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ABSTRACT

Motivation: Many techniques have been developed to compute the

response network of a cell. A recent trend in this area is to compute

response networks of small size, with the rationale that only part of a

pathway is often changed by disease and that interpreting small sub-

networks is easier than interpreting larger ones. However, these meth-

ods may not uncover the spectrum of pathways perturbed in a

particular experiment or disease.

Results: To avoid these difficulties, we propose to use algorithms

that reconcile case-control DNA microarray data with a molecular

interaction network by modifying per-gene differential expression

P-values such that two genes connected by an interaction show simi-

lar changes in their gene expression values. We provide a novel evalu-

ation of four methods from this class of algorithms. We enumerate

three desirable properties that this class of algorithms should address.

These properties seek to maintain that the returned gene rankings are

specific to the condition being studied. Moreover, to ease interpret-

ation, highly ranked genes should participate in coherent network

structures and should be functionally enriched with relevant biological

pathways. We comprehensively evaluate the extent to which each

algorithm addresses these properties on a compendium of gene ex-

pression data for 54 diverse human diseases. We show that the recon-

ciled gene rankings can identify novel disease-related functions that

are missed by analyzing expression data alone.

Availability: Cþþ software implementing our algorithms is available in

the NetworkReconciliation package as part of the Biorithm software

suite under the GNU General Public License: http://bioinformatics.cs.

vt.edu/�murali/software/biorithm-docs.
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1 INTRODUCTION

A cell’s response to its environment is governed by an intricate

network of molecular interactions. These interactions dynamic-

ally change in response to a myriad of cues. Therefore, discover-

ing the response network, i.e. the set of molecular interactions

that are active in a given cellular context is a fundamental ques-

tion in computational systems biology (Ideker and Sharan,

2008). Many response network algorithms integrate molecular

interaction networks with treatment-control differential expres-

sion data, which quantifies the statistical significance of the dif-

ference between the expression of genes under two conditions,

e.g. diseased versus healthy cells (Beisser et al., 2010; Keller et al.,

2009; Qiu et al., 2010; Ulitsky et al., 2010). Given several treat-

ment and control samples, these methods compute a P-value for

each gene that indicates the statistical significance of its differen-

tial expression between treatment and control. These approaches

typically integrate such expression data with the interaction net-

work by directly using each gene’s P-value or some transform-

ation of the P-value as the weight of the gene in the network.

Ideker et al. (2002) pioneered this type of analysis. After convert-

ing per-gene P-values into z-scores, they computed connected

subgraphs with high aggregate z-scores. Beisser et al. (2010)

extended the approach of Ideker et al. (2002) by solving the

prize-collecting Steiner problem. Chowdhury et al. (2011) identi-

fied dysregulated subnetworks by computing state functions that

indicate which combination of up- and down-regulated genes

within the subnetwork can classify the disease of interest. The

goal of many of these approaches is to score genes by combining

their expression profiles across multiple samples and subse-

quently compute a (connected) subgraph such that the genes in

it jointly optimize some combination of their scores. A recent

trend, exemplified by BioNet (Beisser et al., 2010) and DEGAS

(Ulitsky et al., 2010), is to focus on computing subgraphs with

few nodes. The rationale behind these approaches is that small

subnetworks enriched with dysregulated genes correspond to

parts of the disease-related pathways. Such approaches were

motivated by the observation that only part of a pathway is

often changed by disease (Ulitsky et al., 2010) and that interpret-

ing small subnetworks is easier than interpreting larger ones

(Beisser et al., 2010). HotNet (Vandin et al., 2010) identifies sig-

nificantly mutated pathways in cancer by marking mutated genes

in an interaction network and propagating this information

throughout the network by a method similar to the Heat

Kernel (HK) (see Section 2).
While these recent methods are powerful at highlighting specific

pathways and subnetworks, they have not been designed to un-

cover the spectrum of processes and pathways that might be per-

turbed in a particular experiment or disease. Applying functional*To whom correspondence should be addressed
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enrichment tests to significantly differentially expressed genes can
address this issue, but such analysis typically ignores underlying
protein interactions. Top-ranking differentially expressed genes are
often highly disconnected in the corresponding protein interaction

network, making it difficult to discern the precise mechanisms by
which enriched pathways affect the disease. Furthermore,
insignificantly differentially expressed genes may represent crucial

components of disease-related pathways, but such genes are often
ignored by standard enrichment methods.
Motivated by these observations, rather than computing

condition-specific subgraphs, we propose to use previously
published approaches that reconcile differential gene expression
P-values with an underlying interaction network to re-rank all

genes with respect to the treatment of interest. We describe tech-
niques developed in the machine learning and information re-
trieval communities (Zhu et al., 2003; Page et al., 1999; Chung,

2007; Zhou et al., 2004) to reconcile gene expression data with
the interactions in the network by computing smooth functions
over neighboring nodes in the underlying network. In this article,
we use the negative logarithm of the per-gene P-values (which do

not directly incorporate any interaction data) as prior indicators
of each gene’s relevance to a particular treatment; we describe
mathematical functions that allow the expression values to

change so that two genes connected by an interaction have simi-
lar values, while controlling the deviation of those values from
their original settings. This modification allows genes with no

significant differential expression to be re-ranked highly if their
products interact with the products of many significantly differ-
entially expressed genes.

This work offers the following three novel contributions. First,
we propose that such reconciliation algorithms should strive to
maintain the following properties:

(i) Top-ranking genes after reconciliation should participate

in coherent network structures, i.e. interacting genes
should receive similar scores. This property can assist in
the functional evaluation of top-ranking genes.

(ii) Reconciled gene rankings given by different treatments
should be dissimilar, especially among top-ranking genes.
This requirement ensures that the process of reconciliation

does not dilute the differences between the transcriptional
signatures of distinct diseases or treatments.

(iii) Top-ranking reconciled genes should be functionally

coherent.

Second, we comprehensively assess the extent to which each al-
gorithm addresses these three properties. Third, we evaluate each
approach on a large compendium of gene expression data that

includes 54 diverse human diseases. We apply a state-of-the-art
functional enrichment algorithm (Bauer et al., 2010) to address
the functional coherence of the gene rankings provided by the

reconciliation algorithms. We demonstrate that the reconciled
gene rankings identify disease-related functions that would
be missed by analyzing statistically significant differentially

expressed genes alone.

2 METHODS

Let G(V, E) denote an undirected protein interaction graph in an organ-

ism, where V is the set of nodes and E is the set of undirected edges, in

which each edge (u, v) represents an interaction between genes u, v 2 V.

We denote the weight of an edge (u, v) by wuv40. The larger the weight of

an interaction, the larger is our belief that u and v indeed physically

interact in the cell. Let Nu denote the set of neighbors of node u in G

and let du ¼
P

v2Nu
wuv denote the weighted degree of u.

Given some biological condition, let sðvÞ : V! R
þ be a function that

maps genes in V to a non-negative real number representing their degree

of perturbation in the contrast between the condition and an appropriate

control (e.g. brain cells from patients diagnosed with Alzheimer’s disease

(AD) and healthy brain cells). The larger the value of s(v), the more we

consider the gene to be perturbed in the disease compared with the con-

trol. We compute s(v) as the negative absolute value of the base 10 loga-

rithm of the gene’s P-value. We normalize the s(v) values so that they sum

to 1. These represent the starting values for each node in V. Note that s(v)

represents the degree of peturbation of gene v but does not record

whether the gene is up- or down-regulated.

Interacting genes often participate in the same protein complex, are

members of the same biological pathway or are controlled by the same

transcription factor. Consequently, interacting gene pairs commonly dis-

play similar expression profiles. The fundamental intuition underlying

our approach is that if two genes u and v are connected by a highly

weighted interaction in G, then s(u) and s(v) should maintain similar

values. Furthermore, the larger the value of wuv, the closer s(u) and s(v)

should be. This assumption enables the approaches presented here to

elucidate highly relevant genes that may be missed by differential gene

expression studies alone. For example, genes within the same complex or

pathway may not be individually perturbed to a significant extent, but we

may be able to exploit the interactions among them to recognize that the

complex or pathway is perturbed as a whole. Guided by this intuition, we

propose to compute a value p(v) between 0 and 1 for every node v 2 V.

We want the value of p(v) to simultaneously balance two potentially

conflicting constraints:

(1) p(v) remains close to v’s initial value s(v).

(2) p(v) is similar to p(u) for every neighbor u 2 Nv.

We describe four different methods for computing p(v): Vanilla

Algorithm (V), PageRank (PR), GeneMANIA (GM) and Heat Kernel

(HK). These methods were developed previously in machine learning and

information retrieval (Zhu et al., 2003; Page et al., 1999; Chung, 2007;

Zhou et al., 2004) and have proven widely applicable in computational

biology (Mostafavi et al., 2008; Komurov et al., 2010; Vanunu et al.,

2010; Gonçalves et al., 2011; Köhler et al., 2008; Winter et al., 2012;

Johannes et al., 2010; Nitsch et al., 2010; Vert and Kanehisa, 2003).

Each of these algorithms appears in the literature under different

names; we select the most recognizable names from the literature.

For the first three methods, we describe an energy function over the

graphG that, when minimized, addresses the two constraints listed above.

We then describe an iterative algorithm for each method that efficiently

minimizes the energy function and provably converges to the optimum

theoretical solution. We are unable to formulate a similar energy function

for the fourth method, HK. However, we describe a well-known approxi-

mation to the discrete HK equation. This approximation yields a com-

putationally efficient iterative solution similar to those used for the other

three methods. We omit well-known proofs of convergence for each

approach.

2.1 Vanilla algorithm

The Vanilla algorithm seeks to minimize following energy function:

EV ¼ q
X
v2V

½pVðvÞ � sðvÞ�2

þð1� qÞ
X
ðu, vÞ2E

wuv½pVðvÞ � pVðuÞ�
2
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When we compute the values of pVðvÞ that minimize EV, the first sum

ensures that pVðvÞ remains close to s(v) for each node v in G, while the

second sum ensures that pVðvÞ remains close to pVðuÞ for every u 2 Nv.

The parameter q, for 05q � 1, balances the contribution of each sum to

the energy function. Because EV is a quadratic function of the pVðvÞ

values, we can minimize it by setting its partial derivative with respect

to each pVðvÞ to 0, obtaining the following linear system:

pVðvÞ ¼

qsðvÞ þ ð1� qÞ
P
u2Nv

wuvpVðuÞ

qþ ð1� qÞdv

We compute pVðvÞ using an iterative algorithm on G. We initialize the

value at node v to s(v). If we use pV, iðvÞ to denote the value of node v at

iteration i, we can write the following recurrence for pV, iðvÞ:

pV;iðvÞ ¼

sðvÞ if i ¼ 0;
qsðvÞ

qþð1�qÞdv
þ

1�q
qþð1�qÞdv

P
u2Nv

wuvpV;i�1ðuÞ if i40:

8><
>:

As i tends to infinity, for each node v, pV, iðvÞ converges to pVðvÞ.

2.2 PageRank

In the formulation of EV, the contribution of a node is proportional to its

weighted degree. Therefore, nodes with high weighted degree may have

an unduly large influence on the solution. The PR approach (Page et al.,

1999; Komurov et al., 2010; Winter et al., 2012; Johannes et al., 2010)

accounts for the effect of the weighted degree of each node by minimizing

a slightly different energy function on G:

EPR ¼ q
X
v2V

½pPRðvÞ � sðvÞ�2

dv

þ ð1� qÞ
X
ðu, vÞ2E

wuv

"
pPRðuÞ

du
�
pPRðvÞ

dv

#2

:

In the second sum, we divide each occurrence of pPR (v) by dv to adjust

for the weighted degree of node v. As before, the parameter q serves to

balance the conflicting constraints represented by each of the two sums in

EPR. Because EPR is a quadratic function of the pPRðvÞ values, we min-

imize it by setting its partial derivative with respect to each pPRðvÞ, v 2 V

to 0, obtaining the following linear system:

pPRðvÞ ¼ qsðvÞ þ ð1� qÞ
X
u2Nv

wuv

du
pPRðuÞ:

2.3 GeneMANIA

The GMmethod (Zhou et al., 2004; Mostafavi et al., 2008; Vanunu et al.,

2010) is motivated by similar concern from the PR method that nodes

with high weighted degree may have disproportionately large effect on the

final node values. Therefore, GM seeks to minimize the following energy

function on G:

EGM ¼ q
X
v2V

½pGMðvÞ � sðvÞ�2

þ ð1� qÞ
X
ðu, vÞ2E

wuv
pGMðuÞffiffiffiffiffi

du
p �

pGMðvÞffiffiffiffiffi
dv
p

� �2

In the second sum, we divide each occurrence of pGM (v) by
ffiffiffiffiffi
dv
p

(compared with dividing by dv in PR) to adjust for the weighted degree

of node v. Again, q balances the contribution from each sum in the energy

function. We minimize EGM by setting its partial derivative with respect

to each pGMðvÞ to 0, achieving the following linear system:

pGMðvÞ ¼ qsðvÞ þ ð1� qÞ
X
u2Nv

wuvffiffiffiffiffiffiffiffiffi
dudv
p pGMðuÞ:

2.4 Heat kernel

The Heat Kernel of a graph describes the dispersion of heat throughout a

network over time. Here, the amount of heat corresponds to the degree of

perturbation of each gene, represented by a node in the network, to the

disease of interest. The HK is given by the following equation (Chung,

2007; Nitsch et al., 2010; Vert and Kanehisa, 2003):

p ¼
X1
k¼0

ð�tÞk

k!
Lks ¼ e�tLs ð1Þ

where t parameterizes the rate of heat dispersion, and L describes the

edges between nodes in the network. We define L¼ I�W, where I is the

identity matrix, and W is a normalized edge weight matrix such that

Wu, v ¼
wuv

du
. Because directly computing the matrix exponential in

Equation 1 is computationally expensive, we use the approximation

pHK ¼ I�
t

n
L

� �n
s,

which converges to Equation 1 as n!1. We must select n large enough

such that the approximation given by pHK is sufficiently close to Equation

1. We select n¼ 100, as this value performed well for Web graphs (Yang

et al., 2007), which are at least an order of magnitude larger than the

biological networks we used. We use the following algorithm to iteratively

compute pHK. Let pHK,0 ¼ s and recursively define

pHK, i ¼ I�
t

n
L

� �
pHK, i�1 ¼ I�

t

n
L

� �i�1
s:

3 DATASETS

Gene expression data. We used gene expression data for 54
different human diseases and for the corresponding normal

tissues (Suthram et al., 2010). A complete list of diseases is avail-

able in the Supplementary Text. For each disease and its corre-

sponding control, we applied Linear Models for Microarray

Data (LIMMA) (Smyth, 2005) to these DNA microarray data

to compute a t-statistic and a P-value indicating the statistical

significance of the differential expression of each gene in that

disease, when compared with the corresponding control. We
used the negative base 10 logarithm of each gene’s P-value as

the initial value for each gene in the network, and we normalized

these values so they summed to 1. We considered alternatively

computing mutual information between each gene and the

sample phenotype labels, but we were concerned that the small

number of samples may not yield reliable mutual information

values. Nonetheless, our methods can be readily applied to

mutual information values, and we plan to investigate this exten-

sion in future research.

Interaction network. We used the human MiMI protein inter-

action network (Tarcea et al., 2009) containing 11,074 proteins

and 77,952 non-self interactions. We estimated the reliability of

each interaction by its FS-weight (Chua et al., 2006) (see

Supplementary Text).

Functional enrichment. We annotated the genes in our network
with 3272 gene sets from MSigDB version 3.0 category C2

(Subramanian et al., 2005), 1703 CORUM complexes (Ruepp

et al., 2008), 223 NCI PID curated pathways (Schaefer et al.,

2009) and 75 NetPath pathways (Kandasamy et al., 2010). We

performed all tests for functional enrichment using Model-based
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Gene Set Analysis (MGSA) (Bauer et al., 2010) directly from

the R Bioconductor package. We discuss our selection of

MGSA in the Supplementary Text. We applied MGSA to the

top 250 genes ranked only by their differential expression

P-values and to the top 250 genes after applying our reconcilia-

tion algorithms.

4 RESULTS

We divide our results into five parts to address the desirable

properties listed in the introduction. First, in Section 4.1, we

examine topological properties of the final gene rankings given

by each algorithm, providing insight on how these approaches

address the first property. In Section 4.2, we simultaneously

address the second and third properties by analyzing how well

the gene rankings for seven diseases recover the genes in canoni-

cal pathways for those diseases. In Section 4.3, we discuss simi-

larities between the gene rankings produced by each algorithm

across all diseases. Our main concern in these evaluations is the

extent to which disease-specific signals are not masked by net-

work-based effects, directly addressing the second desirable

property. In Section 4.4, we perform functional enrichment

tests on the top-ranking genes reported by our reconciliation

methods. This analysis further reinforces our conclusions from

the previous section and addresses the final desirable property

that top-ranking genes should demonstrate functional coherence.

Lastly, in Section 4.5, we investigate the insulin-mediated glucose

transport pathway in several diseases related to the brain. We

demonstrate that network reconciliation identifies disease-related

proteins from this pathway that are missed by differential expres-

sion analysis.
We performed this analysis over a wide range of values for the

input parameter q; we report results for q 2 f0:1, 0:3, 0:5, 0:7, 1g.
Note that the HK is parametrized by t40. We used the trans-

formation q¼ 2�t to determine values that covered a reasonable

range of possible values for t. This transformation has the addi-

tional benefit that q tends to 0 (respectively, 1) as t tends to 1

(respectively, 0). Because large t increases the dispersion of heat

through the network, the interpretation of q remains the same for

all algorithms: large q gives more weight to the starting values,

while small q emphasizes network topology.

4.1 Network coherence

The first desirable property of reconciliation algorithms seeks to

identify coherent network structures among top-ranking genes.

Each algorithm ranks disease-related genes highly by taking into

account both expression and interaction data. However, such

rankings may prove difficult to interpret if the top-ranking

genes are sparsely connected, inducing many small connected

components. Indeed, a lack of connectivity among such compo-

nents may conceal the mechanisms by which the disease-related

genes interact. We computed the number of connected compo-

nents induced in the MiMI network by the top k genes reported

by each of the four reconciliation algorithms for 0 � k � 250.
Supplementary Figure S1 illustrates the change in the number

of connected components induced by the top k genes reported by

each algorithm. Surprisingly, for Vanilla, the connectivity among

top-ranking genes decreases when more emphasis is placed on

the network. Indeed, a decrease in q results in many more con-

nected components among top-ranking genes. Because top-rank-

ing genes reported by Vanilla tend to be less connected as the

network is given higher emphasis, we conclude that the V per-

forms poorly with respect to the network connectivity property.

However, PR, GM and HK drastically decrease the number of

connected components as q decreases, indicating high network

coherence for these algorithms. In Section 2.1 of the

Supplementary Text, we compare these connected component

counts from the true data to 100 randomized gene expression

datasets, demonstrating that the ranks given by the true expres-

sion data consistently display higher network coherence.

4.2 Recovering canonical pathways

We assessed the ability of reconciliation algorithms to recover

genes involved in the canonical pathway for a disease. Of the 54

diseases in our gene expression data, seven were represented in

the Kyoto Encylopedia of Genes and Genomes (KEGG)

(Kanehisa et al., 2008), which maintains manually curated path-

ways of disease mechanisms. We applied the network reconcilia-

tion algorithms to each of these seven diseases, namely,

malignant melanoma, Huntington’s disease (HD), glioblastoma,

endometriosis, dilated cardiomyopathy, Alzheimer’s disease

(AD) and acute myeloid leukemia. We assessed how highly the

genes in each disease pathway are ranked by the reconciliation

process and by their initial differential expression values.
Figure 1 displays the hypergeometric P-values of the overlap

between the top 250 genes ranked by each method and the set

of genes in the corresponding KEGG pathway. We plot the

negative logarithm of each P-value. Points to the right of the

dashed gray line indicate significant findings (P50.05). Results

using rank cutoffs of 500 and 1000 are available in the

Supplementary Material and reinforce the findings presented

here. Figure 1 demonstrates that an insignificant number of

genes in each of the seven KEGG pathways are among the

top-ranked genes when considering differential expression P-

values alone (yellow points). Additionally, Vanilla does not

highly rank a significant number of KEGG pathway genes for

any of the seven diseases or for any value of the input parameter

q. In contrast, a statistically significant number of KEGG path-

way genes appear among the top 250 genes ranked by PR, GM

and HK for every disease and at least one value of q. These

findings indicate that reconciling gene expression values with

an underlying interaction network provides insights into disease

mechanisms that may be missed by expression studies alone.
The value of q that results in the most significant overlap with

the KEGG pathway varies considerably depending on the dis-

ease and the algorithm. We note that setting q¼ 0.5 for the PR

algorithm results in the most significant P-values for two of the

three brain diseases with canonical pathways in KEGG (glioblas-

toma and AD). Therefore, we set q¼ 0.5 when we perform a

focused analysis of brain diseases in Sections 4.4 and 4.5,

although other choices are reasonable. Because no value of q

for Vanilla successfully identifies disease genes from their cano-

nical pathways, we drop this algorithm from analysis in the

remaining sections and provide results for Vanilla in the

Supplementary Text.
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4.3 Similarity between gene rankings

Next, we investigate how each algorithm distinguishes different

diseases. Ideally, applying a reconciliation algorithm to transcrip-

tional signatures from two diseases that affect different biological

pathways should result in different gene rankings, specifically

among the top-ranking genes. For PR, GM and HK, we examine

the difference between the final gene rankings given by each

algorithm across all 54 diseases. Because this collection of dis-

eases affects a wide variety of organs, tissues and cell types, we

expect their disease-related genes (and thus the top-ranking

genes) to vary considerably.
For each algorithm, we computed the Jaccard index of the top

k genes after reconciliation between every pair of diseases for

05k � 250. The Jaccard index measures the size of the intersec-

tion divided by the size of the union of two sets. Thus, a high

Jaccard index between a pair of diseases indicates that the top k

genes are highly similar between diseases, while low Jaccard

index suggests the algorithm maintains disease specificity in its

final rankings. Figure 2 illustrates the Jaccard indices for each

algorithm. Each point indicates the average Jaccard index across

all 54
2

� �
pairs of diseases. As expected, the Jaccard index

increases with a decrease in q for any rank cutoff. Indeed, as q

decreases, the network plays a more pronounced role in each

algorithm and provides the same signal regardless of the input

disease. Thus, to minimize the overlap between the top k genes

reported for each pair of diseases, one could simply use the initial

rankings given solely by the expression data (i.e. q¼ 1).

However, this has the obvious drawback that the connectivity

of the proteins is completely ignored.
In general, for every value of q, the GM method results in a

much lower Jaccard index than the other algorithms. Selecting

q¼ 0.1 is clearly a bad choice, as the Jaccard index of the top k

genes between any pair of disease is �0.7 for PR and HK.

However, setting q¼ 0.5 or higher results in a reasonably low

Jaccard index for all algorithms. For the functional enrichment

analysis presented in the remaining sections, we set q¼ 0.5, as

this parameter value jointly addresses the desirable properties for

PR, GM and HK in the analyses presented thus far.

4.4 Functional enrichment analysis

Inter-disease functional similarity. We applied functional
enrichment tests to further evaluate the gene rankings. Using

the gene sets and pathways described in Section 3 as protein

functional annotations, we applied MGSA to the top 250

genes reported by each reconciliation method on seven diseases

that affect the brain: AD, bipolar disorder, glioblastoma, HD,

Rett syndrome, schizophrenia and senescence. Figure 3(a)

illustrates the Jaccard index between the top k functions returned

by MGSA, 05k � 50, for each pair of brain disorders. While the

Jaccard indices are not as low as those for the MGSA results

applied to the initial gene rankings given by the expression data,

there is a remarkably low overlap between the top functions

reported for each pair of diseases. This result supports the find-

ings in Section 4.3 that reconciled gene rankings maintain disease

specificity. We demonstrate that enriched functions are also rele-

vant to their corresponding diseases in Section 4.5.

Inter-algorithm functional similarity. We also investigated the
similarity between the functional results of different algorithms.

In Figure 3(b), we show the average Jaccard index between the

top k functions returned by MGSA for a pair of reconciliation

algorithms applied to a single disease. We plot the average across

the seven brain disorders. The Jaccard indices are highest for the

pair of algorithms PR and HK at �0.3 for the first 50 functions.

The small index for any pair of algorithms suggests that each

algorithm probes a different space of functional annotations for

the same disease. We find this to be a particularly striking find-

ing. Because PR and HK show a high overlap (Jaccard index 0.7)

between the top 250 genes reported by each algorithm on the

same disease (Supplementary Fig. S4), we expected high

Fig. 1. Negative logarithms of the hypergeometric P-values indicating the significance of the overlap between the members of seven KEGG pathways

and the top 250 genes ranked by each algorithm for the corresponding disease. The number of genes in each KEGG pathway is provided in parentheses.

Points to the right of the dashed gray line indicate significant P-values (P50.05)
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similarity in gene rankings to translate into similar functional

enrichment results. We plan to further explore this finding in

future studies.

4.5 Insulin-mediated glucose transport in the brain

Finally, we further investigated how reconciliation algorithms

addressed our fourth desirable property that genes involved in

biological functions related to the disease of interest should be

ranked highly. We were particularly interested in the effect of

reconciliation algorithms on low-ranking genes (i.e., genes with

insignificant differential expression between disease and control)

annotated by such functions. Ideally, we hoped to see the values

of such genes modified through the reconciliation process in such

a way that most genes involved in relevant functions were re-

ranked highly. For this analysis, we focused on the NCI PID

pathway insulin-mediated glucose transport. We selected this

pathway because dysregulation of insulin-mediated glucose

uptake has been previously implicated in patients diagnosed

with various neurodegenerative disorders, including AD and

HD (Craft and Watson, 2004). After applying PR reconciliation,

this function appears in the top 22 most enriched functions for

four of the seven brain disorders (Table 1), including AD and

HD.

Alzheimer’s disease. Elderly patients diagnosed with AD show
impaired glucose tolerance, often erroneously attributed to poor

exercise and diet. However, reduced insulin-mediated glucose

uptake is observed in early stage AD patients whose physical

activity and dietary patterns do not differ from healthy adults

(Craft and Watson, 2004). Thus, dysregulation of this pathway

(i.e. enrichment in disease versus control) may provide an early

indication of AD. For each of the seven brain diseases we stu-

died, Table 1 reports the MGSA enrichment posterior probabil-

ities for the NCI PID pathway insulin-mediated glucose transport

in the top 250 proteins before and after applying the PR recon-

ciliation method. This pathway was not enriched in the top 250

proteins ranked only by the differential expression of the corre-

sponding genes. However, PR re-ranked proteins from the insu-

lin-mediated glucose transport pathway highly, drastically

increasing the enrichment of the pathway and moving this func-

tion from rank 3290 before reconciliation to 2 after applying PR.

Thus, we identified a pathway whose role is highly relevant to

AD but is missed using standard functional enrichment methods

when only the gene expression data is used. By integrating the

expression profile with a network of protein interactions, we

were able to highlight this pathway by re-ranking relevant pro-

teins whose corresponding genes are not significantly differen-

tially expressed.

Huntington’s disease. Figure 4(a) illustrates the subnetwork
induced by proteins in the insulin-mediated glucose transport

pathway. At the core of this pathway are seven proteins from

the 14-3-3 protein family. The 14-3-3 proteins play a major role

in cellular signal transduction, and they are known to appear

abundantly throughout the brain. These proteins can bind to a

wide variety of other human proteins, altering features of the

(a)

MGSA similarity between all 7
2 pairs of brain disorders.

(b)

MGSA similarity between PR, HK, and GM.

Fig. 3. The Jaccard index of the top-ranking functions returned by MGSA on seven brain disorders. (a) MGSA similarity between all
7
2

� �
pairs of

brain disorders. (b) MGSA similarity between PR, HK, and GM

Fig. 2. The Jaccard index of the top k genes reported by each algorithm for a pair of different diseases. Each point indicates the average Jaccard index of

all 54
2

� �
pairs of diseases using a particular value of q as input to the algorithm
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target protein such as subcellular localization, functional activity

and phosphorylation state (Dougherty and Morrison, 2004).
Figure 4(a) demonstrates that most of the genes encoding the

14-3-3 proteins are not significantly differentially expressed in

HD versus healthy samples; none of the seven genes appear in
the top 250 significantly differentially expressed genes (with the

first appearing only at rank 500). However, after applying net-
work reconciliation, as Figure 4(b) illustrates, the ranks of all

seven 14-3-3 proteins increased drastically (along with several
additional members of the pathway). The 14-3-3 proteins were

re-ranked highly because many nearby genes in the network were

significantly differentially expressed, and their value propagated
through the dense subnetwork of 14-3-3 proteins during the

reconciliation process. Notice that the insulin-mediated glucose
transport pathway was ranked highly in HD before and after

applying PR (Table 1). However, 12 proteins from this pathway

appeared in the top 250 proteins after reconciliation compared
with just five before reconciliation. Thus, in this case, reconcilia-

tion did not identify a novel pathway related to the disease (as we
discovered with AD), but reconciliation re-ranked highly rele-

vant proteins that would be missed using differential gene expres-
sion alone. Furthermore, the role of this pathway in HD may be

easier to interpret because the involvement of the 14-3-3 proteins

is highlighted by reconciliation but missed otherwise.

High degree proteins. One concern with our methodology is
that the reconciliation approaches may overemphasize proteins

with many neighbors in the network. Indeed, the reconciliation

methods may be more likely to propagate value to nodes with
many neighbors, and our analysis of AD and HD may be biased,

as we have already mentioned that the 14-3-3 proteins are highly
promiscuous. However, notice that the insulin-mediated glucose

transport pathway is not found to be enriched in bipolar disor-

der, schizophrenia or senescence after reconciliation (Table 1). In
fact, this pathway is even less enriched in schizophrenia after

reconciliation, demonstrating that the enrichment results are
not biased by such high degree nodes.

5 DISCUSSION

We described four approaches to integrate case-control gene

expression data with molecular interaction networks. These

methods actively modify gene expression measurements to

match the constraints imposed by the edges in the network,

while controlling the deviation of the modified values from

their original settings. We enumerated three desirable biological

properties that this class of algorithms should address. These

properties aim to balance input from gene expression data with

an underlying interaction network while maintaining that the

returned gene rankings are specific to the condition being stu-

died. Addressing any one of these properties alone may be trivial.

For example, to address the first property that top-ranking genes

should participate in coherent network structures, one could

simply return a list of genes such that each gene in the list is

connected to one of its predecessors in the list. Thus, any cutoff

Insulin-mediated glucose transport network
beore PR

Insulin-mediated glucose transport network
after PR

Protein Before PR After PR
YWHAQ 500 210
YWHAE 874 79
YWHAZ 1286 112
YWHAS 6188 231
YWHAB 6380 48
YWHAG 7594 32
YWHAH 8433 351

Ranks of 14-3-3 proteins in HD.

(a)

(b)

(c)

Fig. 4. A comparison of the subnetwork induced by genes involved in the

NCI PID pathway insulin-mediated glucose transport with nodes ranked

by (a) differential expression P-values from patients diagnosed with HD

and (b) after applying PR. Non-white nodes indicate genes ranked in the

top 250, and darker nodes indicate higher ranking. Octagonal nodes

indicate genes in the 14-3-3 family of proteins. Subnetwork visualizations

for HK, GM and V are available in the Supplementary Text

(Supplementary Fig. S6). (c) Ranks of 14-3-3 family proteins before

and after applying PR to the HD expression data

Table 1. Enrichment of the NCI pathway insulin-mediated glucose trans-

port in the top 250 genes before and after applying PR to the expression

profiles of seven brain disorders

Disease Before PR After PR

Alzheimer’s disease 0.0000 (3290) 0.8839 (2)

Bipolar disorder 0.0000 (1763) 0.0030 (431)

Glioblastoma 0.0000 (1963) 0.8340 (4)

Huntington’s disease 0.0060 (130) 0.3804 (22)

Rett syndrome 0.0000 (3244) 0.6333 (9)

Schizophrenia 0.0000 (3115) 0.0000 (3459)

Senescence 0.0000 (3384) 0.0067 (265)

The values are the posterior probabilities reported by MGSA, where higher value

indicates a higher probability that the pathway is enriched. In parentheses, we report

the rank of the pathway among 5273 gene sets.
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in the gene ranking induces a single connected component.
However, addressing all three properties simultaneously is
more difficult and warranted further investigation. We analyzed
each algorithm using differential gene expression data from a

variety of human diseases that interrogate vastly different
organs and tissues. Ultimately, this work attests to the wide
applicability of reconciliation algorithms and suggests reasonable

values of their input parameters to address the three desirable
properties. We demonstrated that i) PR, GM and HK always
outperform Vanilla with respect to our primary motivating prop-

erties and ii) applying any of these three network reconciliation
algorithms then analyzing the resulting gene ranks yields more
interpretable results than analyzing the ranking of significantly

differentially expressed genes alone.
In the future, we plan to consider other biologically relevant

formulations of the energy function. An important extension is
to situations that violate our assumption that two linked genes

should be similarly perturbed in a condition. For instance, a
transcription factor may be connected to a target gene that it
down-regulates. In this situation, it seems appropriate to ensure

that the transcription factor and its target have distinct values.
More generally, the expression of a gene may have a complex
dependence on those of its interactors. When such relationships

are known, it will be useful to incorporate them into our formu-
lation. Lastly, our methods use the significance of a gene’s dif-
ferential expression while ignoring whether the gene is up- or
down-regulated. Promising extensions may incorporate the direc-

tion of regulation as well as the mechanism of regulatory
interactions.
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