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ABSTRACT

Motivation: Most proteins interact with small-molecule ligands such

as metabolites or drug compounds. Over the past several decades,

many of these interactions have been captured in high-resolution

atomic structures. From a geometric point of view, most interaction

sites for grasping these small-molecule ligands, as revealed in these

structures, form concave shapes, or ‘pockets’, on the protein’s sur-

face. An efficient method for comparing these pockets could greatly

assist the classification of ligand-binding sites, prediction of protein

molecular function and design of novel drug compounds.

Results: We introduce a computational method, APoc (Alignment of

Pockets), for the large-scale, sequence order-independent, structural

comparison of protein pockets. A scoring function, the Pocket

Similarity Score (PS-score), is derived to measure the level of similarity

between pockets. Statistical models are used to estimate the signifi-

cance of the PS-score based on millions of comparisons of randomly

related pockets. APoc is a general robust method that may be applied

to pockets identified by various approaches, such as ligand-binding

sites as observed in experimental complex structures, or predicted

pockets identified by a pocket-detection method. Finally, we curate

large benchmark datasets to evaluate the performance of APoc and

present interesting examples to demonstrate the usefulness of the

method. We also demonstrate that APoc has better performance

than the geometric hashing-based method SiteEngine.

Availability and implementation: The APoc software package includ-

ing the source code is freely available at http://cssb.biology.gatech.

edu/APoc.

Contact: skolnick@gatech.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

In a biological cell, small-molecule ligands, such as metabolites
or drug compounds, constantly interact with their protein recep-

tors. This gives rise to or modulates various aspects of protein

function. Understanding how these interactions take place has

been one key goal of many research efforts for several decades

(Alberts, 2008). Accompanying the advance of structural deter-
mination techniques such as X-ray crystallography and NMR,

tens of thousands of structures of proteins in complex with

small-molecule ligands have been determined at atomic reso-

lution and deposited in the Protein Data Bank (PDB) (Berman
et al., 2000). Thus, there is a diverse collection of high-resolution

snapshots of protein–ligand interactions that can be examined to

help provide functional insight.
Ligand-binding sites on protein surfaces, where direct physical

contacts form between small-molecule ligands and proteins, are
of special interest. From a structural prospective, most of these

sites are located within a concave-shaped structure known as a

‘pocket’ (Laskowski et al., 1996; Liang et al., 1998). Owing to
this characteristic, a pocket may be detected through a geomet-

rical analysis of protein structure. Consequently, a number of
methods have been developed to predict ligand-binding sites ex-

ploiting the idea. Among them, SURFNET uses a sphere-filling
technique to locate a pocket (Laskowski, 1995), POCKET

(Levitt and Banaszak, 1992) and LIGSITE (Huang and

Schroeder, 2006) adopt grid-based approaches and CAST iden-
tifies the pocket through Delaunay triangulation and the �-shape
theory (Binkowski et al., 2003). Alternatively, several methods
using energy-based or template-based strategies have also been

proposed [see a recent review (Perot et al., 2010)]. It should be

recognized that a protein surface is bumpy and the boundaries of
pockets depend on a series of extrinsic (and to some extent

arbitrary) choices, e.g. how far should a pocket extend towards
the open space, and how high must a ridgeline be for it to delin-

eate two disjoint, but adjacent, pockets versus a single united
pocket.

The large number of available structures in the PDB provides
opportunities for comparative studies of ligand-binding pockets

(Gold and Jackson, 2006; Kahraman et al., 2007; Minai et al.,

2008; Zhang and Grigorov, 2006). In general, small-molecule
ligands can interact with proteins of different structural folds.

Do pockets that recognize similar ligands share some common
structural features? If such features exist, can we use it to predict

protein function? To answer these questions, global structural
comparison often is not adequate, and it is necessary to develop

methods for local structural comparison dedicated to the geo-

metric and/or physicochemical features of the protein pockets
themselves. Among existing methods for pocket comparison, a

heuristic maximum clique finding algorithm has been widely im-
plemented, e.g. as in Cavbase (Schmitt et al., 2002), IsoCleft

(Najmanovich et al., 2008) and SOIPPA (Xie and Bourne,
2008). In these methods, pockets are represented by pseudo-

atoms, all-atoms or C� atoms, and an associated graph is

generated, wherein nodes are pairs of atoms from two pocket
structures and edges represent a similarity relationship. The max-

imum clique found in this graph corresponds to the optimal
alignment between the pocket structures. Another popular type

of algorithm used for aligning pocket-lining residues is geometric

hashing, e.g. SiteEngine (Shulman-Peleg et al., 2004). Instead of
using atoms to represent a pocket, spherical harmonics (Morris

et al., 2005) or 3D Zernike descriptors (Chikhi et al., 2010) have*To whom correspondence should be addressed.
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been proposed to describe protein pockets. The reduced pocket

descriptors permit fast computation, but they do not return a

detailed alignment of pocket residues, which is useful for certain

studies, such as the identification of mutations corresponding to

subtle changes of substrate specificity.
An existing pocket comparison method is usually tied with a

specific pocket-detection procedure, and it is difficult to extend

its usage to generic pockets detected by different procedures.

This difficulty is partly caused by the fact that many scoring

functions for measuring pocket similarity are dependent on the

size of the pockets (Davies et al., 2007); different pocket detec-

tion methods can assign different sizes and/or numbers of pock-

ets for the same structure. As in the case of a global structural

alignment, a linear normalization of a similarity score by the size

of a pocket does not eliminate the size-dependence issue, which is

usually non-linear. Most approaches do not properly estimate

the statistical significance of their similarity score. This becomes

an issue when one performs large-scale comparisons of the entire

PDB (Davies et al., 2007).
To address these issues, we introduce a new method, APoc, for

the sequence order-independent structural alignment of pockets

on protein surfaces. Below, a length-independent scoring func-

tion PS-score is first introduced. This is followed by a description

of the algorithm, which includes iterative dynamic programming

and iterative integer programming procedures to obtain an

optimal sequence order-independent alignment between two pro-

tein pockets. We then introduce Subject/Control sets for large-

scale benchmark tests, and describe the results of APoc on three

types of pockets detected by different pocket-detection methods.

Two interesting examples from the benchmark sets are presented.

Finally, we compare the performance of APoc to a publicly

available method SiteEngine.

2 METHODS

2.1 Scoring function

Previously, our group developed the Template Modelling score

(TM-score) for measuring protein global structural similarity (Zhang

and Skolnick, 2004, 2005) and the Interface Similarity score (IS-score)

for evaluating protein–protein interface similarity (Gao and Skolnick,

2010a, b, 2011). Here, for measuring pocket similarity, we introduce

the Pocket Similarity score (PS-score) that is based on backbone geom-

etry, side-chain orientation and chemical similarity of the aligned

pocket-lining residues. A typical study requires comparing a query

pocket structure against a template library of pockets generated by

some pocket-detection method, which we will describe below. The

length of a pocket is defined by the number of C� atoms of the pocket

residues. Suppose an alignment is obtained between a query of length LQ

and a template of length LT. The PS-score of the alignment is

PS-score ¼ ðSþ s0Þ=ð1þ s0Þ ð1Þ

S ¼
1

LQ
max
sup

XNa

i¼1

piri=ð1þ d2i =d
2
0Þ

" #
ð2Þ

pi ¼
1 if �i � �=3
maxð0:1, 0:5þ cos �iÞ if �i4�=3

�
ð3Þ

ri ¼ maxð0:8, �ðaQi , a
T
i iÞÞ ð4Þ

Here, Na is the number of aligned residue pairs, di is the distance in Å

between the C� atoms of the ith aligned residue pair and the empirical

scaling factor d0 � 0.70(LQ� 5)1/4� 0.2. The constants in d0 were ob-

tained by fitting the distribution of C� distances in random alignments of

pockets. The factor pi measures, in the two pockets, the directional simi-

larity between two C� to C� vectors, which span an angle �i at the ith

alignment position of two non-glycine residues. For glycine, the value of

pi is assigned 1 if both amino acids are glycines and is assigned 0.77 if only

one residue is glycine. The latter value is the mean pi derived from

random alignments. The factor ri measures the chemical similarity of

two aligned amino acids. The function �ðaQi , a
T
i Þ gives a value of 1 if

the two amino acids a
Q
i , a

T
i belong to the same group (I–VIII) defined

as: I (LVIMC), II (AG), III (ST), IV (P), V (FYW), VI (EDNQ), VII

(KR), VIII (H) (Zhang and Grigorov, 2006), and 0 otherwise. The scaling

factor s0 � 0.23� 12/LQ
1.88 ensures that the score of the random pockets

of similar length has a mean score independent of their length (see below).

To calculate the distance di and pi, aligned residues are superimposed

with the Kabsch algorithm (Kabsch, 1976) to minimize the RMSD of the

full or subset of aligned residues. Therefore, the number of all possible

superpositions exponentially increases as the alignment length grows. The

notation ‘max’ in Equation 2 indicates that the PS-score corresponds to

the superposition that gives the maximum of all scores. In practice, a

heuristic iterative extension algorithm is used to calculate the PS-score,

similar to the one used for calculating the TM-score (Zhang and

Skolnick, 2004). Note that identical pocket structures give a PS-score

of one, which is the upper bound of the PS-score.

2.2 Alignment algorithm

To find the optimal alignment between two pockets, we adopted a strat-

egy that is similar to iAlign, an algorithm for finding the optimal sequen-

tial alignment between two protein–protein interfaces (Gao and Skolnick,

2010a, b). A flowchart of the algorithm is illustrated in Figure 1. The

algorithm has three major phases: In the first phase, several guessed

solutions are generated through gapless alignments, secondary structure

comparison, fragment alignments and local contact pattern alignments.

Starting from these guessed alignments, dynamic programming is itera-

tively applied during the second phase. This yields optimal sequential

alignments between two pocket structures. In the third phase, an iterative

procedure is conducted to search for a non-sequential alignment between

two pockets, which is then selected if this alignment gives a better

PS-score than the optimal sequential alignment. The problem of finding

an optimal non-sequential alignment (or match) is converted to the

Linear Sum Assignment Problem (LSAP), which is a special case of

Fig. 1. Flowchart of the APoc algorithm. Red/blue spheres represent

backbone C� atoms from the two pockets, arrows represent vectors

pointing from the C� to the C� and solid lines represent protein back-

bone traces. ‘Aln’ is the abbreviation for ‘alignment’
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integer programming and is also equivalent to the problem of finding a

maximum weight matching in a weighted bipartite graph. To solve LSAP

efficiently, we implemented the shortest augmenting path algorithm

(Derigs, 1985), which has a polynomial time complexity of O(N3),

where N¼max(LT, LQ).

By default, our pocket program also performs a global structural align-

ment of the two full-length protein structures using the algorithm imple-

mented in TM-align (Zhang and Skolnick, 2005). The feature is useful if

one is also interested in comparing global structural similarity. Global

alignment may also be used to produce an initial pocket alignment seed if

the pocket regions are covered in the global alignment. In our benchmark

test, this additional seed only gives a minor improvement; in51% of

cases does the PS-score increase by 0.01 or more.

2.3 Pocket detection

Three pocket-detection methods are used in this study. The first is

LIGSITE (Huang and Schroeder, 2006), which is geometry based. A

grid size of 1 Å and an SSS_threshold of 5 is used. LIGSITE is modified

to report individual grid points within each pocket, and surface residues

within 4.5 Å of these points are defined as pocket residues. The second is

an in-house pocket-detection algorithm CAVITATOR that is very much

in the spirit of LIGSITE, with a similar grid size, but which is designed to

be less sensitive to minor structural distortions. Each heavy atom occu-

pies the central grid point and all adjacent grid points within
ffiffiffi
2
p

Å. Thus,

a single heavy atom occupies 27 grid points at a grid spacing of 1 Å. In

order for a point to be part of a pocket, it must be bounded by occupied

points on both sides along the X, Y or Z directions. The source code and

Linux executable are available at http://cssb.biology.gatech.edu/

Cavitator. Lastly, ligand-contacting residues on protein surface are de-

tected by applying the program LPC (Sobolev et al., 1999). LPC requires

structures of protein/ligand complexes and yields a list of observed

ligand-binding pocket residues. By comparison, the first two methods

do not use ligand information as part of the pocket-prediction procedure.

When applying these methods, we consider pockets with410 residues.

Note that the pockets detected by the first two geometric methods are

usually much larger than the corresponding pocket detected by LPC.

The volume detected by LIGSITE was used to calculate a normalized

volume distance Dvol defined as Dvol � (VT�VQ)
2/(VTVQ)

1/2.

2.4 Datasets

(i) Random Set1 (RS1). This set, composed of 5371 non-redundant

single-chain protein structures up to 250 AAs each, is the primary

random background for statistical significance analysis. Proteins in this

set are culled at 35% global sequence identity. We applied CAVITATOR

and LIGSITE separately to each structure in this set, and consider only

the top pocket with the largest volume. We discarded pockets with 10 or

fewer residues. This procedure yields 5016 pockets by CAVITATOR and

3401 pockets by LIGSITE. The latter has fewer pockets because it uses

more stringent criteria to define a pocket. All-against-all pocket compari-

sons were conducted with APoc. We define a random pair of pockets if:

(i) their global protein structures have low global structural similarity at a

TM-score50.4 (normalized by the smaller protein) (Zhang and Skolnick,

2004) and (ii) 540% of the pocket residues are covered in the global

structural alignment. This definition yields about 8.2 and 2.7 million

random pairs of pockets by CAVITATOR and LIGSITE, respectively.

The CAVITATOR random set is used to fit constants in formulas of the

PS-score and parameters for the statistical models (see below). The

LIGSITE dataset is reserved for testing purposes.

(ii) Random Set2 (RS2). This set consists of �140000 randomly

selected pairs of ligand-contacting pockets detected by LPC on holo-

protein structures from the PDB. The dataset is curated from 81756

entries in the PDB (May 2012 release). We consider small-molecule lig-

ands that have at least six and fewer than 200 heavy atoms and do not

include polypeptides or polynucleotides. This gives 37325 PDB entries

with at least one such ligand. In the PDB, each type of ligand is repre-

sented by a unique three-letter name known as the HET code. If one PDB

entry contains multiple ligands with an identical HET code, we arbitrarily

select the ligand making the most contacts with the protein. The primary

protein chain that a ligand associates with is clustered at 90% sequence

identity. In each cluster, we subsequently select a representative for each

type of ligand, using X-ray structure resolution and number of contacts

as the selection criteria. This procedure gives 10645 types of ligands

associated with 26999 protein chains. The binding pocket of each

ligand is obtained from LPC. All-against-all calculations of their pairwise

Tanimoto coefficient (Tc) were conducted for all these ligands, using the

1024-bit version of Daylight fingerprints. We then randomly draw

200000 pairs of pockets, each satisfying these conditions:

� Tc50.25 between the two ligands,

� Sequence similarity530% between the two associated proteins,

� Length of pockets410 AAs,

� Pocket length difference55%.

Following selection, to exclude globally similar protein structures, we

further compare the global structural similarity of these protein chains

and remove pairs whose global TM-score40.35. The final dataset con-

sists of 143 735 randomly selected, observed ligand-binding pockets from

holo-structures.

(iii) Bench Subject/Control Sets. Two sets are used to benchmark the

performance of APoc. Complete linkage clustering was first conducted on

unique ligands curated from the PDB (see above) at a Tc threshold of 0.5,

which indicates a high level chemical similarity (the mean/sd of Tc is 0.16/

0.12 among all ligands in the PDB). In each cluster, the ligand type most

found frequently in the pockets of protein chains curated at 90% se-

quence identity is selected as the cluster representative, e.g. ADP repre-

sents a cluster of ligands including AMP, ATP, etc. Within each cluster,

we used a graph-based algorithm, SIMCOMP (Hattori et al., 2010), to

obtain the equivalence between heavy atoms of each pair of ligands. We

collect atomic contacts between heavy atoms of the ligand and protein.

Two ligand–protein contacts from two separate structures are of the same

type if the ligand atoms are mapped each other in the SIMCOMP align-

ment and the protein residues belong to the same group defined above for

Equation 4. We then define the Subject set as pairs of pockets such that:

� Ligands found in these two pockets have a Tc� 0.5,

� Sequence similarity530% between the two associated proteins,

� They share� 50 atomic ligand–protein contacts of same type.

In total, we found 38 066 pairs of pockets for the Subject set. We

expect that a significant number of entries in this set share a high level

of pocket similarity because they recognize the same or similar types of

ligands and likely possess a putative common anchor region due to the

overlap of a large number of ligand-pocket contacts (Brylinski and

Skolnick, 2009). Note that no geometric information is explicitly used

in this procedure.

For the control set, we randomly selected the same number of pairs of

pockets as in the subject set satisfying,

� Ligands found in these two pockets have a Tc50.25,

� Sequence similarity530% between the two proteins,

� The global TM-score50.5.

The Subject and Control set contain pockets from 2090 and 21660

unique protein chains from the PDB, respectively. Two ways of pocket

detection were used to obtain observed and predicted pockets, respect-

ively. Observed pockets are given by LPC, and predicted pockets are

generated by LIGSITE. In case of predicted pockets, we consider
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successful pocket prediction as one that contains at least 80% of

ligand-contact protein residues found by LPC. About 75% of LPC pock-

ets are successfully predicted by LIGSITE.

2.5 Statistical significance

The statistical significance of the PS-score is estimated by comparing

millions of randomly selected pocket pairs (see Dataset). Figure 2

shows the mean of the PS-scores on three sets of protein pockets gener-

ated by applying three independent pocket detection methods. In each

set, we first consider pockets of similar length, i.e. the length of the tem-

plate within 5% of the length of the query. Pockets of arbitrary lengths

are considered next. The constants of the scaling factor defined in

Equation 1 were obtained by fitting the un-scaled PS-scores calculated

using Equation 2, such that the final PS-scores are approximately

length-independent for random pockets of similar length. The constants

were obtained on pockets found by CAVITATOR on RS1, and are fur-

ther validated on other two sets of pockets detected by two independent

pocket-detection methods, LIGSITE and LPC on RS1 and RS2, respect-

ively. As shown in Figure 2, the mean PS-scores in the validation tests are

similar to those of scores on the training set, which have a mean score of

0.308. The statistical significance of the PS-scores for pockets of similar

length can be empirically estimated and are provided in Table 1. A

PS-score of 0.4 is significant at P51�10�3. By comparison, the standard

TM-score, which is designed as a length-independent metric for compar-

ing protein global structures, varies dramatically from 0.16 to 0.40 when

applied to the pockets (Fig. 2). As such, the TM-score is not ideal for

measuring pocket similarity.

Since the PS-scores are maxima, the extreme value distribution is a

suitable statistical model for describing their distribution. In general, for

pockets of arbitrary size, the PS-scores of pockets may be modelled using

the type I extreme value distribution (Gumbel distribution),

fðzÞ ¼ exp �z� expð�zÞ½ 	 ð5Þ

where z denotes the Z-score given by z ¼ ðs� �Þ=�. The variable s de-

notes the PS-score; m is the location parameter and � is the scale param-

eter. The corresponding P-value of the score can be calculated according

to the formula

P ¼ 1� exp � expð�zÞ½ 	: ð6Þ

The scores from random pockets were fit to Equation 5.

Supplementary Fig. S1 shows the observed and modelled distributions

at various lengths. Each distribution is modelled by the Gumbel distri-

bution described in Equation 5. The location and scale parameters can be

estimated through linear regression fits,

� ¼ aþ b lnðLQÞ þ c lnðLTÞ

� ¼ dþ e lnðLQÞ þ f lnðLTÞ
ð7Þ

The parameters a to f were obtained by linear fitting to the location

and scale parameters, which were obtained through maximum likelihood

estimates with the EVD package in the statistical platform R (http://

www.r-project.org/). The values of parameter a to f are 0.3117, 0.0277,

�0.029, 0.0366, 0.0025, �0.0084, respectively. In our implementation,

APoc reports the P-value of the score normalized by the smaller of two

pockets subjected to comparison.

2.6 Performance analysis

Given a threshold for a similarity score, if the score of a pair of pockets

from the subject set is greater than the threshold, it is a true positive (TP),

otherwise, it is a false negative (FN). Similarly, if the score of a pair of

pockets from the control set is less than the threshold value, it defines a

true negative (TN); otherwise, it is a false positive (FP). Sensitivity is

given by TP/(TPþFN), and the false positive rate (FPR) is given by

FP/(TNþFP).

3 RESULTS

3.1 Benchmark

We created two datasets, Subject/Control (see Section 2), for
evaluating the performance of APoc. The Subject set contains

38 066 pairs of pockets from proteins at low sequence iden-
tity530%. In each pair, pockets contain the same or similar
type of ligands at Tc� 0.5; they likely share significant structural

similarity because of the overlap of many atomic ligand–protein
contacts of similar chemical type. To reduce bias, no pocket

structural information was explicitly used to generate this set.
As a random background, the Control set contains the same
number pairs of pockets that interact with dissimilar ligands

(Tc50.25) in randomly selected proteins with low sequence or
global structural similarity. Observed and predicted pockets in
structures from the Subject/Control sets were obtained by apply-

ing two separate methods, LPC and LIGSITE. The former
method defines an observed pocket as being composed of residues

in contact with a ligand, whereas the latter outputs the predicted
pocket through a geometric analysis of protein structure without
using any information about the ligand.

As shown in Figure 3A, the majority (58%) of the observed
pockets in the Subject set have significant pocket similarity as
evaluated by a PS-score at P50.05, 47% at P50.01 and 33% at

P50.001. By contrast, the corresponding percentage for the
Control set is 2.4% at P50.05, 0.51% at P50.01 and 0.12%
at P50.001. Similarly, the results of APoc on predicted pockets

are 49% at P50.05, 36% at P50.01 and 24% at P50.001 for

Fig. 2. Mean scores of randomly selected similar length protein pockets.

Pockets were detected by CAVITATOR and LIGSITE in RS1, a set of

5000 experimental protein structures, respectively, and by LPC in RS2, a

set of protein–ligand complex structures curated from the PDB

Table 1. Statistical significance of PS-scores derived empirically from

random pockets of similar length

PS-score 0.35 0.38 0.40 0.42 0.44 0.48 0.50

P-value 2� 10�2 3� 10�3 8� 10�4 2� 10�4 7� 10�5 1� 10�5 53� 10�6
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the Subject set, versus 2.3% at P50.05, 0.36% at P50.01 and

0.06% at P50.001 for the Control set. Overall, APoc found

somewhat fewer significant hits on predicted pockets than on

the observed pockets in the Subject set. This is expected because

the observed pockets are more accurate by taking advantage of

the structural information of the ligands, whereas the predicted

pockets often contain additional residues surrounding those

ligand-contacting residues, which introduce more structural vari-

ations, thereby reducing pocket similarity.
The performance of APoc is further displayed in the Receiver

Operating Characteristic (ROC) curves (Fig. 3B), which is

obtained by varying the PS-score P-value. The sensitivity is the

fraction of pairs in Subject above a P threshold, and the FPR is

the fraction of pairs in Control above the same P threshold.

Thus, the curve shows how well APoc detects relationship be-

tween pockets that bind to similar ligands through structural

comparison. Here, we only focus on the regime with low

FPR56%, because this is most relevant to practical applica-

tions, where one often needs to process a large number of

pocket structures. As shown in Figure 3B, APoc achieves sensi-

tivity values of 62% and 53% at FPR of 5% and 1% on the

observed pockets. Similarly, the corresponding sensitivity values

are 56% and 43% for the predicted pockets. By comparison, a

global structural comparison method, TM-align, only finds 38%

and 27% pairs in the Subject set at a FPR of 5% and 1%, using

the global TM-score as the similarity measure; these results are

considerably lower than APoc. Figure 3 also shows that struc-

tural-based comparison performs much better than the

volume-based metric Dvol, which gives a sensitivity value of

6.6% at an FPR of 5% and is only slightly better than a

random prediction. This is expected because the volume-based

metric is non-specific. Overall, the analysis suggests that the local

structural comparison approach, APoc, can categorize/predict

related pockets that recognize same/similar ligands from a

large random background. Such relationships may be weak or

undetectable by global structural comparison.

3.2 Examples

To further demonstrate the usefulness of APoc, we present two

interesting examples from the benchmark set. The first example

involves the GTP-binding pockets in two GTPases, PAB0955

(Gras et al., 2007) from archaeal Pyrococcus abyssi and YqeH

GTPase (Sudhamsu et al., 2008) from bacterial Geobacillus

stearothermophilus (Fig. 4A). In each case, the GTP-binding

pocket is formed primarily by two motifs: G1 is located in the

‘P-loop’ that coordinates the interaction with the phosphate

groups of GDP, and G4 interacts and stabilizes the guanine

and the ribose moieties of GDP. In most GTPases, like

PAB0955, the motif G4 follows G1 in their sequential order.

Fig. 4. Examples of similar pockets from proteins having different global topology and/or fold. (A) A GTP-binding pocket in a GTPase PAB0955 from

P.abyssi (PDB code: 1yr8, chain A, green) versus a GDP-binding pocket in YqeH GTPase from G.stearothermophilus (PDB code: 3ec1, chain A, purple).

(B) An ATP-binding pocket in a bifunctional glutathionylspermidine synthetase/amidase from E.coli (PDB code: 2io7, chain B, green) versus an

ATP-binding pocket in an aminoglycoside phosphotransferase from A.baumannii (PDB code: 4ej7, chain B, purple). In each snapshot, the two protein

structures are shown in green/purple cartoon representations, and the corresponding bound ligands are shown in cyan/red licorice representations,

respectively. For clarity, pocket/non-pocket regions are shown in solid/transparent colours, respectively. Aligned pocket C� atoms are shown as spheres.

Molecular images were created with VMD (Humphrey et al., 1996). The global structural similarity measured by TM-score is denoted as ‘gTM-score’

Fig. 3. Performance of APoc. (A) Cumulative fraction of pairs of pockets

at various significance levels of pocket similarity for the subject and the

control sets, respectively. (B) Sensitivity versus FPR. ‘Obs Pk’ and ‘Pre

Pk’ denotes observed and predicted pockets (see Text), respectively. ‘Vol

Diff’ denotes the pocket volume difference given by Dvol
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However, in an atypical GTPase YeqH, a circular permutation

flipped the order of G1 and G4, such that a sequence

order-dependent alignment method only returns an alignment

for half of the pocket. The sequence order-independent feature

of APoc yields the full alignment of both motifs and returns a

highly significant PS-score of 0.58 at P¼ 2.7� 10�6, versus a

much lower PS-score of 0.40 if one only allows a sequential

alignment.
The second example is about two ATP-binding enzymes, a

bifunctional glutathionylspermidine synthetase/amidase GspS

(Pai et al., 2006) from Escherichia coli, and an aminoglycoside

phosphotransferase AphA1 from Acinetobacter baumannii

(Fig. 4B). The ATP-binding pocket of GspS is located in the

C-terminal domain, with a structural fold similar to human

glutathione synthetase, whereas the ATP-binding pocket of

AphA1 sits in a structural fold similar to the catalytic domain

of a protein kinase. These are different structural folds according

to the SCOP (Hubbard et al., 1998). The global structural simi-

larity is low, with a TM-score of 0.36 between these two struc-

tures. However, their ATP-binding pockets exhibit significant

structural similarity as detected by APoc, yielding a PS-score

of 0.46 at P¼ 2.0� 10�4, versus an insignificant PS-score of

0.29 in the sequential alignment. The overall RMSD of aligned

pocket C� atoms is 2.5 Å.

3.3 Comparison with SiteEngine

SiteEngine (Shulman-Peleg et al., 2004) is one of few pocket-

comparison methods that can be freely downloaded for

large-scale benchmark testing. We randomly selected 1000/1000

pairs of pockets from the Subject/Control sets, and performed a

comparison with APoc. As shown in the ROC curves (Fig. 5),

APoc shows considerably better performance than SiteEngine.

APoc achieves a sensitivity of 62% at an FPR of 5%, versus a

mere 17% sensitivity for SiteEngine at the same FPR. This

apparently surprising result for SiteEngine is mainly due to the

size dependence of the Match score defined by SiteEngine to

measure the similarity of ligand-binding pockets. The Match
score is a simple linear normalization obtained by dividing the
raw score by the raw score of the query against itself. This is not

sufficient to correct for the size dependence because of the
non-linear relationship between the similarity score and the size
of the pocket. As a result, SiteEngine Match scores of randomly

selected pockets are strongly correlated with the size of the
pocket, yielding a Pearson Correlation Coefficient of �0.60. If
we restrict the comparison to a narrow range of pocket sizes

between 45 and 65 pseudocentres, the sensitivity at a 5% FPR
jumps from 17 to 50% (Fig. 5). Thus, if the size dependence issue
were addressed, we expect that the performance of SiteEngine

would be dramatically improved. Another advantage of APoc is
its computing efficiency, due to the reduced representation

adopted by APoc relative to SiteEngine. On the same computing
cluster composed of AMD 2.4GHz Opteron CPUs, the total
computation time (not including input file preparation) for

these 2000 comparisons is 8983 seconds with SiteEngine, versus
73 seconds for pocket comparison alone and 3686 seconds for
both pocket and global structure comparison with APoc.

4 DISCUSSION AND CONCLUSION

Depending on the method one uses, there are two main ways of

detecting protein pockets. The first is simply to collect all amino
acids that make direct physical contact to a ligand as observed in

a holo crystal structure. This practice is common in studies that
study the evolutionary relationships of protein pockets. The
second way is to perform geometric/physico-chemical/evolution-

ary analysis on the protein structure to predict pocket-lining resi-
dues without the presence of ligand. Using a putative pocket as a
query to scan of a template library, one may further infer ligands

that bind to the query through similarity to pockets for known
ligands.
In this work, we present a structural comparison approach

APoc that can be applied to pockets from both observed and
predicted pockets. A scoring function for measuring pocket simi-
larity is carefully devised, the PS-score, such that it can deal with

pockets of different size, ranging from 10 residues to 100 residues
(Fig. 1). In addition, the statistical significance of the PS-score is
estimated from the extreme value distributions modelled on mil-

lions of random comparisons. This should greatly facilitate the
identification of interesting relationships from large-scale pocket

comparison.
It should be noted that that there is no perfect scoring function

for measuring pocket similarity. Our PS-score is largely based on

the positions of C� and C� atoms, as well as some consideration
of chemical similarity. This design is less sensitive to the con-
formational changes than a scoring scheme that considers all

heavy atoms, and it can readily detect the structural similarity
of pockets in remotely related proteins that share no apparent
sequence similarity but recognize similar ligands.

To evaluate the performance of APoc, we curated two
datasets: Subject and Control. The former is composed of pock-
ets recognizing similar ligands from proteins with low/no se-

quence similarity, and the latter consists of pockets binding to
chemically different ligands. In the benchmark tests, APoc de-
tects 62%/56% of pairs in the Subject set at a 5% FPR for both

observed (those that actually bind ligands) and predicted

Fig. 5. APoc versus SiteEngine. The ROC curves of SiteEngine were

obtained by varying the threshold values on the Match score. The two

red curves are on the full set of 2000 pairs of pockets, and on a subset of

pockets possessing 45–65 pseudocentres, respectively
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pockets, respectively. These results suggest that APoc is robust to

pockets identified by different pocket-detection methods.

Furthermore, the two examples presented here illustrate that

usefulness of the sequence order-independence feature of APoc.

One example involves two GTPases, one of which exhibits a

circular permutation that changes the order of the active site

residues; the other involves a pair of ATP-binding pockets

from two protein folds. Such cases are challenging for global

structural comparison approaches.
One major difficulty in predicting ligand binding through

pocket comparison is due to the fact that a ligand may recognize

pockets of different structural shapes (Kahraman et al., 2007) or

even physico-chemical environments (Kahraman et al., 2010). In

our Subject dataset, �40% of pairs belong to these challenging

cases, and APoc did not find a significant score for them. An

analysis of the ligand conformation distribution in our Subject

set shows that ligands from pocket pairs with a significant

PS-score at P50.05 have a median RMSD of 1.68 Å, much

lower than the median of 3.05 Å from ligands in pocket pairs

at P� 0.05 (Supplementary Fig. S2). If we consider only the

cases whose ligand RMSD52.5/2.0 Å, 81/90% of pairs have a

significant pocket similarity at P50.05. In some cases, the plas-

ticity of pockets permits ligands with different conformations to

be accommodated, and yet maintains significant pocket similar-

ity (an example is shown in Supplementary Fig. S3A). Some

ligands are composed of a common anchor segment, which is

recognized by virtually the same pocket shape, and a long flexible

segment, which gives a large ligand RMSD. But in most cases,

conformational changes in ligands are accompanied by consid-

erable changes in pockets, leading to little/no structural similarity

(Supplementary Fig. S3B). Furthermore, in a few most challen-

ging cases, a ligand of the same conformation may interact with

structurally different pockets (Supplementary Fig. S3C).

Although certain fragments of pockets may still exhibit similarity

in these cases, the overall similarity level is not high enough to

distinguish them confidently from the random background.

In ongoing work, we shall use APoc to characterize the struc-

tural similarity of all pockets in the PDB. Of particular interest is

the examination of how many distinct pockets there are, how

often a given pocket is shared across proteins of different folds

and how coupled are pocket geometric similarity and ligand

chemical similarity and mode of binding. These issues are import-

ant for elucidating the promiscuity of small-molecule ligands that

may be endogenous (viz. metabolites) or drugs. In that regard,

having a robust tool such as APoc will enable the user community

to apply similar ideas and studies as has been done for global

protein structures (Skolnick et al., 2009; Zhang et al., 2006) or

protein–protein interfaces (Gao and Skolnick, 2010b) to the char-

acterization of the nature and similarity of protein pockets.
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