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ABSTRACT

Motivation: The avalanche of data arriving since the development of

NGS technologies have prompted the need for developing fast,

accurate and easily automated bioinformatic tools capable of dealing

with massive datasets. Among the most productive applications of

NGS technologies is the sequencing of cellular RNA, known as

RNA-Seq. Although RNA-Seq provides similar or superior dynamic

range than microarrays at similar or lower cost, the lack of standard

and user-friendly pipelines is a bottleneck preventing RNA-Seq from

becoming the standard for transcriptome analysis.

Results: In this work we present a pipeline for processing and analyz-

ing RNA-Seq data, that we have named Grape (Grape RNA-Seq

Analysis Pipeline Environment). Grape supports raw sequencing

reads produced by a variety of technologies, either in FASTA or

FASTQ format, or as prealigned reads in SAM/BAM format. A minimal

Grape configuration consists of the file location of the raw sequencing

reads, the genome of the species and the corresponding gene and

transcript annotation.

Grape first runs a set of quality control steps, and then aligns the reads

to the genome, a step that is omitted for prealigned read formats.

Grape next estimates gene and transcript expression levels, calculates

exon inclusion levels and identifies novel transcripts.

Grape can be run on a single computer or in parallel on a computer

cluster. It is distributed with specific mapping and quantification tools,

but given its modular design, any tool supporting popular data inter-

change formats can be integrated.

Availability: Grape can be obtained from the Bioinformatics and

Genomics website at: http://big.crg.cat/services/grape.
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1 INTRODUCTION

The development of ultrasequencing technologies during the
recent years has started a major revolution in Biology. The abil-

ity to directly survey the cell’s RNA content by applying NGS
technologies to cDNA sequencing (‘RNA-Seq’) has provided

insights of unprecedented depth on the transcription landscape

of many species (Wang et al., 2009) such as Homo sapiens (Wang
et al., 2008; Sultan et al., 2008; Montgomery et al., 2010;

Trapnell et al., 2010), Mus musculus (Mortazavi et al., 2008;
Guttman et al., 2010), Arabidopsis thaliana (Lister et al., 2008),

Saccharomyces cerevisiae (Nagalakshmi et al., 2008; Yassour
et al., 2009) and Schizosaccharomyces pombe (Castle et al.,

2008). RNA-Seq has proven particularly powerful on tasks

such as identifying novel genes and novel splice forms, detecting

low abundance transcripts and finding sequence variations, such

as SNPs (Marguerat et al., 2008). It is gradually substituting

microarrays as the technology of choice for transcriptome ana-

lyses, providing access to a greater dynamic range of RNA ex-

pression levels (Marioni et al., 2008).

The throughput of NGS technologies is continuously acceler-

ating, and the cost per sequenced nucleotide is rapidly falling. As

a consequence, an unprecedented amount of data are being pro-

duced, pressing for the development of fast and efficient methods

of analysis, as the bottleneck for scientific discovery is gradually

shifting from data production to data analysis.

In the analysis of NGS data, processing efficiency is governed

predominantly by two factors: first, the sheer size of the individ-

ual datasets, and second, the vast number of datasets to be ana-

lyzed. The current generation of sequencing machines, for

example, Illumina HighSeq, can produce the equivalent of 20�

the coverage of the human genome in a single run, delivering

�600 million reads with a length of4100nt. This has spawned a

new generation of aligners optimized for aligning short sequences

to the genome, for example, Bowtie (Langmead et al., 2009),

BWA (Li and Durbin, 2009), BFAST (Homer et al., 2009) and

GEM (Marco-Sola et al., 2012), which are much faster than

previous tools such as Basic Local Alignment Search Tool,

FASTA or SSEARCH (see Trapnell and Salzberg, 2009, for a

short review). Additionally, an increasing number of projects

involve large sample sizes to be analyzed, often under complex

experimental designs.
In the specific case of RNA-Seq, mapping of reads is only the

first step of a complex data processing schema, the final goal of

which is to produce accurate gene and transcript quantifications,

and to delineate novel transcript structures. The lack of easy-to-

use pipelines to perform such a processing out of the box in a

transparent and streamlined fashion is actually a bottleneck that

prevents the expansion of RNA-Seq, and prompts users with

little access to sophisticated bioinformatic resources to prefer

microarrays, for which standard ready-to-use processing pipe-

lines and user-friendly bioinformatic analysis tools exist.
To address this need, specific pipelines have recently been

developed for analyzing RNA-Seq data, such as the pipeline

developed by Goncalves et al. (Goncalves et al., 2011), an ana-

lysis pipeline developed in R within the context of the

ArrayExpress Database. These and other tools facilitate the ana-

lysis of RNA-Seq data, but still require the user to have a sig-

nificant bioinformatics background, specifically when complex

experiments with a large number of datasets need to be analyzed.*To whom correspondence should be addressed.
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Here we describe Grape, a workflow for the analysis of

RNA-Seq data that automates all the steps from RNA-Seq

reads to transcript quantification and discovery. Its user-friendly

interface provides the necessary overview of all the data, and is

therefore particularly suited for processing numerous files, pro-

duced in complex experimental setups. The results, both inter-

mediate and final, are stored in an MySQL database, allowing

for access through the database interface, but can also be visua-

lized through Raisin, a user-friendly web application. The same

html interface that is used for standalone local analysis is easily

deployed on a web server for remote access in collaborative pro-

jects, or data dissemination.
Grape takes three types of input files. First, the read files,

which may be aligned or not, the reference genome sequence

file and the corresponding gene annotation file. Alternatively,

Grape can also take read alignment files as input, rather than

raw read files. Grape produces a number of output files in tabu-

lar format, so they can be easily loaded into most statistical

packages. While this is the case for quantifications, which are

made available individually at the gene, transcript and exon level,

the BAM format is used as an output format for alignments.
More specifically, processing of RNA-Seq reads by Grape in-

volves the following steps: (i) sequence read evaluation, and trim-

ming if required; (ii) mapping to the genome, and the

transcriptome; (iii) assembly of reads in absence of a reference

genome, or before genome mapping; (iv) identification of novel

exons, and splice junctions and modeling of transcript structures

and (v) gene and transcript quantification. Grape pays special

attention to quality controls (QCs), which trace quality scores

and uncalled bases along the reads, look for biased nucleotide

composition and inspect the distribution of reads along tran-

scripts. These can be used for QC, although Grape leaves any

decision to modify the data, such as trimming and filtering, to

the user.
Grape is based on the PIP pipeline management system

(Conery et al., 2005). The current Grape distribution uses

SAMtools (Li et al., 2009), the GEM mapper (Marco-Sola

et al., 2012), the Flux Capacitor (Montgomery et al., 2010) and

Cufflinks (Trapnell et al., 2010), but any tool compliant with

popular data interchange formats like GFF, BAM/SAM and

BED can be used. Grape can be run locally or on a computer

cluster. Speed-up of the analyses is achieved by parallelizing cer-

tain steps and taking advantage of multithreading where pos-

sible. The Grape implementation conserves a copy of the exact

software and configuration used for a given set of analyses, guar-

anteeing forward reproducibility.

2 APPROACH

2.1 Grape description

Grape is an automated workflow integrating the management,

analysis and visualization of RNA-Seq data. GRAPE can map

the reads to the genome and/or transcriptome, and it can also

work with single or paired end reads, both stranded or not.
It organizes the RNA-Seq datasets in projects, that is, sets of

datasets, that are generated within the same study and are all

analyzed using the same annotation files and reference genome

sequence.

TwoMySQL databases store the information generated by the
individual steps in the pipeline, allowing for efficient storage and
retrieval of data. One of these is used to store the metadata (cell

type, RNA extract, etc) as well as information that is independ-
ent of the reads (junction libraries, indices location, etc), and the
other for the results produced for each of the datasets.

Grape uses the Buildout package (http://www.buildout.org) to
set up all necessary components for running the analysis, and
Raisin to visualize the data through a web browser.

Buildout is a widely used Python package for assembling and
deploying applications from multiple parts. In our case, Buildout
installs all the programs used by Grape, like GEM and the Flux

Capacitor, and makes the Grape pipeline scripts available to the
individually configured RNA-Seq analysis pipelines. Each pipe-
line is linked to one of the datasets in the project, and has its own

independent directory structure. The pipelines are run in parallel,
and can be inspected through log files tracing all execution steps.
The only requirement for the Buildout is a set of configuration

files containing information on the read files and parameters to

be used during the analysis, such as annotation, number of mis-
matches allowed during mapping, location of data files, etc.
These configuration files also serve as a way to track all analysis

performed for a project and the metadata associated to a project.
Most importantly, they allow future reproducibility of the re-

sults. Internally, we manage all project configurations within
the version control system Subversion (SVN), so they can be
easily updated and traced.
Buildout installs two central scripts that are needed for run-

ning the individual pipelines. The first is the start.sh, which in-
serts the pipeline information into the metadata MySQL
database. The second is the execute.sh script that runs the

actual pipeline and stores all its results in the results MySQL
database. The analyses are executed as so-called ‘rules’ through
a template file (similar to a Makefile). Grape can be run on a

single dataset or simultaneously on several datasets. The first
common database holds all metadata concerning the pipeline
runs, such as information regarding the input data. It is also

used as a persistent cache for some shared data, like the library
of splice junction coordinates retrieved from the annotation. The
second database contains all information from the individual

runs that are specific to each dataset, and includes the statistics
needed for subsequent analysis. Finally, it stores the time stamp

of each executed rule of a dataset, which makes Grape capable of
resuming work seamlessly after interruption.
Using a rule-based approach offers the flexibility of being able

to select only a subset of steps to execute, while automatically

devoting resources only to the inferred analysis steps. Each step
contains a set of prerequisite steps that need to be completed
before the step itself can be executed, and a set of instructions

that will be performed by the step. This information, encoded in
a template file, is read by the execution script. This script builds a
graph of dependencies between each of the different steps and

executes those necessary to reach the required step. This allows
Grape to perform all analysis steps in an ordered and easily
reproducible manner, and at the same time, to store results

and keep track of successfully completed steps This is particu-
larly important when the aim is to analyze many large datasets in
a consistent manner. An additional advantage is that the tem-

plate file contains all the steps executed by the pipeline in a
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human readable way. By editing the template file, steps can be

removed, added or modified.
Grape results include expression levels provided as reads per

kilobase per million and/or unique read counts for different fea-

tures, such as genes, transcripts, exons and junctions. They can

be accessed through the command line by directly querying the

Grape databases or through the Raisin web-application. Raisin

is also based on Buildout, and uses the same configuration files

used for producing the pipelines. Raisin accesses the results

MySQL database created by Grape, and displays and summar-

izes information produced at the major steps in the analysis pipe-

line (see later in the text).
The Raisin web server comes with two configurations, one for

accessing Grape locally on a workstation, and another, for dis-

semination of the results on a local Intranet or the Internet for

collaborative projects.

Currently, RNA-Seq data processed by Grape from

several public projects, such as the Illumina Body Map Project

(HBM) or ENCODE (ENCODE Consortium 2004, 2011)

can be browsed at http://rnaseq.crg.es (http://rnaseq.crg.es/pro

ject/HBM/tab/experiments and http://rnaseq.crg.es/project/

ENCODE/tab/experiments/).

2.2 Analysis implemented in Grape

Here we describe the analysis steps implemented in Grape and

the tools used to perform them. These tools are included in the

standard distribution of Grape. However, alternative tools can

be used for the analysis, provided they comply with popular

input/output formats. To illustrate the Grape analyses, we use

an RNA-Seq dataset from the Illumina Human Body Map

(HBM) project (Additional information on the sample and the

raw data can be obtained from http://www.ncbi.nlm.nih.gov/),

with http://rnaseq.crg.es/project/ENCODE/tab/experiments/ as

an example. Here, PolyAþ/random primed RNA from a mixture

of tissues was interrogated. Three different isolation methods

were used: PolyAþ, PolyAþ normalizing the RNA to more ef-

ficiently sample lowly expressed transcripts and Ribo minus in-

stead of PolyAþ to remove the ribosomal RNA. The three

samples were sequenced using the Illumina HiSeq 2000 at a

read length of 100nt. Each of these sequencing experiments pro-

duced, on average, 400 million reads. The Raisin interface to the

output produced by the Grape analysis of this data is available at

http://rnaseq.crg.es/project/HBM/tab/experiments/.
The main steps in the Grape analysis (illustrated in Fig. 1) are

as follows:

� Preprocessing and quality checks

� Mapping

� Post-mapping

� Transcript quantification

� Discovery and delineation of novel transcribed elements

� Summary statistics

Preprocessing and quality checks: Before processing the reads,

Grape creates a number of files and database tables required for

performing the analyses and storing the results. Experiments are

organized according to the metadata given in the Buildout con-

figuration files.
Next, Grape produces some basic statistics, and checks the

quality of the RNA-Seq data by verifying the data format, cal-

culating the distribution of ambiguous bases (bases where the

sequencer was unable to call the base correctly and assigned it

an N) and tracing quality scores along the reads. Figures 2a, b

and d illustrate the Raisin interface to some of these QC steps.

These initial QC steps contribute to assess whether additional

preprocessing, such as trimming and/or filtering of the reads, is

necessary. However, Grape only provides the QC information,

and it is up to the user to decide whether additional preprocess-

ing is required. Grape’s architecture allows for conveniently run-

ning it in stages. For example, Grape may be run first up to the

QC step, and restarted from there after completion of the QC

analysis.

Mapping: Grape’s next step is the alignment of the short se-

quence reads to the reference genome. This step is crucial for the

RNA-Seq analysis, and particular care has to be taken, as it will

condition any downstream analyses. Grape alignment module is

complex, performing several alignments, and then combines

them into a final mapping, from which a BAM file is produced.

By default, Grape uses GEM (Marco-Sola et al., 2012), an ex-

haustive short-read mapper, allowing mismatches and indels (but

other aligners could be used as long as the output format is, or

can be, converted to standard BAM/SAM).

As most NGS aligners, GEM requires an ‘index creation’ step

before the actual read mapping. This step preprocesses the ref-

erence sequence, creating a data structure that can be searched

fast and efficiently. The choice of indices determines which ref-

erence sequences the raw reads will be searched against. The

most obvious index to be used is the one corresponding to the

genome sequence of the species investigated. However, when

examining transcriptome data, reads mapping across splice junc-

tions will not match the genome sequence, and it is convenient to

Fig. 1. Overview of the three main components of the Grape RNA-Seq

analysis pipeline environment. Buildout: performs the initial configur-

ation. MySQL: two databases are used, one containing information spe-

cific to the datasets analyzed such as quantifications-detected elements,

etc. Another contains information dependent on genome and annotation,

as well as meta-information that allows for the linking of the different

datasets. Raisin web application: allows the visualization of the analysis

summaries using a web browser
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create a specific index corresponding to the splice junctions.

Thus, in addition to the genome index, Grape generates a junc-

tions index that contains annotated splice junctions, plus all pos-

sible junctions that can be obtained by biologically legal

combinations of exons within each locus. This type of approach

has already been shown to distinguish different alternative splice

forms when used to design splicing microarrays (Johnson et al.,

2003).
Grape aligns reads against both the genome and the junction

references. Junction mappings are filtered to remove those reads

that do not span the splice site. Next, the remaining unmapped

reads are mapped using the GEM split-mapper (Marco-Sola

et al., 2012). This tool will attempt to divide the read into two

parts and align each fragment independently to the genome.

Only alignments matching consensus splice sites are further con-

sidered. This allows Grape to recover the reads mapping to

unannotated ‘bona fide’ splice sites.
After this step, there may still be some unmapped reads—cor-

responding to unsequenced regions of the genome, genome con-

taminants, large number of mismatches with the references, etc.

Grape follows an aggressive strategy in an attempt to reliably

map as many reads as possible, and toward that end, it performs

additional rounds of mapping. First, it successively increases by

one (by default) the number of allowed mismatches up to a

number that is proportional to the length of the read (by default,

up to 1 mismatch per 25 nt of read length). For each number of

mismatches, a new genome mapping (including split-mapping) is

performed. Second, remaining unmapped reads are successively

trimmed by a set number of nucleotides (10 by default), and a

new genome (and split) mapping performed after each trimming.

The aggressiveness of the trimming can be controlled by the user.

A parameter sets the shortest length to which the read can be

trimmed. If this length is equal to the read length, then no trim-

ming is performed.

This iterative mapping ends when all reads are mapped, or the

length of the reads falls below a certain threshold (25nt, by de-

fault). A diagram describing it can be seen in Figure 3. This

approach is similar to the one described in Cloonan et al.

(2009).The Raisin output, providing summary statistics of the

Grape mappings, is shown in Figure 4.
Post-mapping: The reads that align in the initial round of map-

ping (genome, junction and split-mapping) are examined and

divided into those reads that map to one location better than

to any other (unique maps) and those that align to at least two

positions equally well (multi-maps).
This is an important filtering step because a unique map

implies higher reliability in the alignment than a multi-map.

However, excluding all multi-maps from an analysis results in

the potential loss of information. The eventual use of one read

alignment type versus the other will depend on the type of the

analysis. For example, for tasks such as the identification of

novel genes, or the detection of low abundance transcripts, the

confidence of the results increases if only uniquely mapped reads

are considered. Other tasks, like the calculation of genome/tran-

scriptome coverage, may use all the mapped reads.
Those reads that can be aligned to a unique position in the

genome and also to a unique position in the junctions are also

considered multi-maps, and are, in many cases, indicators of the

presence of a pseudogene or processed copy of a gene in the

genome. In the case of paired end reads, if one of the members

of the pair can be aligned uniquely to a certain position, the

Fig. 2. Raisin visualization of Grape’s QC step. Panels a and b show the

distribution of quality scores and ambiguous nucleotides along the length

of the reads. Panel c and d show summaries of the number of reads in the

dataset as well as the fraction of reads with no ambiguous bases and the

number of unique sequences as a percentage of the total

Fig. 3. Overview of Grape’s mapping strategy. The initial genome and

junctions mapping is followed by a round of split mapping. Remaining

unmapped reads are aligned with additional mismatches, and the still

remaining ones are iteratively trimmed. The mappings resulting from

the different steps are combined into a final merged mapping
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corresponding mate can sometimes be rescued if it is a

multi-map. However, in the case of RNA-Seq reads, in contrast

to genomic DNA reads, the insert size cannot always be used to

identify the correct mate, as the presence of introns can alter the

distance between mates. Grape chooses the closest mapping pos-

ition to the uniquely mapping mate in these cases. In the case of

the example analyzed here, Grape assigns, on average, 52% of

the reads to a unique position, whereas 25% of the reads are

multi-mapping (Fig. 4a).
The results of the different mapping steps are combined into a

final mapping results file in GFF, BED or SAM/BAM format.

This file can be uploaded to genome browsers for visualization

and comparison or be analyzed by other programs. Grape uses

this file specifically for the quantification of genes and transcripts

and for the delineation of transcript structures (see next).
Transcript quantification: Grape uses the mapping results to

produce quantifications of the abundance of a number of tran-

scribed elements: exons, splice junctions, genes and transcripts, as

well as inclusion indices for exons.
Before the quantification, Grape investigates the distribution

of mapped reads along transcripts to identify potential 30 to 50

biases. Toward that end, the annotated transcripts are binned

according to their length (see Fig. 5).
We use two strategies for quantifying exons and genes: (i)

simple overlap, and (ii) read deconvolution. Under the first scen-

ario, exons and genes are quantified by simply summing all the

uniquely mapping reads that are fully included within the bound-

aries of the exon or gene. Results are given in reads per kilobase

per million mapped reads (Mortazavi et al., 2008). Note that

reads completely included in two or more overlapping exons

will be counted separately for each exon. Exon quantifications

in these cases will be overestimated.

To produce quantifications of individual transcripts, we use

the FluxCapacitor (Montgomery et al., 2010) The FluxCapacitor

converts the transcript structure of each annotated locus into a

splicing graph, where junctions are represented as nodes and

exons as edges. The mapping of the reads into the graph imposes

a number of constraints that the FluxCapacitor represents as a

system of linear equations, which can be solved using linear

programming.
Raisin plots the distribution of expression of all genes

(Fig. 6a), and lists the top 20 highly expressed transcripts

(Fig. 6c) and genes (Fig. 6b), and from the Raisin interface, it

is possible to navigate to the expression values of all transcripts

and genes (in html, csv and excel formats).

Fig. 4. Raisin visualization of Grape’s mapping step. Panel a shows the

overall mapping results as well as the information on the genome anno-

tation and number of mismatches used for the alignments. Panel b shows

the fraction of reads aligned in the final merged mapping. Panels c, d and

e show the same type of information for the different components of the

mapping process

Fig. 6. Raisin visualization of the transcript quantification step. Panel a

shows the distribution of gene expression. Panels b and c show, respect-

ively, the top genes and transcripts detected in the different lanes of the

analyzed samples

Fig. 5. Distribution of uniquely mapping reads along the annotated tran-

scripts. This allows us to identify biases that may be caused by issues such

as RNA degradation
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Splice junctions are quantified using the number of reads span-

ning the junction. In this case, no need for feature length nor-
malization is required, and the choice of normalization based on

number of reads in different samples is left to the criteria of the
user (Fig. 7a). The detected splice sites are further classified:
‘Known’ are junctions that appear in the annotation. ‘Novel’

are junctions formed between annotated exons from the same
gene, but not present in the annotation. ‘Novel from unanno-

tated exons’ are split-map junctions, in which at least one of the
two connected ‘exons’ is not annotated. In this last group, we

also include any junction detected between exons from different
genes.
Grape also computes an exon inclusion ratio for each anno-

tated internal exon. Exon inclusion is computed as the ratio of all
reads supporting the inclusion of the exon (reads mapping to

exon junctions that include it and the exon itself) to all reads
supporting its exclusion. These are reads mapping to junctions
from that gene that skip the exon. See Figure 7c.

Discovery of novel transcribed elements: Grape runs a number
of analyses to identify novel transcribed elements. First,

RNA-Seq clusters are built from uniquely mapping reads,
using either genomic mappings, junctions maps or split reads.
There is no threshold for the number of reads that make a clus-

ter, but Grape provides the number of reads, and of staggered
reads making each cluster. Grape also detects novel splice junc-

tions through the split mapping of reads. These are the junctions
classified as novel from unannotated exons (see previously).

Finally, Cufflinks (Trapnell et al., 2010) is used to infer transcript
structures.
Grape also implements a simple procedure to identify chimeric

RNAs independently of those cases found by Cufflinks, which

can be used if the input is paired end reads. Here, both mates of

all read pairs mapping uniquely (with up to the specified number

of mismatches) to the transcriptome are evaluated. If they map

to different transcripts, they are classified as unannotated splice

variants if both of these transcripts belong to the same gene.

Otherwise, they map to transcripts from different annotated

genes, and are classified as putative chimeric RNAs or fusions.
Summary statistics: A page including summary statistics from

all the different analysis steps in Grape is produced, and it can be

accessed through Raisin (Fig. 8). From this page it is possible to

navigate to each specific analysis.

Additional analysis: Additional analyses can be implemented

within Grape by simply adding an entry to the workflow tem-

plate file specifying the computations to be performed in the

additional step. The new entry is a sequence of shell commands

that specify the computations that need to be performed. The

sequence of commands is preceded by a line that contains the

name of the new step and its dependencies. These dependencies

are just the names of those other steps that need to be executed

before to generate the input required by the new step. For in-

stance, in the entry

preprocess: start

$BIN/preprocess.RNAseq.pl

mv preprocess.RNAseq.log $LOG

The first line contains the name of the step (‘preprocess’) and

its dependencies, in this case, a step named start, and the follow-

ing lines, the commands to be run. The variables set by Grape,

such as BIN and LOG, are listed at the start of this file and can

be used by any of the commands in the template file.

3 DISCUSSION

Here we presented and discussed Grape, an architecture for a

computational pipeline for the analysis of millions or billions of

short reads obtained from (potentially many) high-throughput

RNA-Seq experiments. This is a general and flexible pipeline that

combines contributions of previous studies with our own experi-

ence dealing with RNA-Seq data. Grape attempts to address the

challenges both from the processing and management stand-

points associated to the analysis of sheer amounts of data. It

automates the processing and analysis steps, while at the same

Fig. 7. Raisin visualization of Grape’s splicing analysis. Panel a shows

the summary table for the detected splice sites. Panel b contains a table

with the top included exons in the samples examined, and panel c shows

the distribution of the inclusion values over all internal exons

Fig. 8. Raisin overview of Grape’s analysis results
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time providing an organizational framework that simplifies the

management and summarizing of the analysis.
The full workflow of the pipeline fits in a single text file spe-

cifying the dependency graph of the pipeline’s rules. Adding a

new analysis step in Grape is as simple as defining the parent

steps that have to be executed beforehand, and the programs and

scripts that need to be executed by the new step.
Grape’s objective is to produce quantifications of transcript

abundances (and of the abundances of other transcriptional

elements: genes, exons, splice junctions, etc). Grape does not

perform statistical analysis and comparisons of expression or

splicing usage between and/or across samples. From Grape’s

output quantifications, however, other methods and tools can

be used to perform such analysis [for instance, R statistical pack-

ages within Bioconductor (Gentleman et al. 2004; http://pypi-

ranking.info/module/zc.buildou) for expression analyses, etc].

Integrating Grape’s quantification with analysis of gene expres-

sion and alternative splicing is among the further developments

planned within Grape’s roadmap. In the very short-term, we

plan to incorporate a method to assess data reproducibility.

The method, called Irreproducible Discovery Rate (Li et al.,

2011), has been pioneered in the framework of the ENCODE

project, and it can be applied to experiments with two replicates.

Other developments include transcript assembly and quanti-

fications in absence of a genome of reference. This could be

particularly useful for species with transcriptome data, but not

sequenced genome. Note that Grape can already be directly used

to produce quantifications if an index from a reference transcrip-

tome—independently assembled—is generated. Current efforts

are, however, mostly focused to streamline the pipeline to maxi-

mize speed and minimize memory usage, to simplify installation

of the package, to provide graphical support for interactive usage

and to improve graphical reporting of the results. Currently, as

of July 2012, Grape is on version 1.6, and we provide regular

upgrades.
We have so far used Grape successfully for the in-house

analysis of more than a thousand large RNA-Seq datasets

[from projects such as ENCODE (ENCODE Consortium,

2004, 2011), Illumina Body Map (rnaseq.crg.es/project

/ENCODE/tab/experiments/), GTEx (www.genome.gov/gtex),

ICGC (Puente et al., 2011), Geuvadis (www.geuvadis.org),

Quantomics (www.quantomics.eu) and others].
Given the unique role of RNA as both a proxy and a deter-

minant of the cellular and organism phenotype, profiling of

RNA by RNA-Seq will spread beyond basic research, in medi-

cine, agriculture, biotechnology and other technical applications

of biology. RNA-Seq could be used, for instance, for continuous

ambulatory monitoring of tumor response to treatment. It could

become a standard component of blood tests, a single assay

monitoring many more variables than current biomarker

assays. Such applications of RNA-Seq require, however, analysis

tools (mapping, quantification, etc) that are order of magnitude

more efficient than currently existing ones. They require, in add-

ition, robust, efficient and scalable software systems for

RNA-Seq data storage, organization and analysis. The lack of

such systems is often seriously limiting the utility of RNA-Seq

data, and may prevent researchers to embark in medium- to

large-scale RNA-Seq projects—which are otherwise within

technological reach. We believe that Grape may contribute to

fill such a void.
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