Skip to main content
. 2013 Feb 11;2(1):46. doi: 10.1186/2193-1801-2-46

Figure 2.

Figure 2

Image demonstrating potential mechanisms relating how altered Na+/K+ATPase (as coded byATP1A2)function could be related to stroke risk. Decreased Na+/K+ ATPase activity leads to: altered ionic (Na+, K+) gradients resulting in excess intracellular Ca2+ (Danbolt 2001); impaired K+ channel-mediated membrane repolarization (Luo et al. 2004; Matsuda et al. 2001), and; elevated glutamate concentrations at the synaptic cleft (Rose et al. 2009). Elevated homocysteine has been shown to decrease Na+/K+ ATPase function (Machado et al. 2011; Streck et al. 2002).