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ABSTRACT

Motivation: Multiply correlated datasets have become increasingly

common in genome-wide location analysis of regulatory proteins

and epigenetic modifications. Their correlation can be directly incor-

porated into a statistical model to capture underlying biological inter-

actions, but such modeling quickly becomes computationally

intractable.

Results: We present sparsely correlated hidden Markov models

(scHMM), a novel method for performing simultaneous hidden

Markov model (HMM) inference for multiple genomic datasets. In

scHMM, a single HMM is assumed for each series, but the transition

probability in each series depends on not only its own hidden states

but also the hidden states of other related series. For each series,

scHMM uses penalized regression to select a subset of the other

data series and estimate their effects on the odds of each transition

in the given series. Following this, hidden states are inferred using a

standard forward–backward algorithm, with the transition probabilities

adjusted by the model at each position, which helps retain the order of

computation close to fitting independent HMMs (iHMM). Hence,

scHMM is a collection of inter-dependent non-homogeneous HMMs,

capable of giving a close approximation to a fully multivariate HMM fit.

A simulation study shows that scHMM achieves comparable sensitiv-

ity to the multivariate HMM fit at a much lower computational cost. The

method was demonstrated in the joint analysis of 39 histone modifi-

cations, CTCF and RNA polymerase II in human CD4þ T cells. scHMM

reported fewer high-confidence regions than iHMM in this dataset, but

scHMM could recover previously characterized histone modifications

in relevant genomic regions better than iHMM. In addition, the result-

ing combinatorial patterns from scHMM could be better mapped to

the 51 states reported by the multivariate HMM method of Ernst and

Kellis.

Availability: The scHMM package can be freely downloaded from

http://sourceforge.net/p/schmm/ and is recommended for use in a

linux environment.
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1 INTRODUCTION

The hidden Markov model (HMM) is an important tool for

learning probabilistic models of sequential data with a local cor-

relation pattern, as exemplified in many engineering applications

such as speech and handwriting recognition (Rabiner, 1989). In

an HMM, it is assumed that the system has a series of unob-

served (hidden) states following a Markov process. The observed

data are considered as output from the hidden states and follow

specific distributions. In recent years, HMMs have been success-

fully applied to many problems in computational molecular biol-

ogy (Churchill, 1989; Krogh et al., 1994) and statistical genetics

(Lander and Green, 1987). In these applications, they were used

to model spatial patterns such as genomic features on the

chromosomes, similar to temporal patterns in time series data.
HMM analysis is already common in genome-wide location

studies. For example, the chromatin immunoprecipitation

(ChIP) protocol, coupled with microarray (ChIP-chip) (Ren

et al., 2000, Iyer et al., 2001) or next generation sequencing

(ChIP-seq) (Johnson et al., 2007; Barski et al., 2007), is a

method of choice for identifying genomic loci enriched with vari-

ous histone modification marks. In ChIP-seq data, sequence

reads are aligned to the target genome and data are summarized

by counting the aligned reads in non-overlapping contiguous

windows (e.g. 200bp windows). Because data manifest a clear

spatial correlation, an HMM is frequently used to infer the bind-

ing status of each window (Ji and Wong, 2005; Li et al., 2005;

Choi et al., 2009; Qin et al., 2010), where the hidden state space

consists of binding state and background state.

With the declining experimental cost, it has become increas-

ingly common for genome-wide location analysis to be conducted

on multiple regulatory proteins or epigenetic marks (Heintzman

et al., 2007; Mikkelsen et al., 2007; Wang et al., 2008). Because

many factors interact with each other to carry out biological pro-

cesses, it is of great interest to understand the correlation among

these factors as reflected in the shared binding sites or modifica-

tion marks. In the context of HMM analysis with two hidden*To whom correspondence should be addressed.
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states in each series, one can formulate N separate HMMs by

assuming independence between every pair of series, as illustrated

in Figure 1a (referred to as iHMM hereafter). Alternatively, one

can formulate a single HMM with 2N hidden states (Fig. 1b,

referred to as fullHMM), where 2N is the number of hidden

states when there are two states in each series. They represent

two opposite extremes in the sense that iHMMcompletely ignores

the correlation between series, whereas fullHMM incorporates

the correlation in the multivariate model for the hidden states.

Both approaches have advantages and shortcomings: iHMMmay

feature low statistical power, but it is computationally efficient. In

contrast, fullHMM embodies the correlation directly; however,

not all hidden state combinations necessarily appear in the data

and it is computationally expensive, if not intractable. Practically,

however, estimation of an HMM with 2N hidden states is com-

putationally intractable when N is large because 4N possible tran-

sitions need to be followed.
Here we present a novel statistical model that represents a com-

promise of these two, termed sparsely correlated HMM

(scHMM). The scHMM approach captures a small subset of

non-ignorable correlations among data series to avoid modeling

all pairwise correlations. This sparsity property is achieved by

adopting a regularization regression strategy. Figure 1c illustrates

our proposed method. The dashed-line arrows connecting the

hidden states between series indicate the significant correlations

captured by scHMM. For example, the hidden states at windows

t� 1 and t in the first series, but not the third, are used to estimate

the transition probability between windows t� 1 and t in the

second series, and vice versa. Under this framework, there is no

need to consider combinations of hidden states across all series (as

N-tuples) as in fullHMM, and hidden states can be inferred con-

sidering just four types of transitions in each series separately

(solid lines). The scHMM algorithm is able to take advantage

of the interactions between correlated series to improve the infer-

ence of hidden states. Moreover, we also reduce the computa-

tional cost by iterating through N series and inferring the

hidden state vectors one series a time, conditioning on the current

hidden state vector estimates of all other series.
Note that the goal of scHMM is different from that of

the multivariate HMM method developed by Ernst and Kellis

(2010) for the analysis of combinatorial patterns of histone

modification using ChIP-seq data. scHMM aims to infer the

hidden states in the multiple chains simultaneously, whereas

the multivariate HMM attempts to identify a small subset of

representative combinatorial patterns and annotate the genome

with respect to such patterns. Nevertheless, the ChIP-enriched

windows identified by scHMM can be used to facilitate the

multivariate HMM analysis, potentially improving the quality

of genomic annotation.

2 METHODS

2.1 Overview

Suppose that data have been collected from multiple genome-

wide experiments that are related to each other, for example,

DNA-binding proteins that are part of a protein complex, or

the same DNA-binding proteins profiled under different treat-

ment conditions or different cell lines. Each experiment yields a

data series measured across the genome. Assume that there are

N series, denoted by O ¼ fOj, tg for t ¼ 1, . . . ,T and

j ¼ 1, . . . ,N, where Oj, t denotes the observed datum (emission)

at window t. The observed data O are associated with binary

hidden states H ¼ fhj, tg indicating the status of either true bind-

ing site (state 1) or background site (state 0). We also use Ot

and ht to denote the observed data and hidden states, respect-

ively, at window t across all series. The goal of HMM analysis

is the estimation of H.
As mentioned above, iHMM is a straightforward approach

where each series j has an independent HMM with the two

states. Standard HMM for a single data series has three compo-

nents: (i) the probability mass function of the first window

�ðhj0 ¼ 1Þ; (ii) the transition kernel Kj,

Kj ¼
1� pj pj
1� qj qj

� �

where

pj ¼ �ðhj, t ¼ 1jhj, t�1 ¼ 0Þ

qj ¼ �ðhj, t ¼ 1jhj, t�1 ¼ 1Þ,

(a) (b) (c)

Fig. 1. Three strategies to model multiple data series: (a) independent HMMs, (b) fully coupled HMM and (c) sparsely correlated HMMs for series

dataO. Associated with observed data are hidden states h, which are to be inferred. For c, the arrows in dashed lines indicate the couplings introduced to

adjust the transition kernel of each series
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which is constant for all windows ft : 0 � t � Tg; and (iii) the

emission �ðOjtjhjt ¼ 0Þ and �ðOjtjhjt ¼ 1Þ for all t. The likelihood

of this model can be written as

L ¼
YN
j¼1

�ðhj0Þ�ðOj0jhj0Þ �
YT
t¼2

�ðhjtÞ�ðOjtjhjtÞ

( )
ð1Þ

Given the three components, the forward–backward algorithm

can be applied to infer the hidden states quickly (Rabiner, 1989).
Although iHMM is fast and straightforward, it is unable to

capture the correlation between related data series. This correl-

ation can be explicitly incorporated in the model to increase

statistical power and remove noise. The most intuitive approach

is fullHMM, a single HMM with 2N hidden state combinations

and 2N � 2N transition kernel K. The likelihood of fullHMM is

L ¼ �ðh0Þ�ðO0jh0Þ �
YT
t¼2

�ðhtÞ�ðOtjhtÞ

¼ �ðh0Þ
YN
j¼1

�ðOj0jhj0Þ �
YT
t¼2

�ðhtÞ
YN
j¼1

�ðOjtjhjtÞ

 !

Here we assume that the emission is independent of the hidden

states in other series, i.e. �ðOjtjhtÞ ¼ �ðOjtjhjtÞ for all j and t.

Similar to iHMM, the forward–backward algorithm can be

applied to infer the hidden states as well.

2.2 Sparsely correlated hidden Markov models

Although fullHMM accounts for the Markovian dynamics

between hidden state combinations, not all combinations

necessarily occur in the data and, more importantly, the order of

computation for the forward–backward algorithm isOðT � 4NÞ as

opposed toOðN � 4TÞ in iHMM. This clearly limits the applicabil-

ity of fullHMM to cases with small or moderateN. When the goal

of analysis is inference of hidden states in each series, fullHMM

will be computationally inefficient. This motivated us to develop

scHMM, a compromise between the two methods.
In the scHMM algorithm, we allow different series to be

correlated as in fullHMM. At the same time, we apply two

strategies, which reduce the computational cost to a level similar

to that of iHMM. First, instead of considering all series

simultaneously, we iteratively infer parameters by cycling through

each series individually. For each individual series, inference is

performed conditioning on the current hidden state vectors in

all other series. Second, in each series, we assume sparsity when

incorporating correlations between the current series and all other

series. The correlation imposed is of the form of an inhomogen-

eous transition kernel. To be specific, we denote the transition

kernel of scHMM for series j at window t by

KjðtÞ ¼
1� pjt pjt
1� qjt qjt

� �
,

which has an additional index (t) because the transition prob-

ability varies by window t. Here, we define pjt and qjt to incorp-

orate the input from other series as follows:

pjt ¼ � hj, t ¼ 1 j hj, t�1 ¼ 0, fðhk, t�1, hk, tÞgk 6¼j
� �

qjt ¼ � hj, t ¼ 1 j hj, t�1 ¼ 1, fðhk, t�1, hk, tÞgk 6¼j
� �

:

That is, the transition probability in series j is adjusted by the

hidden states in other series fl : l 6¼ jg. Here we consider two lo-

gistic regression models in each data series:

log
pjt

1� pjt

� �
¼ �pj0 þ

X
k 6¼j

�pjkhk, t�1 þ �
c
jkhk, t

� �
ð2Þ

log
qjt

1� qjt

� �
¼ �pj0 þ

X
k 6¼j

�pjkhk, t�1 þ �
c
jkhk, t

� �
ð3Þ

where Equations (2) and (3) hold on windows ft : hj, t�150:5g
and ft : hj, t�1 � 0:5g, respectively. In the equations, the super-

scripts p and c indicate ‘previous’ and ‘current’ windows, respect-

ively. In this setup, each regression coefficient carries a

straightforward interpretation. For example, the intercept term

�pj0 is the baseline log odds for 0! 1 transition in series j when

all other correlated series are in the background state (state 0) at

windows t� 1 and t. �pjk and �cjk are the increase in the log odds

of 0! 1 transition in series j when previous and current win-

dows are in binding/modification state (state 1) in series k (k 6¼ j),

respectively.
In the current form, however, the number of regression coef-

ficients will keep growing as more series are incorporated in the

analysis. To address this concern, we impose a sparsity constraint

using a LASSO penalty (Tibshirani, 1996) such thatX
k6¼j

j�pjkj þ j�
c
jkj

� �
� � and

X
k 6¼j

j�pjkj þ j�
c
jkj

� �
� �

The details of the estimation procedure, including the coordinate

descent algorithm by Friedman et al. (2010), are provided in the

Supplementary Information.
Lastly, because our major application of interest is read count

data from ChIP-seq experiments, we used a flexible class of dis-

tributions for emission, including zero-inflated mixture model for

the background sites (state 0) and generalized Poisson distribution

for the binding/modification sites (state 1). These distributions

were previously used in the HPeak software (Qin et al., 2010).
We remark that the computational time of scHMM is signifi-

cantly less than that of fullHMM. To see this, note that there are

two elements in the total computation time of scHMM: one for

inferring hidden states and the other for learning the regression

coefficients. For the former, the complexity is no more than

OðN � ð4�ÞTÞ, where � is the additional time to compute the

odds using ð2N� 1Þ hidden state predictors at each transition,

which should be trivial unless N is very large (� should be close

to 1). For the latter, the computational complexity is the time it

takes to fit 2N logistic regression models with LASSO penalty in

datasets with ð2N� 1Þ covariates and T data points, and thus

this can be time-consuming in large datasets (large T) like

genome-wide ChIP-seq data, and thus we randomly sample gen-

omic regions of a sufficient size (as shown in section 4.1) and fit

the model using the subset to save time. Therefore, the compu-

tation should be much more efficient than fullHMM.

3 SIMULATION STUDIES

To evaluate the performance of scHMM, we conducted simula-

tion studies. Because typical quantitative data reported from
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sequencing experiments are read counts, we used Poisson distri-

butions to generate the count data with varying signal-to-noise

ratios. scHMM is applicable to a wide range of scenarios, but

we considered the representative cases where scHMM is

deemed beneficial. Three different models are compared side

by side: iHMMs, scHMMs and fullHMM, and the performance

was evaluated in terms of receiver-operating characteristic

(ROC) curves (Supplementary Figs S1 and S2). Datasets were

generated 10 times owing to computational time constraints in

fullHMM in each simulation, and ROC curves were averaged

over them.

3.1 Independent experiments

We first simulated three data series where there was no system-

atic correlation between series. This simulation was conducted to

assess whether scHMM picks up false positives, in which case

scHMM should underperform iHMM. On a dataset with 10 000

windows in 3 series, we planted mound-shaped signals (state 1),

of average length 5 consecutive windows, at random positions in

all series, and regarded all other windows to be in the back-

ground state (state 0). The read counts in the background state

were generated from Poisson distribution with mean 5, whereas

the read counts in the real binding state were generated from

Poisson distribution with mean 7.5, 10 and 15. Figure 2a

shows that, as expected, all three HMMs yield nearly identical

ROC curves in the case of 2-fold data (Poisson mean 10 for
signal), and the results were the same in 1.5- and 3-fold data as

well (data not shown).

3.2 Replicated ChIP experiments

We then considered the scenario of replicate experiments. We
assumed that ChIP experiments for a transcription factor were

repeated three times, each giving one data series. We planted
signals of average length 10 windows centered at every 50th

window (with 75% chance at each position), and regarded all
other windows to be in the background state. Read counts were

generated the same way as described above (1.5-, 2- and 3 fold).
In all cases, because the mounds were planted in shared binding
sites across replicates, hidden states were expected to be highly

correlated between all three series. Indeed, the between-series
coefficients f�g and f�g were mostly positive, indicating an in-

crease in the log odds of the 0! 1 and 1! 1 transitions when
other series are in binding states in the past and current positions.

The ROC curves in Figure 2b clearly demonstrate that scHMM
improved the sensitivity and specificity over iHMM, but not as

good as fullHMM.

3.3 Groups of experiments with shared binding sites

Next we considered a more realistic scenario with six ChIP ex-
periments. We used the same emission distributions (Poisson) for

(a) (b)

(c) (d)

Fig. 2. Simulation studies. Each method is represented by different symbols: squares for iHMM, circles for scHMM and triangles for fullHMM. (a)

Independent case (2-fold): short-length signals were planted in random locations in three different series data. (b) One-group case (2-fold): replicate

experiments where binding sites are expected to be shared in all experiment. (c) Two-group case (2-fold): two sets of three correlated series. (d)

Three-group case (2-fold): three inter-dependent groups of two correlated series. In all panels, signal was simulated from Poisson (10) and background

noise was simulated from Poisson (5)
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generating the simulation data as above. Here we assumed two

and three groups of correlated experiments. In the two-group

case, the windows containing signals were shared across the
series within each group, but not between the groups. In the

three-group case (each with two series), windows containing sig-

nals were mutually exclusive between the first two groups, but

both groups shared such windows with the third group. As ex-

pected, the regression coefficients for the 0! 1 transition were

positive within each group in both two- and three-group cases,

but they were zero for the between-groups coefficients. For the

three-group case, there were additional positive coefficients be-

tween the first and third groups and between the second and

third groups, in accordance with the data generation mechanism.

In both examples, the ROC curve for scHMM showed improved

sensitivity over iHMM at all points, at times almost identical to

that of fullHMM (Fig. 2c and d). Interestingly, fullHMM some-

times showed slightly poorer specificity compared with scHMM

in some simulations because fullHMM picked up too many sig-

nals from the background regions. Moreover, even in this

mini-scale data, the computational time for fullHMM was 10–

15minutes, whereas scHMM took510 seconds, indicating a sig-

nificant improvement in computational efficiency for achieving a

similar ROC profile.

4 ANALYSIS OF HISTONE MODIFICATIONS IN
HUMAN CD4þ T CELLS

In eukaryotic organisms, DNA is packaged into a chromatin

structure by wrapping DNA around histones. It has been dis-

covered that the cellular state is closely related to the modification

patterns of the histone, or chromatin state (Bernstein et al., 2007;

Kouzarides, 2007). For this reason, it is of great interest in biology

to construct a genome-wide map of chromatin states in different

cell types. An increasing number of studies have reported

genome-wide data for multiple histone modifications using

ChIP-chip (Kim et al., 2005) or ChIP-seq (Mikkelsen et al.,

2007). Because multiple histone modification marks are involved

in transcriptional regulation andmany of them are closely related,

it is highly desirable to analyze these datasets jointly; scHMM is

an ideal method for such analysis. In this study, we applied

scHMM to a large-scale ChIP-seq dataset, which surveyed 39

histone acetylations and methylations in the human genome, in

addition to RNA polymerase II (RNA Pol II) and insulator bind-

ing protein CTCF (Barski et al., 2007; Wang et al., 2008).

4.1 Data processing and model fitting

We downloaded the raw sequence read data from the SRA data-

base (�243 million reads) and performed preprocessing of data,

including alignment against the most recent release of the human

genome (hg19) using the bowtie software (Langmead et al.,

2009). Then we extracted read count data in 15.4 million

200 bp windows (contiguous non-overlapping). See Supplemen-

tary Information for details. Using the processed data, we fit

iHMM and scHMM for each chromosome separately.

fullHMM did not finish a single iteration in 2 days for any of

the 24 chromosomes. In contrast, it took �20minutes to fit

scHMM for each chromosome; thus, fullHMM was excluded

for further analysis. For scHMM, fitting a penalized regression

for the entire data (millions of windows in 41 data series) is

computationally demanding, and hence we randomly sampled

100 blocks of 500 windows (each ranging 10 kb) from each

chromosome and used them to train the regression coefficients,

which were later used to estimate the posterior probability (pp) of

enrichment across the whole chromosome. As expected, the re-

gression coefficients were similar across chromosomes. Overall,

both iHMM and scHMM reported a various number of

ChIP-enriched windows with pp � 0:9. In both analyses, the

six histone methylations H2BK5me1, H3K4me1, H3K4me3,

H3K9me1, H3K36me3 and H4K20me1 were the most abundant

modifications across the genome, followed by various acetyl-

ations of H3 and H4, RNA Pol II and CTCF, for which pp

was above 0.9 in more than 40000 windows. In total, scHMM

reported fewer ChIP-enriched windows than iHMM (see

Supplementary Table S1).
To see whether scHMM effectively incorporated the correl-

ation, we computed two correlation matrices of the histone

modifications using the estimated probabilities (pp) reported by

scHMM and iHMM, respectively, and performed agglomerative

hierarchical clustering on each correlation matrix. Both correl-

ation matrices showed a large acetylation block mainly consist-

ing of acetylation marks, suggesting that histone acetylations are

more concerted than histone methylations across the genome.

Both blocks contain the 17-member ‘modification backbone’

described in the original study by Wang et al. (2008). By close

inspection, we found that the acetylation block generated from

scHMM contained 26 marks, four more than that generated

from iHMM. The four additional marks are all acetylation

marks: H4K12ac, H4K16ac, H2AK9ac and H2AK5ac. The in-

clusion of these four marks is supported by observing the histone

acetylation patterns in the transcription start site (TSS) region

and across the gene bodies of 1000 highly active or silent genes

reported in Wang et al. (2008). Moreover, the scHMM output

showed increased correlation among closely related modifica-

tions over the iHMM output across the data. For example, in

the large group of 26 modifications clustered together by

scHMM (Fig. 3b), 299 pairs showed increased correlation and

26 pairs showed decreased correlation in scHMM compared with

iHMM.

4.2 Histone modifications in actively transcribed genes

For real datasets, we cannot directly evaluate the sensitivity and

specificity of the two HMM algorithms. Instead, we examined

the modification patterns of well-characterized histone modifica-

tions. We learned from Wang et al. (2008) that 17 modifications

in the backbone module tend to co-localize at gene promoters,

and genes associated with these modifications tend to have

higher expression. In particular, Koch et al. (2007) also found

from the ENCODE data (The ENCODE Project Consortium,

2004) that H3K4me3, a member of the backbone module, accu-

mulates in the promoter region of actively transcribed genes. In

contrast, Bannister et al. (2005) observed that another key modi-

fication H3K36me3 peaks toward the 30 end of actively tran-

scribed genes. By examining whether the similar pattern holds

in our genome-wide data, we can indirectly assess the sensitivity

and specificity of the two methods. To this end, we first obtained

the gene expression profile of the same human CD4þ T cells
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fromWang et al. (2009), and identified 1206 genes with the high-

est expression level. This number corresponds to 10% of the

genes that could be mapped to the Ensembl transcripts we con-

sidered in the ChIP-seq data. We refer to these genes as ‘actively

transcribed’ genes (ATGs) hereafter.

For each modification in the backbone module, we counted

the number of genes with at least one ChIP-enriched window

in the TSS (promoter) and transcription end site (TES) regions

to evaluate the sensitivity and specificity, respectively

(Supplementary Table S2). The TES regions serve as controls

because the backbone module is expected to co-localize at the

promoter region of ATGs. When considered together with RNA

Pol II or H3K36me3 in the gene body, scHMM reported 4–9%

more H3K4me3 marks than iHMM in the TSS region but not in

the TES region. Supplementary Figure S3 also shows that

scHMM identified more modifications in the backbone module

than iHMM in the TSS region of ATGs, whereas scHMM iden-

tified fewer or as many of those modifications as iHMM in the

TES region of ATGs.
We also compared the modification pattern of H3K36me3

mark in the half gene body toward the 30 end versus two other

control regions: 50 proximal region defined as 2 kb to 500bp

upstream region of TSS of ATGs and intergenic regions that

are at least 10 kb away from gene bodies (TSS to TES of all

genes). For the H3K36me3 mark, we considered the mark to be

enriched for a gene if 10% of the half gene body is covered by

high-confidence ChIP-enriched windows. Supplementary Table

S3 shows that scHMM identified H3K36me3 enrichment in 8%

more genes than iHMM in the half gene body, while identifying

as few as iHMM in the 50 proximal region and mere 2% more in

the random intergenic region, preserving the specificity high. In

addition, Supplementary Table S2 shows that scHMM identified

H3K36me3 marks not called by iHMM in the TES region of

16% more ATGs, without the increase in the TSS regions of the

genes. Therefore, the results above suggested that the additional

gain from scHMMwas real in ATGs, consistent with Koch et al.

(2007) and Bannister et al. (2005).

4.3 Combinatorial pattern analysis

In addition to the comparison above, we also compared iHMM

and scHMM in terms of the resulting combinatorial patterns of

all histone modifications. In the data, there are�1.98 million and

�1.59 million windows with at least one active modification in

iHMM and scHMM, respectively. Again, each modification was

considered to be ‘on’ if pp � 0:9 and ‘off’ otherwise. We mapped

these combinations of 39 modifications (and RNA Pol II/CTCF)

to the 51 representative states reported by Ernst and Kellis (2010)

(termed EK states hereafter), who provided the first multivariate

analysis of combinatorial patterns. In their work, the authors

used binarized data summarized in 200 bp windows and con-

structed a multivariate HMM with 51 states, where each state

is represented by a unique 41-dimensional emission probability

vector. Hence, their multivariate HMM is an HMM with multi-

variate binary data. For the mapping, we computed Euclidean

distance between the vector of estimated probabilities pp (from

scHMM or iHMM) and the emission probability vectors of the

51 EK states, and assigned the closest EK state to each window.

We gave the assignment only when the (Euclidean) distance was

50.3, leaving some windows unassigned (unmappable). In sum,

we treated the 51 states defined by Ernst and Kellis as the gold

standard, and used the mapping rates to EK states to compare

the performance of scHMM and iHMM.

To minimize this discrepancy between genomic annotation for

each window and its assigned state, we first categorized the win-

dows into the promoter region (�500bp around TSS), gene body

(TSS to TES), 50 proximal region upstream of the promoter

region (2 kb to 500bp upstream of TSS) and intergenic region

(10 kb away from any gene body). For each group, we then

mapped the windows to the biologically relevant subsets of 51

states based on biological relevance. Specifically, we limited our

mapping of the windows from the promoter region to the ‘pro-

moter’ states only (states 1–11), the windows from gene body to

the ‘transcribed’ states (states 12–28), the windows from 50 prox-

imal region to ‘active intergenic’ states (states 29–39) and the

(a) (b)

Fig. 3. Correlation between 39 histone modifications (and RNA Pol II and CTCF) using the probability estimates from iHMM and scHMM
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windows from intergenic region to repressive and repetitive states

(states 40–51). Table 1 reports the number of matching EK states

in each region-specific group for iHMM and scHMM, as well as

the difference (scHMM� iHMM). The mapping results not lim-

ited to region-specific states can be found in Supplementary

Table S4. In all regions except for the repressed states, more

combinatorial patterns from scHMM output (4–14%) could be

mapped to EK states than those from iHMM output (see

‘unmappable’ windows). In the promoter region, fewer patterns

from scHMM were mapped to promoter upstream states (1–3),

but more were mapped to transcribed or repressed promoter

states (4–11). This is consistent with the fact that we mapped

the windows 500bp upstream and downstream of TSS. In the

transcribed region, more windows from scHMM were mapped

to transcribed states in the 50 proximal end (12–19), transcription

end sites (27) and zinc finger (ZNF) genes (28), whereas fewer

windows from scHMM were mapped to spliced exon and 50

distal states. In the 50 proximal region, more windows from

scHMM were mapped to distal enhancer/active intergenic

states (34–36), rather than non-repressive intergenic states.

Lastly, a large number of additional windows from iHMM

were mapped to ‘unmappable states’ where all modifications

are depleted in EK model. These windows were mapped to het-
erochromatin states (41–44), simple repression (45) and repetitive
states (47–51) in scHMM instead. Based on these results, we

conclude that the regions identified by scHMM yield more in-
terpretable combinatorial patterns as reported in the previous

landmark study, thereby supporting the hypothesis that
scHMM selects high-confidence regions with less noise than

iHMM.

4.4 Histone modifications in intergenic regions

Because we have performed a genome-wide analysis, we can fur-
ther use the output to characterize the chromatin states in the

intergenic region. Here we briefly describe the landscape of chro-
matin states in the intergenic region. We define ‘intergenic’ as the

genomic region between every pair of adjacent transcripts in the
Ensembl database (32 539), excluding 2 kb regions around TSS

and TES of each transcript to clearly distinguish the patterns in
and out of the genes. Supplementary Figure S4 shows the distinct

spatial distribution of histone modifications between intragenic
and intergenic regions. First, most acetylations and five

most frequent methylations associated with active transcription
(e.g. H4K20me1, H3K36me3, H3K9me1, H3K4me1 and

Table 1. The combinatorial patterns benchmarked against the canonical states reported in Ernst and Kellis

Group in EK EK states iHMM scHMM Difference Window region

Promoter Promoter upstream (1–3) 15 467 14 543 �924 Promoter

Repressed promoter (4) 5275 52 435 �323 (�500bp around TSS)

TSS (5–7) 19 918 21 813 1895 (�500bp around TSS)

Transcribed promoter (8–11) 1157 1506 349

Unmappable 7082 6085 �997

Transcribed Transcribed 50 proximal (12–16) 20 760 172 887 152 127 Gene body (TSS to TES)

Transcribed less 50 proximal (17–19) 116 328 247 765 131 437

Candidate strong enhancer in transcribed regions (20) 17 970 19 342 1372

Spliced exons/GC rich (21–23) 374 693 367 132 �7561

Transcribed 50 distal (24–26) 3 574 145 3 290 702 �283 443

End of transcription; exons (27) 30 694 40 831 10 137

ZNF genes; Krüppel-associated protein repressed

state (28)

25 901 29 955 4054

Unmappable 104 953 96 830 �8123

Active

intergenic

Candidate strong distal enhancer (29–30) 4794 3641 �1153 50 Proximal, intergenic

(2kb to 500bp upstream of TSS)Intergenic H2AZ with open chr/transcription factor

binding (31)

1362 1640 278

Candidate distal enhancer (32–33) 22 468 22 325 �143

Proximal to active enhancers (34) 33 137 49 639 16 502

Active intergenic regions (35–36) 17 724 44 029 26 305

Non-repressive intergenic domains (37) 503 737 460 364 �43 373

H2AZ-specific state (38) 4788 6124 1336

CTCF island; candidate insulator (39) 3388 3549 �161

Unmappable 16 766 16 026 �741

Repressed Unmappable (40) 7 356 220 4 913 502 �2442 718 Intergenic (10 kb away

from gene body)Heterochromatin (Heterochr); nuclear lamina (41–42) 80 171 1 100 873 1020 702

Heterochr; lower gene depletion (43–44) 259 095 979 003 719 908

Specific repression (45) 145 073 389 647 244 574

Unmappable 18 492 18 759 87

Repetitive Simple repeats (CA)n, (TG)n (46) 56 231 54 950 �1281 Intergenic (10 kb away

from gene body)L1/long terminal repeats (47) 54 692 393 782 339 090

Satellite repeat (48–51) 49 967 172 446 122 479

Unmappable 70 395 67 641 �2754
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H2BK5me1) appeared in the intragenic regions at least twice as
much as in the intergenic regions. In contrast, the methylations
associated with transcription repression (H3K27me2,

H3K27me3, H3K9me2, H3K9me3) appeared more frequently
in the intergenic regions compared with the intragenic regions.
Moreover, a few modifications associated with actively tran-

scribed genes dominated the intragenic region, whereas various
modifications appeared as frequently as each other, indicating
the chromatin states might be either complex or sporadic in the

intergenic region than the intragenic region. This result is also
reflected in the distinct correlation patterns in the two regions
(Supplementary Figure S5). In the intragenic region, the modifi-

cation backbone and the methylations associated with actively
transcribed genes (e.g. methylations of H3K4 and H3K9me1)

formed a tight cluster, and the remaining histone modifications
were not well correlated. In contrast, the methylations associated
with repressive genes (e.g. H3K9me3, H3K27me3, H4K20me3)

formed a strong cluster in the intergenic region.

5 CONCLUSION

In this work, we presented a computationally efficient method
termed scHMM for inferring hidden states in correlated HMMs
with sparsity constraints. We used an expectation-maximization

-type procedure to infer the hidden states and other model par-
ameters. The advantage of scHMM is that it takes the

inter-sample correlations into account in the hidden state infer-
ence, and thus is more efficient and powerful than iHMM when
the data series are related. This situation arises frequently in

epigenetic studies because many of the acetylation and methyla-
tion marks are part of a large complex. Although there is no
guarantee that the iterative procedure will converge eventually,

our experience with both simulated data and real data suggests
that scHMM works well in all cases we have tested.
As in many other complex problems, finding the exact global

maximum(a) in the likelihood function is neither possible nor
necessary. Nevertheless, it is possible to develop efficient algo-
rithms that can achieve close-to-optimal results within a reason-

able amount of time. Our study gives such an example. By
applying scHMM, we can make interesting and insightful biolo-
gical findings even though our algorithm cannot be guaranteed

to find the exact optimal solution across all possible hidden
paths.
Our method is related to the factorial HMM (Ghahramani

and Jordan, 1997) in the literature, but the two methods are
different in the sense that factorial HMM incorporates the

inter-series correlation by marginalizing hidden state model for
each series with homogeneous transition probabilities and using
multivariate emission, whereas scHMM achieves the same goal

using the same model for hidden states but with conditionally
independent emission and inhomogeneous transition probabil-
ities. In genome-wide location studies, it is not intuitive to

assume that the observed data, e.g. read count data, themselves
are correlated given their hidden states, and it is difficult to find a
standard probability distribution to represent such correlation.

Therefore, we believe that scHMM is better suited for this type
of applications.
We demonstrated the utility of scHMM for improved

genome-wide mapping of histone modification sites. In this

application, the goal of scHMM is to identify the regions of

ChIP enrichment in multiple ChIP-seq dataset simultaneously.

Typically, genome-wide binding patterns are inferred individu-

ally without considering the correlation between the data series.

In this work, we showed that scHMM establishes a statistically

principled framework to deliver this goal by borrowing statistical

strength from related factors to improve the power of site

detection.
In closing, we remark that scHMM offers great flexibility for

extensions. For example, the method can be immediately

extended to higher-order HMMs by adding more covariates

(adjacent loci) in the penalized logistic regression model. It is

apparently impossible to fit such models in a multivariate form

in genome-wide datasets owing to rapidly rising complexity.

Furthermore, additional covariates can be easily added to the

regression model for the purpose of incorporating previous

knowledge of signal patterns such as known binding sites from

the genomic annotation database. However, such extensions are

beyond the scope of this work and we leave them for future

work.
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