
Accurate decoding of sub-TR timing differences in stimulations
of sub-voxel regions from multi-voxel response patterns

Masaya Misaki1, Wen-Ming Luh2, and Peter A. Bandettini1,2

1Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of
Mental Health, National Institutes of Health. 10 Center Dr. MSC 1148, Bethesda, MD 20892-1148
USA

2Functional MRI Facility, National Institute of Mental Health, National Institutes of Health. 10
Center Dr. MSC 1148, Bethesda, MD 20892-1148 USA

Abstract

We investigated the decoding of millisecond-order timing information in ocular dominance

stimulation from the blood oxygen level dependent (BOLD) signal in human functional magnetic

resonance imaging (fMRI). In our experiment, ocular dominance columns were activated by

monocular visual stimulation with 500- or 100- ms onset differences. We observed that the event-

related hemodynamic response (HDR) in the human visual cortex was sensitive to the subtle onset

difference. The HDR shapes were related to the stimulus timings in various manners: the timing

difference was represented in either the amplitude of positive peak, amplitude of negative peak,

delay of peak time, or response duration of HDR. These complex relationships were different

across voxels and subjects. To find an informative feature of HDR for discriminating the subtle

timing difference of ocular dominance stimulations, we examined various characteristics of HDR

including response amplitude, time to peak, full width at half-maximum response, as inputs for

decoding analysis. Using a canonical HDR function for estimating the voxel’s response did not

yield good decoding scores, suggesting that information may reside in the variability of HDR

shapes. Using all the values from the deconvolved HDR also showed low performance, which

could be due to an over-fitting problem with the large data dimensionality. When using either

positive or negative peak amplitude of the deconvolved HDR, high decoding performance could

be achieved for both the 500ms and the 100ms onset differences. The high accuracy even for the

100ms difference, given that the signal was sampled at a TR of 250 ms and 2×2×3-mm voxels,

implies a possibility of spatiotemporally hyper-resolution decoding. Furthermore, both down-

sampling and smoothing did not affect the decoding accuracies very much. These results suggest a

complex spatiotemporal relationship between the multi-voxel pattern of the BOLD response and

the population activation of neuronal columns. The demonstrated possibility of decoding a 100-ms

difference of stimulations for columnar-level organization with lower resolution imaging data may

broaden the scope of application of the BOLD fMRI.
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1. Introduction

The temporal resolution of functional magnetic resonance imaging (fMRI) using the blood

oxygen level dependent (BOLD) signal is restricted not only by sampling rate (Repetition

Time [TR] of imaging) but also by the delay of hemodynamic response (HDR) as well as the

tortuosity of vasculature. The HDR has a slow temporal profile taking 4–6 seconds to reach

the response peak and more than 10 seconds to return to the initial baseline even for a short

single event. Blood flow also affects the time course of HDR in a way irrelevant to neural

activations, restricting the temporal resolution of the BOLD fMRI.

Despite its slow temporal profile, previous studies have shown that HDR is sensitive to

subtle timing difference of stimulus presentations (Grinband et al., 2008; Hernandez et al.,

2002; Menon et al., 1998a; Menon and Kim, 1999; Menon et al., 1998b; Ogawa et al., 2000;

Robson et al., 1998; Tomatsu et al., 2008). Menon et al. (1998b), for example, found that the

onset of the HDR exactly linked to the stimulus onset in the order of one hundred

milliseconds. However, in the studies of resolving subsecond timing of HDR (Menon et al.,

1998a; Menon and Kim, 1999; Menon et al., 1998b; Ogawa et al., 2000; Robson et al.,

1998), an average HDR across multiple voxels was used to evaluate the temporal sensitivity

of HDR due to limited signal-to-noise ratio.

Even if the signal-to-noise ratio is high, temporal properties of HDR can fluctuate on a

voxel-wise basis depending on the vascular organization; particularly, the peak response

time of HDR is known to be delayed at voxels downstream of blood flow near a large vein

(de Zwart et al., 2005; Hirano et al., 2011; Lee et al., 1995). High temporal resolution

property of BOLD signal, therefore, can be investigated when a stimulus or task can be

assumed to elicit homogeneous neural activations in a region large enough for averaging to

remove vascular bias and to achieve high signal-to-noise ratio. Otherwise, estimating

subsecond information on neural activation from the HDR is very difficult.

In this study, we sought to overcome this limitation by utilizing the multi-voxel pattern

analysis (MVPA); we used a ‘decoding’ approach with the MVPA to discriminate the subtle

timing difference of visual stimulations. MVPA (Haynes and Rees, 2006; Norman et al.,

2006) investigates a pattern activation of multiple voxels. This analysis does not concern a

response at each voxel as an independent value but evaluates whether a multivariate pattern

of multi-voxel response is sensitive to the difference of stimuli. This analysis can

discriminate the columnar-level neural activations (orientation-selective responses in the

human visual cortex) from the BOLD signal with 3-mm-sized voxels (Haynes and Rees,

2005; Kamitani and Tong, 2005). While the decoding with MVPA cannot identify the

activation of each column within a voxel, it can discriminate the difference of pattern

activations across voxels. The objective of the MVPA, therefore, is not to identify the neural
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activation in each voxel, but to evaluate information encoded in a neuronal population

activation reflected in a multi-voxel pattern of HDR (Kriegeskorte and Bandettini, 2007).

The objective of this study is not to estimate timing of neural activation at each voxel with

subsecond resolution. Instead, we aimed to discriminate the multi-voxel response patterns

corresponding to a subsecond difference of visual stimulations. Even though it is difficult to

estimate exact timing of neural activation in each voxel, we may at least be able to

discriminate the difference of multi-voxel HDR patterns corresponding to timings of neural

activations if they are linked to each other. The classification framework of MVPA is well

suited for discriminating small difference because the multivariate analysis used in the

MVPA often has higher sensitivity to detect a difference than a univariate analysis.

To examine the possibility of discriminating subsecond differences in columnar-level

activation from the BOLD signal, we investigated ocular dominance activation in the human

visual cortex. In the experiment, monocular visual stimulation was applied with timing

offset of 500ms or 100ms between left and right eye. The decoding analysis was performed

with MVPA to examine whether the subtle timing difference of ocular dominance

activations could be decoded with high accuracy from the multi-voxel response patterns.

In this study, several hemodynamic response properties hypothetically informative for

decoding were investigated. Three types of response models, the canonical HDR model, the

canonical HDR with the first- and second-order Volterra expansion (Friston et al., 1998),

and the deconvolution with the finite impulse response (FIR) model (Glover, 1999), were

examined for extracting voxel-wise responses as input for the decoding analysis. For the

deconvolved HDR, four response characteristics, positive peak amplitude, positive or

negative peak amplitude, time to peak, and full width at half-maximum (FWHM) response

was also examined. In addition, we examined the effects of spatial and temporal resolution

of fMRI on the decoding performance.

2. Materials and Methods

2-1. Experimental procedures

Twelve subjects (22–41 years of age, 5 females) participated in the study and gave informed

consent according to a protocol approved by the Institutional Review Board at the National

Institutes of Health.

The subjects viewed a visual stimulus on the screen by means of a mirror mounted on the

head RF coil. The visual stimulus was a radial checkerboard pattern, flashing at 6.7 Hz,

back-projected onto a screen in the MRI bore, subtending 16.7° horizontally and 11.0°

vertically in visual angle. The stimulus was presented for each eye by closing and opening

LCD shutter goggles (PLATO Visual Occlusion Spectacles, Translucent Technologies Inc.,

Toronto, Canada) placed in front of subject’s eyes. The shutters for each eye were controlled

via a laptop to open or close independently. The shutter was opened only when the stimulus

was presented and was kept closed otherwise. The response time of the shutter was

approximately 4 ms to open and 3 ms to close. For exact timing control, we used a custom
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experiment system built on a Linux computer with real-time extensions (RTAI; https://

www.rtai.org/).

Fig. 1 shows the stimulus conditions applied in the experiment. Left and right monocular

stimulations (Lmono and Rmono) were employed to validate that the analysis could

discriminate activations of left and right ocular dominance columns. Binocular stimulation

was employed to evaluate the possibility of discriminating subtle timing differences of

ocular dominance activations. The term, LRbin, represents the conditions when both eyes

were stimulated simultaneously. In L-R500 and R-L500, the left eye was stimulated 500 ms

before the right eye and vice versa, respectively. To examine the discrimination of timing

differences shorter than the sampling rate of BOLD signal, we also applied the conditions

with 100-ms onset differences (L-R100 and R-L100). The time courses of these two latter

conditions were the same as L-R500 and R-L500 except the onset interval was 100 ms. The

100-ms conditions were applied for six of the subjects.

A slow event-related design was employed in the experiment with 1-s stimulus duration.

The inter-trial interval (ITI) was 16 s (15 s rest) for the six subjects and 12 s (11 s rest) for

the other six subjects performing the 100-ms conditions. Four trials for each condition were

performed in each run and eight runs were performed in each experimental session. The

order of conditions was randomized and counter-balanced across runs; the probabilities of a

subsequent condition were equalized for all conditions to avoid confounding effects from

the order of conditions. Each functional run included an initial 12-s rest period to allow for

MR equilibration.

A fixation task was used to maintain the subjects’ attention on the center of the stimulus. A

small white fixation circle at the center of the stimulus was flashed green in random timing

while the shutter was opened. Subjects were required to report the green flash by pressing a

button. The fixation task was not correlated with the stimulus conditions because it was

applied in every trial and the timing of fixation flash was not correlated with the onset

difference of the stimulations.

2-2. MRI parameters

All imaging was performed on a 3T Signa MR scanner (GE Healthcare, Milwaukee, WI)

with a 16-channel surface-coil array (NOVA Medical Inc., Wilmington, MA). The

functional time series were obtained using single-shot gradient-recalled echo planar imaging

(EPI) with parallel imaging using the Array Spatial Sensitivity Encoding Technique

(ASSET). The imaging parameters were TR = 250 ms, TE = 30 ms, FA = 35°, FOV = 192 ×

192 mm, 96 × 96 matrix, 4 slices of 3 mm thickness with 0.3 mm gap, voxel size of 2 × 2 ×

3 mm, and ASSET acceleration factor = 2. Oblique Slices were prescribed to cover the

primary visual cortex and parallel to the calcarine sulcus. The number of volumes in each

run was 1252 for the six subjects and 1396 for the other six subjects performing the 100-ms

conditions. Eight runs were performed in each experimental session.

For anatomical alignment, whole brain T1-weighted Magnetization Prepared Rapid Gradient

Echo (MPRAGE) images were acquired for each subject with TR = 6 ms, TE = 2.736 ms,

FA = 12, voxel size = 1 × 1 × 1 mm, and with ASSET (acceleration factor = 2).
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2-3. Image processing

All images were processed using the AFNI processing package (Cox, 1996); http://

afni.nimh.nih.gov/). The first 48 volumes before the first trial were excluded from the

analysis. After extreme outliers in the time series were replaced with interpolation from

neighborhood values using 3dDespike program, the images were corrected for slice-

acquisition timing and realigned to the volume nearest to the anatomical scan. Signal values

per voxel were scaled to percent signal change relative to the mean signal across the time

course of each run. The high-contrast (TR = infinity) first image in the run nearest to the

anatomical scan was also aligned with other functional images. Because of its high contrast,

this image was used to align anatomical with functional images but not used for time-signal

analysis.

To evaluate the effect of sampling rate on the decoding accuracies, we created down-

sampled signal time courses. The signal time course was low-pass filtered using a Fourier

filter with 1, 0.5, 0.25, and 0.125 Hz cut-off frequencies in each run, and were down

sampled with 0.5-, 1-, 2-, and 4-s intervals, respectively. To evaluate the effect of spatial

frequency of response patterns on the decoding accuracies, the functional images were

smoothed with Gaussian kernels with FWHM = 2, 4, 6, and 8 mm.

Anatomical regions of interest (ROI) were defined in the calcarine gyrus using anatomical

labels from the TT_N27_EZ_ML mask, which is based on the macrolabels of the Statistical

Parametric Mapping Anatomy Toolbox (Eickhoff et al., 2005) provided with AFNI package.

To transfer the anatomical mask to subjects’ functional images, the template brain was

transposed onto subjects’ skull-stripped anatomical images, anatomical and functional

images were aligned, and the result was resampled to the resolution of the functional

images. To compensate for imperfect alignment between the template and subjects’ brains

and between anatomical and functional images, the ROIs from the calcarine gyri were edited

to exclude ventricle and regions outside of the occipital area.

2-4. Response estimations

The voxel-wise response of the BOLD signal was estimated using general linear model

(GLM) analysis. The design matrix of the GLM included six motion parameters (roll, pitch,

yaw, and shifts in tree directions), low frequency components modeled by the third order

polynomial for each run, and response models for each stimulus condition.

For the response model, we examined three types of HDR models. The first one was the

canonical HDR function that was a mixture of two gamma functions used in the SPM (http://

www.fil.ion.ucl.ac.uk/spm/). While this model is commonly used in an fMRI analysis, it

cannot capture the variability of HDR shapes across conditions and voxels. If the decoding

information is represented in this variability, we would not be able to utilize this information

with the canonical HDR model. In the second model, to include the variability of

hemodynamic response, we added the first- and second-order derivatives of the canonical

HDR (Friston et al., 1998) as additional regressors. The inclusion of these derivatives

enables the HDR model to fit more variable shapes than using only the canonical one

(Henson et al., 2002). In the third model, to fully include the variability of response shapes
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into the decoding analysis, we deconvolved an event-related HDR for each condition in each

voxel using the FIR model (Glover, 1999). For this model, the response for each condition at

each time point was modeled by a delta function. The modeled time points were restricted

within an interval of single trial (16 s or 12 s) to avoid co-linearity between regressors.

We used a t value of the model fit as the response estimate for all models because the t value

is more stable and often gives better decoding performances than the beta value (Misaki et

al., 2010). For each stimulus condition, one value was taken with the canonical HDR model,

three values were taken with the canonical HDR with derivatives model, and sixty four (for

ITI = 16 s) or forty eight (for ITI = 12 s) values were taken with the FIR model in each

voxel. The GLM analysis was performed for each run independently to obtain multiple

independent response data, which was used for the cross-validation in the decoding analysis

described below.

2-5. Evaluating sensitivity of event-related responses to the stimulus conditions

To investigate whether the HDR shape is sensitive to the stimulus timing differences, one-

way analysis of variance (ANOVA) was performed for the FIR-deconvolved response with

the stimulus condition as an independent variable. Because the number of time points of the

event-related response is larger than the number of samples, the response time points cannot

be used as the independent variable. Instead, the ANOVA was performed in each time point

independently and the F values of all time points were summed up in each voxel. Although

this measure has no statistical meaning, it can indicate the degree of the difference in

response shapes between stimulus conditions. This measure was not used for any statistical

testing but used only for finding representative voxels with large difference in response

shape.

2-6. Decoding analysis

The support vector machine (SVM) classification analysis was applied for the response

values within the ROI of the calcarine region. The LIBLINEAR library was used with L2-

regularized L2-loss support vector classification (Fan et al., 2008), and C parameter was

fixed to 1. Seven contrasts were tested in this study; Lmono:Rmono, L-R500:R-L500, L-

R500:LRbin, R-L500:LRbin, L-R100:R-L100, L-R100:LRbin, and R-L100:LRbin.

Decoding performances were evaluated using the leave-one-run-out cross-validation

(Bishop, 2007; Misaki et al., 2010; Mitchell, 1997); responses in seven runs were used to

train the classifiers, and the remaining run was used to test performance. The average test

accuracy across cross-validation folds was evaluated for each subject. Note that the response

estimation was performed within each run independently, so that the classifier was tested

with a fully independent data for the training. In addition, the region of interest was defined

anatomically independent of functional response, which ensures that the test score is free

from a circular analysis (Kriegeskorte et al., 2009).

Significance of mean decoding accuracy across subjects was examined by the one-sample t

test. The effects of down-sampling and spatial smoothing on the decoding accuracies were

examined with the Friedman test (Demšar, 2006).
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2-7. Dimensionality reduction with the recursive feature elimination

For the FIR-deconvolved response estimate, we also applied recursive feature elimination

(RFE) (De Martino et al., 2008) for dimensionality reduction. While the FIR deconvolution

can capture the variability of HDR shapes, its dimensionality was very large and included

noisy variables. This large dimensionality with noisy variables can cause an over-fitting

problem; the classifier is adapted to a specific noise in the training data and cannot be

generalized to the test data. Dimensionality reduction with RFE could reduce the impact of

this problem.

In the RFE, weight values of SVM were used to select the informative features for

classification. SVM was applied for all the variables at first, and the variables whose

absolute weights were small were eliminated. Then the SVM was applied to the reduced

dimensionality data again. This procedure was repeated to search for the variable set giving

the best classification performance.

RFE was applied only for the training dataset with the second-level cross-validation; six

runs were used to train the classifier and one run was used to evaluate the performance.

Average weight values across the second-level cross-validation folds were used to choose

the eliminated variables; 10 % of remaining variables were eliminated at each step. The

best-performing variable set in the second-level cross-validation was used as the optimal set

to train the classifier in the first-level cross-validation (seven training runs were used). The

test performance was evaluated by the test dataset with a reduced dimensionality. Note that

the test dataset therefore was not used for the variable selection.

2-8. A priori feature selection

Even with the RFE, we might not be able to improve the decoding performance since feature

selection is a difficult problem with a small sample size (Chu et al., 2012). In addition to the

application of RFE, therefore, we extracted four response features from the FIR-

deconvolved response for testing their decoding performances (Fig. 2): 1. The positive peak

amplitude, 2. The positive or negative peak amplitude, 3. The time to peak (TTP), and 4.

The full width at half-maximum response (FWHM).

The first, the positive peak amplitude, was the value of the deconvolved event-related

response at the peak time point. The time point of positive peak was determined from the

average of the deconvolved responses across training runs for each stimulus condition in

each voxel. While we used the same time point as the peak time in all runs, the response

values were taken from the responses of each run so that the values were variable across

runs.

The second, the positive or negative peak amplitude, was the response value at the point of

absolute maximum. In Fig. 2, for example, the absolute maximum is the same as the positive

peak for the response of the first condition (orange line), whereas the negative peak is the

absolute maximum for the second condition (blue line). In this case, response of this voxel

was the positive value for the first condition and the negative value for the second condition.

Note that we used only one point of the response (not the difference between the two points

of positive and negative peak) as an HDR characteristic.
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Whether positive or negative peak is the absolute maximum depends on the baseline (zero

level) of the response. Here, we used the average of the fitted response time courses for all

conditions within an individual run as the baseline for each voxel. The positive or negative

peak time was determined from the average response across training runs for each stimulus

condition in each voxel. We hypothesized that the inclusion of negative response might help

differentiate the HDR characteristics across stimulus conditions.

The third and fourth were the TTP and the FWHM of the FIR-deconvolved response. TTP

was evaluated as the time to a positive peak point in each run. FWHM was the span (unit of

TR) of responses whose amplitude was higher than the half of the maximum response.

3. Results

3-1. Event-related response differences across the stimulus conditions

Fig. 3 shows the event-related responses at voxels with large accumulated F values for one

representative subject and the maps of accumulated F values. The values in the event-related

response plots were the estimates of the FIR model (t value) averaged across runs. Thin

dotted lines show the range of one standard error of the means across runs. For evaluating

the accumulated F value, ANOVA was performed for the main effect of Lmono and Rmono

in Fig. 3A, LRbin, L-R500, and R-L500 in Fig. 3B, and LRbin, L-R100, and R-L100 in Fig.

3C. The selected voxels had the largest F values within the ROI and were at least 8 mm

apart from each other to display the variety of HDR shapes. The same plots for the other

subjects are shown in Fig. S1 in the supplementary material.

The event-related response shapes were variable across stimulus conditions, voxels, and

subjects. The timing difference of the stimulation was not necessarily seen as a

corresponding phase shift or prolonged response duration of HDR. At voxel 5 in Fig. 3B, for

example, a 500-ms onset difference of ocular dominance activation was observed as a

difference of peak amplitudes; LRbin had lower amplitude than L-R500 and R-L500. At

voxel 6 in Fig. 3B, the difference can be seen in response amplitude, durations, and TTP;

LRbin had lower amplitude and shorter FWHM than L-R500 and R-L500, and L-R 500 and

R-L500 had different TTP and FWHM. The difference also can be seen in the size of

undershoot as in the voxel 10 for the 100-ms onset difference and in the voxels 3 and 4 for

the difference of monocular stimulations.

To investigate whether these differences of HDR could be utilized to discriminate stimulus

conditions in the MVPA, we performed a decoding in the next analysis.

3-2. Decoding with canonical HDR, canonical HDR with derivatives, and FIR response
estimates

Fig. 4 shows the mean decoding accuracies across subjects and their standard errors of mean

for the response estimates of the canonical HDR, the canonical HDR with derivatives, and

the deconvolved HDR with FIR model. For these decoding, all the voxels in the ROI were

used as input for the analysis. The figure also shows the results of RFE for the FIR-

deconvolved response (FIR with RFE). Fig. 4A shows the average results of all 12 subjects.

The results of the subject groups with different ITIs (16s and 12s) were averaged in this
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figure because no systematic difference between the groups was observed. Fig. 4B shows

the average results of the six subjects who performed the conditions of 100-ms onset

difference.

The decoding accuracies for the canonical HDR and the FIR were not significantly different

from the chance level (50 %) in all contrasts. Even when the RFE was used for feature

selection, the decoding accuracies were still as low as the chance level. The decoding

accuracy for the canonical HDR with derivatives was significantly higher than the chance

level (p < .05) only at the contrast of L-R500:LRbin and R-L500:LRbin.

3-3. Decoding with a priori feature selection

Fig. 5 shows the mean decoding accuracies across subjects for the extracted response

features from the FIR-deconvolved HDR. Statistically significant performance was found

with the positive peak amplitude at the contrasts of Lmono:Rmono, L-R500:LRbin, and R-

L500:LRbin. TTP and FWHM had statistically significant performance only at the contrast

of L-R100:R-L100 and R-L500:LRbin respectively.

In contrast to unstable performances of the above-mentioned response features, the use of

the positive or negative peak amplitude yielded extremely high and significant decoding

accuracies for all contrasts. With this response value, even the 100 ms onset difference of

ocular dominance activation could be reliably decoded, even though the temporal sampling

interval of the BOLD signal was only 250 ms.

To investigate whether the positive or negative peak amplitude measure can work also for

the fitted response of the canonical HDR with derivatives, we extracted the positive or

negative peak amplitude from the fitted response of this model. The results are shown as

‘HDR+Deriv. fitted Peak (pos/neg)’ in Fig. 5. While its decoding performance was lowere

than using the deconvolved response, their accuracies were significantly high for all the

decoding contrasts.

3-4. The effects of spatial and temporal sampling frequencies on the decoding

To further investigate the effects of spatial and temporal frequencies of functional imaging

on decoding performance, we applied the same decoding analysis to the temporally down-

sampled and spatially smoothed datasets. Because robust decoding performance was found

only with the positive or negative peak amplitude, the effects were evaluated only for this

response measure.

Fig. 6 and 7 shows the effects of temporal down-sampling and spatial smoothing

respectively on the decoding accuracies with the positive or negative peak amplitude of the

deconvolved HDR. No significant effects of down-sampling and spatial smoothing were

found by the Friedman test (Demšar, 2006).

3-5. Informative response shapes for decoding

Fig. 8 shows the event-related responses for the voxels with the largest absolute SVM

weight from one representative subject (the equivalent figures for the other subjects are

shown in Fig. S2 in the supplementary material). Large absolute SVM weight means high
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responsibility for the decoding so that the responses in these voxels are thought to mostly

contribute to the successful decoding. The horizontal dashed-lines in the response plots

indicate the positive or negative peak values used as inputs for the decoding.

Most of the voxels with the largest absolute SVM weight had a positive peak value for one

condition and a negative peak value for the other. While the event-related responses for

different conditions were similar with each other, a small difference at peak point was

enhanced by choosing the positive or negative peak values as the representative value.

Voxel 5 in Fig. 8, for example, had similar positive peak amplitudes for L-R500 and R-L500,

while the undershoot amplitudes are different from each other. In this voxel, the positive

peak was the absolute maximum in R-L500, while the negative peak at undershoot was the

absolute maximum in L-R500 condition. This flip of sign for the picked response values

enhanced the contrast of response values, in turn, allowing for the high decoding accuracies.

4. Discussion

4-1. Decoding timing difference of ocular dominance stimulations

The HDR in the human visual cortex can reveal subtle timing differences of ocular

dominance column stimulation. The relationships between the stimulus condition and

response shape, while consistent within voxels, were highly complex and different across

voxels and subjects, so that it was difficult to estimate an absolute timing of neural

activation from the observed hemodynamic responses at each voxel. However, the HDR

shape was robustly linked to neural activation, allowing the use of the event-related HDR

features to discriminate a difference of onset timings in neural activations.

Decoding for the multi-voxel responses estimated with the canonical HDR model and the

FIR-deconvolved HDR, did not yield high decoding accuracies. The low performance of the

canonical HDR is likely due to an inability in capturing the differences in HDR shapes

across voxels that could be informative for discriminating the conditions. The deficient

performance of the FIR-deconvolved responses could be due to its large dimensionality with

many noisy time points causing an over-fitting problem in a multivariate classification

analysis. The RFE with FIR did not improve the decoding performance. This result indicates

the difficulty of extracting useful information for decoding with a statistical feature selection

method from a limited number of samples (Chu et al., 2012).

The canonical HDR with two derivatives had better decoding performance than using only

the canonical HDR and the FIR-deconvolved responses. This model had more flexibility to

fit the variable HDR while keeping data dimensionality small. While significant

performance of this model was restricted in a few decoding contrasts, the result suggests that

variability in the HDR shape had information for decoding. In fact, the observations in Fig.

3 indicate that there is usable information in the differences of HDR shapes to decode the

timing difference of ocular dominance activations.

To find an informative feature of HDR for decoding the timing difference of ocular

dominance stimulations, four response characteristics of HDR were tested; positive peak

amplitude, positive or negative peak amplitude, TTP, and FWHM. In result, we found the
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positive or negative peak amplitude yielded very high decoding accuracies. The observation

of the event-related HDR (Fig. 3 and Fig. S1 in the supplementary material) suggests that

the positive peak amplitude, TTP, and FWHM could also be informative for discriminating

the stimulus conditions. However, decoding scores for these response features did not yield

as high accuracies as the positive or negative peak amplitude. The lower performances for

the TTP and FWHM might imply the difficulty of using a timing property of HDR as a

reliable measure, because it could fluctuate considerably unless averaging across voxels and

runs. For the peak amplitude estimation, an average HDR across training runs was used to

estimate the peak time and the same time point was used for all runs to obtain the amplitude

estimates. This enables us to robustly estimate the informative time point.

While the amplitude measures yielded better decoding scores, using only the positive peak

was not sufficient to achieve a robust decoding performance. Including the negative peak

amplitude was needed to achieve significantly high decoding accuracies. The plots of

informative HDR for decoding (Fig. 8) revealed that taking negative peak as a response

characteristic enhanced the contrast of responses. In most informative voxels, event-related

response time courses between conditions were very similar, but selecting the positive or

negative peak amplitude could effectively magnify a small difference between responses,

resulting in very high performance of decoding.

Although the negative response of the BOLD signal does not always reflect the magnitude

of neural activation (Pasley et al., 2007; Schridde et al., 2008; Seiyama et al., 2004), using

the negative value enhanced contrasting different HDR shapes, contributing to the better

decoding performances.

4-2. Complex spatiotemporal relationships between stimulus timing and HDR

One of the interesting findings in this study was that we could decode the 100-ms onset

differences of ocular dominance activations even though the temporal sampling rate of the

BOLD signal was 250 ms and the sampling size of functional imaging (2 × 2 × 3 mm) was

larger than the width of ocular dominance columns (< 0.7 mm; Adams et al. (2007)). Further

examination of the effect of sampling frequencies on the decoding performances revealed

that temporal down-sampling and spatial smoothing did not reduce the decoding accuracies.

No effect of temporal down sampling was expected from the slow temporal profile of the

hemodynamic response (Robson et al., 1998). Significant decoding accuracies with peak

positive/negative amplitude for the fitted response of HDR and derivatives model also

indicate that a low temporal frequency model is sufficient to capture the characteristic of

hemodynamic response shape. Using a model-based regressor might enable us to apply the

current analysis to the rapid event-related design experiments if the spatiotemporal BOLD

response still has information when multiple responses are overlapped in time.

What is interesting here is that such slow response still has information for discriminating

millisecond stimulus timings. While this possibility has been shown in the previous studies

(Grinband et al., 2008; Hernandez et al., 2002; Menon et al., 1998a; Menon and Kim, 1999;

Menon et al., 1998b; Ogawa et al., 2000; Robson et al., 1998; Tomatsu et al., 2008), the

current result is the first to demonstrate that the multivoxel response pattern of
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hemodynamic responses has information even if the sampling rate is much slower than the

events for decoding.

Spatial smoothing also did not affect the decoding performance. This fact might raise a

question that the source of decoding information is not columnar responses but biased

spatial distribution of ocular dominance columns. It has been shown that left- and right-eye

dominance columns are not equally distributed in the region of peripheral (> 15°) visual

field (Adams et al., 2007); right-eye column is denser than left-eye column in the left

hemisphere and vice versa in the right hemisphere. The map of ocular dominance contrast

(Fig. S3 in the supplementary material), however, did not show such pattern. In addition, the

absolute weight size of SVM classifier was not correlated with the size of ocular dominance

response contrast except in the decoding of Lmono:Rmono (Table S1 in the supplementary

material). These indicate that the high accuracies of timing decoding were not due to a

biased distribution of ocular dominance responses.

The previous study (Op de Beeck, 2010) has also shown that spatial smoothing did not

affect accuracy of decoding columnar-level responses. This fact, however, does not

necessarily imply that the decoding information is not from column-size responses. Indeed

some studies (Gardner, 2010; Kriegeskorte et al., 2010; Shmuel et al., 2010) suggested that

columnar-size neural responses can be represented as a low spatial frequency pattern of the

BOLD signal due to spread of blood flow. Actually, the fundamental mechanism allowing

hyper-spatial-resolution decoding (discriminating columnar-level activations with large-

sized voxels) is still controversial and various possible models have been proposed

(Chaimow et al., 2011; Freeman et al., 2011; Gardner, 2010; Kamitani and Sawahata, 2010;

Kriegeskorte et al., 2010; Op de Beeck, 2010; Shmuel et al., 2010; Swisher et al., 2010).

We observed that the temporal difference of stimulus presentation was reflected in various

HDR shapes. The response for the monocular stimulations (Lmono and Rmono) also implies

a complex relationship between the neural activation and the HDR. While the two

monocular stimulations did not have a temporal difference, we observed different response

time courses for these conditions (Fig. 3A). These results suggest that there could be a

complex spatiotemporal relationship between neural activation and multi-voxel pattern of

HDR. The complex relationship between the neural activation and the BOLD signal has

been suggested by Kriegeskorte et al. (2010) as the complex spatiotemporal filter model.

This model considers that HDR at each voxel reflects not only the neural activations within

the voxel, but also is affected by HDRs in surrounding voxels due to the spread of blood

flow and thus oxygenation. Inhomogeneous flow speed, direction, as well as oxygen

extraction rate across voxels would result in a variety of HDR shapes across voxels. This

means that even when a neural activation within a voxel is the same, its HDR could be

variable depending on the neural activations in surrounding voxels. While this variability is

nuisance noise for evaluating activation in each voxel independently, we suggest that it is

informative for decoding a population activation pattern using the MVPA.

As shown in the simulation of Kriegeskorte et al. (2010), the contrast of columnar-level

neural activations could be enhanced by a complex spatiotemporal interaction across HDRs

of multiple voxels. The difference of spatial patterns of neural activations could also be
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represented as a different time courses of HDR because the different spatial activations

could elicit different flow patterns of BOLD signal in a local region. This notion is

consistent with the observation in the current experiment that the monocular stimulations

without timing difference elicited different time courses of HDR (Fig. 3A).

In addition, based on this model, the timing difference of neural activations could be

represented as a difference of peak response amplitude of HDR. As shown in the previous

studies (Grinband et al., 2008; Hernandez et al., 2002; Menon et al., 1998a; Menon and

Kim, 1999; Menon et al., 1998b; Ogawa et al., 2000; Robson et al., 1998), HDR is sensitive

to subsecond timing difference of neural activations. The timing difference of HDR at each

voxel could change the spatiotemporal flow pattern of BOLD signal in a local region,

resulting in an amplitude difference of HDR in multiple voxels due to complex

spatiotemporal interactions across voxels.

4-3. Limitations of the analysis

Our results demonstrated a hyper-resolution spatiotemporal decoding; activations in ocular

dominance columns (< 0.7 mm) with 100-ms onset difference could be discriminated from

the BOLD signal with 250 ms TR and 2 × 2 × 3 mm voxels. This result, however, does not

indicate that we could detect absolute timing of neural activations with high spatiotemporal

resolution from the BOLD signal. What we demonstrated here was the ability to detect a

difference in patterns of neuronal population activation with subtle timing difference, and

not to identify the timing of neural activation in each column; the onset timing of neural

activations or stimulations could not be reconstructed.

Uncertainty of what neural activation contributed to decoding is also the limitation. We

assumed that monocular visual stimulation elicits activation of ocular dominance columns

with the corresponding timing. However, unknown neural activation that is not linked to

stimulus timings might exist. In the current analysis, it is difficult to examine such

confounding effect, because the analysis cannot identify the neural activations

corresponding to the stimulus conditions.

Furthermore, the current decoding analysis did not necessarily utilize the magnitude of

neural activation in each voxel. High decoding performance was achieved with the positive

or negative peak amplitude, which does not necessarily reflect the magnitude of neural

activation in each voxel. The current multi-voxel pattern analysis, instead, utilized the

byproduct of neuronal population activation seen in the multi-voxel pattern of HDR,

possibly resulting from complex spatiotemporal interactions between HDRs across multiple

voxels.

While there is uncertainty about the interpretation of the relationships between the utilized

signal and neural activations, the discrimination of the multi-voxel pattern related to the

stimulus condition is sufficiently beneficial for functional neuroimaging studies. Even if we

could identify a neural activation, it does not necessarily imply its function by itself. The

function of neural activation has to be evaluated from its relationship to a stimulus or task.

Finding the relationship between the multi-voxel response pattern and stimulus condition

can imply the function of neural activation.
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5. Conclusion and future directions

With BOLD fMRI, it is possible to discriminate 100-ms onset difference of ocular

dominance stimulations even when the spatial and temporal resolutions of the BOLD

measurement were less than the decoded information. With the positive or negative peak

amplitude of the deconvolved event-related response, MVPA can extract information of

neuronal population activation resided in the variable HDR shapes in multiple voxels.

While keeping in mind the limitations of the current analysis method, this result is still

promising in BOLD functional neuroimaging. Such analysis can be employed to investigate

whether a certain region has information about a subtle timing difference of stimulations as

well as to investigate information resided in a spatiotemporal pattern of neuronal population

activation.

There are many animal studies indicating that timing of neural activation encodes

information about a stimulus that cannot be seen in the firing rate (Arabzadeh et al., 2006;

Bair, 1999; deCharms and Merzenich, 1996; Matsumoto et al., 2005; Montemurro et al.,

2008; Optican and Richmond, 1987; Reich et al., 2001; Singer, 1999; Sugase et al., 1999;

Vaadia et al., 1995; Wyss et al., 2003). Such information, however, is usually encoded in a

millisecond-order difference across single neurons, so that it had been thought impossible to

decode with BOLD fMRI. The current results, however, suggest that such a short timing

difference of small-sized neural activations might be represented as the detectable BOLD

signal changes in a multi-voxel response pattern of variable HDR. While it is still unclear

how high frequency change of neural activation can be represented in the multi-voxel

spatiotemporal pattern of HDR, the current results demonstrate the possibility to investigate

neural activations of high spatiotemporal frequency with BOLD signal.

We have demonstrated with our analysis that BOLD signal has more useful information than

previously thought. MVPA with a deconvolved HDR enables us to utilize this unused

information to broaden the scope of application of the BOLD fMRI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Millisecond onset differences of ocular dominance stimulations were decoded in

fMRI.

Hemodynamic response (HDR) was sensitive to 100-ms timing difference of stimuli.

HDR shapes corresponded to stimulus timings in complex ways.

Multi-voxel pattern of peak amplitudes of HDR yielded high decoding scores.

100ms onset difference of ocular dominance responses can be decoded from BOLD

signal
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Figure 1.
Schematic diagrams of stimulation protocol. Lines in each panel show the time course of the

state of left and right LCD shutters (up is open). Visual stimulus was presented while either

of the LCD shutter was opened.
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Figure 2.
Schematic diagram of response characteristics of event-related HDR. Two lines (orange and

blue) show the time course of event-related responses for two different conditions in one

voxel. 1. The positive peak amplitude was defined as the response at the maximum

amplitude point of the event-related response. 2. The positive or negative peak amplitude

was defined as the response at absolute maximum point, which is positive value for the first

condition (orange line), and the negative value for the second (blue line) condition. 3. The

time-to-peak (TTP) was defined as the duration until the response reaches the positive peak

point from the onset of the condition. 4. The full-width of half maximum (FWHM) response

was defined as the duration of the response in which response was higher than the half

maximum amplitude.
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Figure 3.
Maps of accumulated F values across all time points of event-related response for the main

effect of Lmono and Rmono (A), LRbin, L-R500, and R-L500 (B), and LRbin, L-R500, and

R-L500 (C). Event-related responses at voxels with largest accumulated F values were

shown in the lower rows in each panel. The selected voxels were at least 8 mm apart from

each other to display the variety of HDR shapes. The solid lines show the mean response

estimates across runs and the thin dotted lines show the standard error of mean across runs.

The digits on the map indicate the positions of the voxels selected to show their event-

related responses.
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Figure 4.
Mean decoding accuracies and their standard errors across twelve subjects (A) and across

six subjects (B) for the response estimates with the canonical HDR model and Finite

Impulse Response (FIR) models. The results of the Recursive Feature Elimination (RFE) for

the FIR estimated responses are also shown. No result was significantly higher than the

chance level (50 %) at p < 0.05 with one-sample t test.
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Figure 5.
Mean decoding accuracies and their standard errors across twelve subjects (A) and across

six subjects (B) for the extracted features of hemodynamic response shape. The features

were the positive peak amplitude (Peak (pos)), positive or negative peak amplitude (Peak

(pos/neg)), time to peak (TTP), and full-width at half-maximum of response (FWHM).

These response characteristics were extracted from deconvolved HDR. Decoding accuracies

for positive or negative peak amplitude from the fitted response of the canonical HDR with

derivatives were also shown (HDR+Deriv. fitted Peak (pos/neg)). Asterisk (*) and double

asterisk (**) indicate that the accuracy is significantly higher than the chance level (50 %)

by p < 0.05 and p < 0.01 respectively with one-sample t test.
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Figure 6.
The effect of down sampling on decoding accuracies with the positive or negative peak

amplitude of HDR. Mean accuracies and their standard error across twelve subjects (upper

row) or across six subjects (lower row) are shown. Double asterisk (**) indicates the effect

of down sampling is significant by p < 0.01 with the Friedman test.
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Figure 7.
The effect of spatial smoothing on the decoding accuracies with the positive or negative

peak amplitude of HDR. Conventions are the same as in Figure 5.
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Figure 8.
Maps of the weight of support vector machine classification for Lmono:Rmono (A), L-

R500:R-L500 (B), L-R500:LRbin (C), and R-L500:LRbin (D) for one representative subject

(Subject 12 of Fig. S2 in the supplementary material). Event-related responses at voxels with

largest absolute weight values were shown in the lower rows in each panel. The selected

voxels were at least 8 mm apart from each other to display the variety of HDR shapes. The

solid lines show the mean response estimates across runs and the thin dotted lines show the

standard error of mean across runs. The digits on the map indicate the positions of the voxels

selected to show their event-related responses. The horizontal dotted lines in the event-

related response plot are the positive or negative peak value used for the decoding.
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