system "sizostat" compares this concentration to an age-appropriate set point
and then modulates the growth rate to bring the actual body size closer to its set point. Thus,
if a child is too small for age, the mechanism senses this abnormality and initiates catch-up
growth.

However, subsequent data suggest that catch-up growth at the growth plate is due to a local,
rather than a systemic mechanism. In rabbits, growth inhibition in a single growth plate,
induced by local dexamethasone infusion, is followed by local catch-up growth in the
affected growth plate (9). This local catch-up growth is not readily explained by a systemic
mechanism involving the central nervous system and circulating factors but instead suggests
a mechanism intrinsic to the growth plate itself.

Recent work suggests that catch-up growth in the growth plate is related to the
developmental process of growth plate senescence (10;11). This term refers to the
physiologic loss of function combined with structural involution that the growth plate
undergoes during juvenile life. With increasing age, there is a progressive decline in both
chondrocyte proliferation and in the overall height of the growth plate, associated with a
decreased number of proliferative and hypertrophic chondrocytes per column. As the
proliferative rate declines, the rate of longitudinal bone growth decreases (12;13).

The developmental program of growth plate senescence appears to be driven, not by time
per se, but rather by growth. Growth-inhibiting conditions, such as glucocorticoid excess in
rabbits (14) or hypothyroidism in rats (10), or tryptophan deficiency in rats (11), slow the
process of growth plate senescence. This slowing involves structural changes in the growth
plate, such as the decline in the number of chondrocytes in each zone, functional changes,
such as the decline in proliferation rate, and molecular changes, such as the decline in Igf2
mRNA expression (10). These findings imply that, when growth-inhibiting conditions
resolve, the growth plates are less senescent than normal and therefore proliferate at a rate
that is greater than normal for age, resulting in catch-up growth.

Indirect evidence suggests that linear catch-up growth in humans, as well as laboratory
animals, is related to delayed growth plate senescence. In one study, when children with
growth impairment due to celiac disease were placed on a gluten-free diet, the children’s
linear growth rate exceeded the normal for chronological age, indicating catch-up growth
(15). However, the growth pattern was normal for a child of younger age. Specifically, the
subsequent growth rate matched the normal pattern of growth expected based on the initial
bone age or height age. Because linear growth reflects longitudinal bone growth at the
growth plate, the data imply that the growth plate function was appropriate for a younger
child, consistent with the delayed senescence hypothesis.
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In conclusion, catch-up growth at the growth plate appears to be due primarily to a local
mechanism intrinsic to the growth plate rather than a systemic mechanism and can be
explained, at least in part, by a delay in growth plate senescence.

Catch up growth in multiple organs
Catch-up growth occurs not only in bone length but also in the mass of non-skeletal organs
and the overall body mass (16;17). The catch-up growth in non-skeletal organs occurs also
in terms of DNA content, indicating that accelerated cell proliferation makes an important
contribution (16). The mechanisms responsible for catch-up growth in non-skeletal organs
appear to be analogous to the mechanisms in the growth plate, involving a delay in the loss
of proliferative capacity.

In fetal and early postnatal mammalian life, cell proliferation is rapid, not only in the growth
plate, but also in many non-skeletal organs. This rapid proliferation slows with age,
primarily because of a decrease in the growth fraction (fraction of cells remaining in the
cell-cycle) (18). In both the growth plate and in non-skeletal organs, this decline in
proliferation appears to be due to local, rather than systemic, mechanisms as evidenced by
transplantation experiments between animals of different ages. When juvenile organs,
including the growth plate (19;20), intestine (21;22), kidney (23), and heart (24) are
transplanted into older recipients, these organs continue to grow rapidly, suggesting that
growth deceleration is an intrinsic property of the organ.

Recent evidence suggests that cell proliferation is suppressed with age because of a complex
growth-limiting genetic program that occurs during juvenile life in multiple tissues (25;26).
This common program involves the downregulation with age of a large set of growth-
promoting genes, including transcription factors like Plagl1, Ezh2, and Mycn, and
extracellular growth factors like Mdk, Ptn, and Igf2 (25;26).

Importantly, this juvenile multi-organ genetic program appears to be driven, not by time, but
by growth. Thus, growth-inhibiting conditions slow the progression of the genetic program,
and thereby conserve future growth potential (25). This concept is supported by studies in
rats, using a tryptophan deficient diet or hypothyroidism to slow growth. After the period of
growth inhibition, mRNA analysis indicated that the growth-limiting genetic program was
delayed (26). The period of growth inhibition due to tryptophan deficiency also appeared to
delay the decline in proliferation rate in kidney and lung. Thus, after the animals had been
returned to a normal diet, the proliferation rate in liver, kidney, and lung was greater than in
control animals. Taken together these data suggest that growth inhibition slows progression
of the growth-limiting genetic program and thus delays the loss of proliferative capacity,
allowing for subsequent catch-up growth.

Conclusions
After a period of growth inhibition, catch-up growth occurs, both in terms of body length,
which reflects growth plate chondrocyte proliferation, and in terms of organ mass, which
reflects proliferation in various non-skeletal tissues. Recent evidence suggests that catch-up
growth in both the growth plate and in non-skeletal tissues occurs, at least in part, because
growth-inhibiting conditions slow the physiological mechanisms that normally cause body
growth to decelerate with age and cease. Therefore, if the growth inhibiting condition
resolves, the normal growth-limiting mechanisms are less advanced than normal, allowing
for more rapid and more prolonged subsequent growth.
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