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Population transcriptomics with
single-cell resolution: A new field
made possible by microfluidics

A technology for high throughput transcript counting and data-driven definition of

cell types
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Tissues contain complex populations of cells. Like

countries, which are comprised of mixed populations of

people, tissues are not homogeneous. Gene expression

studies that analyze entire populations of cells from

tissues as a mixture are blind to this diversity. Thus,

critical information is lost when studying samples rich in

specialized but diverse cells such as tumors, iPS

colonies, or brain tissue. High throughput methods are

needed to address, model and understand the constitu-

tive and stochastic differences between individual cells.

Here, we describe microfluidics technologies that utilize

a combination of molecular biology and miniaturized labs

on chips to study gene expression at the single cell

level. We discuss how the characterization of the tran-

scriptome of each cell in a sample will open a new field

in gene expression analysis, population transcriptomics,

that will change the academic and biomedical analysis

of complex samples by defining them as quantified

populations of single cells.
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Introduction

Even for cells that are, in appearance, functionally homo-
geneous, for instance neurons sharing shape, neurotrans-
mitter, and spatial location, it is not proven that
these resemblances correlate at the transcriptome level.
Concomitantly, very specificmolecular markers are also scarce
(see Okaty et al. [1] for review). Cell mixtures are of limited
power for analyzing the dynamics of gene expression, as one
cannot distinguish between a change of the same amplitude in
all the cells, a change taking place in a subset of the cells, or a
change in the composition of the cell population (Fig. 1).
Parallel analyses of single cells can resolve these questions,
and change our view of cell populations. For example, show-
ing phenotypic variations between individuals even when
they are strongly related, such as cells growing together in
cell culture [2, 3]. These single-cell analyses are based mainly
on transcript imaging [4], PCR [5], or transcriptome analysis by
microarray, and more recently, sequencing [6].

Some of these pioneering works have established that
initiation of transcription can occur as bursts, for instance
in Chinese hamster ovary cells [7], Dictyostelium [8],
Saccharomyces cerevisiae [9], etc. During these bursts,
multiple copies of a transcript are generated in a short interval
followed by a period of rest that can be long when compared
with the RNA’s half-life. Thus, in a population of cells where a
given protein is expressed, some cells may actually contain no
corresponding transcript. Combined with other sources of
variation like the cell cycle, these biological mechanisms
create a large collection of different expression profiles, which
nevertheless belong to the same cell type.

Collectively, the single-cell whole-transcriptome profiles
contain information that can increase our understanding of
the regulatory gene network in these cells (see Munsky et al.
[10] for review). In addition, they provide an opportunity
for a data-driven identification and definition of cell types,
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especially given the increasing throughputs in processing and
analysis. This will add a new dimension to tissue sample
analysis, allowing their description as a population of cells
characterized by their cell types, similar to blood counts. We
term these studies population transcriptomics. This approach
has direct applications in neuroscience, where there is cur-
rently no comprehensive definition of cell types at the mol-
ecular level [1], or in cancer research, where tumors are
heterogeneous and involve cancer cells as well as somatic
cells that have a stable genome but are induced into patho-
logical functions by the tumor cells. In stem cell research, it
will allow a better understanding of the population dynamics
within cell colonies or during trans-differentiation, where the
role or effect of cell heterogeneity is still unclear.

Microfluidics is the study and the utilization of liquid flows
in small volumes, and this miniature environment allows the
reduction of reagent volume, avoids loss of sample or sample
contamination, and provides a high throughput system for
the integration of multiple functions in a MicroTotal Analysis
System (mTAS) [11]. Most microfluidics devices can be described
as tiny assembly lines where reactions are carried out as the
samples circulate from one specialized compartment to another
through thin channels. These devices are embedded in carved
platforms called chips, which are usually engineered by com-

puter-aided design and produced using a system of photoli-
thography, masks, and moulds [12] inspired by the methods
of production of Micro Electro Mechanical Systems (MEMS).
Chip designs can be classified according to the method of
creating isolated compartments, with either solid borders mate-
rialized by microchambers, microwells, microvalves, etc., or
fluid borders, in particular, microemulsions [13]. While
each cell comprises a compartment in itself, the methods for
determining mRNA expression levels require cell lysis and,
therefore, rely on the microfluidics device to isolate one cell
per compartment.

In this review we will describe how single cell transcrip-
tome analysis using microfluidic formats opens the doors to
understanding cell population structures. First, we will focus
on microemulsions (Fig. 2), which promise a high throughput
single cell analysis. Next, we will review the ‘‘all integrated’’
devices for single cell analysis of transcript expression levels.
Finally, we will introduce new ways to investigate single cell
transcriptomes and discuss the impact of high-throughput
microfluidics.

Microdroplets are tiny liquid
compartments

Droplet microfluidics [14] refers to the formation and transport
of liquid nano- to microdroplets in a non-miscible carrier
medium such as oil. Water-in-oil emulsions provide a popular
and scalable system to produce these picoreactors of very
small volume. Because they are generated at high frequency
(several kHz) [15], they offer opportunities for high throughput

Figure 1. The limits of cell mixture analysis. If an increase in gene
expression is detected in a mixture of cells, is it because of: (1) a
change in all cells of the population? (2) a stronger change in one
cell type, the other type being non-responsive? or (3) proliferation of
a highly-expressing cell type?
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and single cell analysis. The oil (mineral, silicone, or fluoro-
carbon) that separates each droplet is non-miscible and inert.
Surfactants prevent droplets from coalescing. Recently,
fluorocarbon oils have gained popularity, thanks to the devel-
opment of non-ionic, biocompatible surfactants [16, 17].
Microdroplets can be formed by focusing oil and water flows

(Fig. 2 and [18]). Single cell encapsulation is not traumatic for
cells and allows cell survey, cell screening, multicellular
organism growth [19], or transfection [20].

Cells in suspension in the aqueous phase are encapsulated
stochastically following a Poisson law [21]. As a consequence,
a large number of empty droplets are produced under con-
ditions that prevent the encapsulation of two cells in the same
droplet. To counter this drawback, different strategies have
been adopted: inlet microchannel geometry design for self-
organization of cells [22], on-demand laser driven drops [23],
or improvement in droplet sorting. In the latter, after single
cell encapsulation, microdroplets are sorted by shear-induced
flow [21], fluorescence-activated dielectrophoresis (DEP) [24],
or piezoelectric effect [25].

Compartmentalization can also be achieved by simple
spatial separation. For instance, Lin et al. [26] created arrays
of droplets covered by oil and separated with hydrophobic
areas on a cover slip, requiring no special instruments. More
sophisticated strategies also exist. Using a commercially avail-
able microdispersing instrument similar to inkjet printers,
Liberski et al. [27] printed an array of droplets of medium,
in which they injected cells by printing a smaller volume in
the larger droplet medium. The droplets were covered by oil to
prevent evaporation, but others achieved setups with no oil by
maintaining a locally high hygrometry [28]. Lastly, other
water-in-oil confinements have been investigated, for instance
with the chemistrode [29], where a succession of oil phases and
aqueous ‘‘plugs’’ provides a temporal resolution, or the
SlipChip [30], where channels materialized by the superposi-
tion of two carved plates can be reversibly converted into
nanoliter wells.

How to manipulate microdroplets?

Once the droplets are formed, it is difficult to introduce new
reagents and carry out complex protocols. It is therefore
necessary in some cases to break up the emulsions. To main-
tain the monoclonality of the reaction products after removing
the oil phase, that is, to keep the single-cell resolution after
opening the compartments, researchers have investigated two
possibilities. In the first, the reaction products are bound to
beads. The most prominent example is the 454 sequencing
platform [31]. Alternatively, reaction products or cells have
been encapsulated in microgels, such as agarose [32] or poly-
ethyleneglycol, gelated by polymerization with hyper-
branched polyglycerol [33]. After the reaction, the gel drops
solidify, thus trapping the amplicons. To avoid diffusion
of PCR products out of the clonal agarose beads, Leng
et al. [34] conjugated the forward PCR primers directly with
the agarose.

Given the stochasticity in gene expression levels, it is
important that no artificial noise be added to the biological
variations, which may be informative. Therefore, the single
cell devices must avoid inducing stress pathways that are
likely to cause the transcription of some genes or the degra-
dation of some transcripts. In addition to radical solutions like
pre-fixation, the microfluidic designs can perform cell lysis
quickly after tissue dissociation while maintaining high
throughput compared to hand picking. Table 1 summarizes

Figure 2. Droplet encapsulation of single cells with a microfluidic
device. Single cells viewed as a complex heterogeneous population
of individual cells interacting with each other and expressing different
sets of transcripts. Single cells are loaded for encapsulation in a
microfluidics device. The phase containing the cell suspension is
squeezed by two oil flows that detach microdroplets containing
single cells. Each droplet is a microreactor where reactions are con-
fined. Single-cell transcriptome studies yield profiles to infer the cell
type, the cell state, or the regulatory gene network active in the cell.
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some methods to snapshot the cellular state while preventing
cells from expressing stress genes.

Multi-step reactions can be facilitated by delivery of new
reagents for the next reaction steps. In microdroplet formats,
reagents can be added by picoinjection or by merging droplets
(Table 2), as demonstrated in the high-throughput single cell
screening reported by Brouzes et al. [35], or in the microfluidic
systems for digital DNA amplification and counting using
rolling circle as shown by Mazutis et al. [36]. Droplet fusion
can be utilized not only for delivering contents; it can also be
used for simple merging of droplets, for instance by electro-
coalescence [37]. Recently developed mesh-integrated arrays
for merging and storage [38] offer the possibility to isolate
single cell drops in picoliter compartments and to mix
reagents for single cell-based assays. Incubation devices for
cells or reactions are detailed in Table 3.

Altogether, these microdroplets are a toolbox in which the
usual molecular biology reactions performed with microtubes
and micropipettes are being reimplemented at a much smaller
scale for high-throughput single-cell analysis pipelines. But
sometimes this approach, which causes some cells to be
wasted, is not optimal. Proof-of-principle encapsulation devices
often assume an unlimited input of cells, which is not realistic
except in the cases of abundant primary cells or cultured cells.
These experimental systems take the best fromhigh throughput
designs, but more focused designs are necessary when the cells
of interest are determined in advance or are very limited in
quantity, as in the case of early embryos, and therefore should
not be lost. Devices using capture chambers instead of droplets
still offer nanoliter-scale reactions, while reaching capture effi-
ciencies as high as 5% [39]. More complex combinations of
technologies, with droplet sorting in the chips and cell pre-
labeling (for instance by the injection or endocytosis of
markers) might not be available in the short-term.

Integrated microfluidics devices are like
miniaturized assembly lines

The construction of integrated devices for transcriptome
analysis is challenging, as it requires the combination of the
critical steps previously described (Fig. 3). Zhong et al. [40]
used microchambers in which the mixing of reagents is easy,
thus making the transition from RT to PCR very straightfor-
ward. They obtained a RNA to cDNA conversion yield of 54% in
the device, compared to 12% with the same protocol executed
in conventional tubes. Bontoux et al. [41] designed a two
circular chamber device for HPRT and GAPDH RT-PCR ampli-
fication from a single cell. But attempts at whole-transcriptome

Table 1. Non-traumatic cell lysis methods

Methods Techniques References Characteristics Drawbacks

Optical Laser-induced

plasma formation

[87, 88] Shock waves induce cell lysis

Nanosecond to millisecond scale

Need equipment

Chemical Lysis buffer [89] Chemical disruption at 758C of

cell membrane

Powerful

Enzyme denaturation in

case of one step RT-PCR

Electrochemical Electric field [90] Electric field and emulsification agent Special buffer conditions required

Table 2. Methods to mix reagents in microdroplets

Methods Principe Characteristics References

Microdroplets

merging

Passive Decompression

merging

Microchannel geometry change Continuous phase drainage,

first drops delay

[18, 91–94]

Active Electrocoalescence With electric field, modification of

ionic charge of droplet interface

Droplets with opposite charge

attracted

[21, 95, 96]

Laser fusion Localized heating close to the

touching interfaces evacuates the

surfactant molecules and oil film.

Fast and need equipment [18]

Magnetic beads

based fusion

With magnetic beads embedded in

drops, move drops in order to merge
them

Easy control of drops merging

and allow reagent mixing, In oil
in air microdroplets

[89, 97]

Picoinjection Reagent is injected in a microdroplet

with picoinjector. Pico injection is
triggered with an electric field.

Precise, need electrodes for

picoinjection control.

[98]

Table 3. Incubation systems

References Characteristics

[99] Microwave dielectric heating with indium alloy
wire inserted into the PDMS chip

[17] Long serpentine channel (144 mL)
[100] ‘‘Picotiter array’’ using parallel channels, to

monitor the growth rate of single cells
[101] Immobilization in local storage areas
[102] Immobilization in array, with capture rates above

90%. Reversion of flow allows droplets release
[103] Large pillars-supported storage reservoir

localized in the end of the device
[24] External incubation, collecting droplets with a

Pasteur pipette, and reloading them with a syringe
[52] Delay lines made of elongated channels under

reduced flow
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RNA amplification by template-switching failed, most likely
due to the lack of a purification step between RT and PCR; in
the absence of purification, the template-switching oligonu-
cleotides compete with the universal PCR primers, thus inhib-
iting the amplification reaction. Toriello et al. [42] assembled
the most complete device, which includes cell selection in a
nanoreactor, capture, lysis, reverse-transcription, PCR, puri-
fication of products, and separation.

By adjusting or producing components to fit their needs,
multiple teams have assembled droplet-based devices of
increasing complexity. It is expected that transcriptome
analysis is also likely to be achieved using this compartmen-
talization strategy. Multiple groups have already demonstrated
RNA capture followed by cDNA synthesis [40, 43, 44] and PCR
amplification on the microdroplets format [45–47].

Transcriptome analysis includes the study of non-coding
RNAs such as micro-RNAs, and White et al. [39] estimated
miRNA and mRNA molecule counts by qPCR in K562 cells
using a multichamber design where the cells were captured,
washed, and lysed, and cDNAs synthesized and then amplified
by PCR with gene-specific primers. In addition to easy reagent
flow control, microchambers also allow parallelization of reac-
tions, and can process up to 300 cells per chip.

While already amulti-step protocol, PCR itself is a building
block for more complex workflows. A high-throughput single
copy genetic amplification (SCGA) process has been developed
by Kumaresan et al. [48]. In this process, cells or target DNA
are encapsulated in nanoliter droplets containing functional-
ized beads [49]. The PCR products are bound to the beads, and
analyzed in flow cytometers. With a throughput of one million
droplets per hour as a design goal, Zeng et al. [50] reported the
conception of Microfabricated Emulsion Generator Arrays
(MEGA), in which single cells are encapsulated in droplets
containing beads coated with forward PCR primers, and fluo-
rescently labeled reverse PCR primers. After cell lysis and PCR,
the beads are bound with fluorescently labeled amplicon if the
PCR was positive. The result of the experiment is then read by
counting in a flow cytometer, and the beads exhibiting fluor-
escent labels are chosen for each target gene.

Multiplexing of devices is achieved in a straightforward man-
ner by replicating a building block on the lab chip. This
strategy fits particularly well in cases where the reagents or
the starting materials are pre-arranged in standard formats
such as the 96-well plate. But alternatives are needed when
aiming at higher orders of magnitude. By preparing a reagent
droplet library in which each droplet contains a specific primer
pair and these are fused to droplets containing single-cells,
Tewhey et al. [51] developed an enrichment device for large-
scale targeted sequencing. Incubation is conducted outside
the device in a thermocycler and the products are recovered by
breaking the emulsion with a destabilizer solution. Another
modular strategy, with two devices connected by an incu-
bation channel functioning as a delay line [52], was described
by Agresti et al. [53]. This featured cell encapsulation, drop
incubation, and sorting for directed evolution. In another
screen, Brouzes et al. [35] fused a library of single-chemical
droplets to droplets containing single human monocytic U937
cells. The chemical contents of the merged droplets were
tracked by optical coding with a combination of fluoro-
chromes, a strategy that might be employed later in a different
context, for instance to record treatments, spatial origin or
temporal series.

Single-cell expression levels measured
as transcript counts

Devices that can prepare large numbers of single cells for gene
expression analyses open the way to a new representation of
the cell’s transcriptome. With current studies of cell mixtures,
transcript expression levels are measured relative to each
other using methods such as quantitative PCR, microarrays,
cDNA sequencing (RNA-Seq, etc.) or in situ hybridization.
Consequently, our tools and concepts are centered on these
approaches in which a significant fold-change will be a
positive result. However, relative expression levels are an
incomplete readout of a simpler parameter: the number of
transcripts present in a sample.

Figure 3. Steps to integrate in a device for single cell
transcriptome profiling. In an all-integrated device, single
cells are isolated in microcompartments (Step 1). Total
mRNA is released by cell lysis (Step 2). In the next step,
mRNAs are converted into cDNA by reverse transcrip-
tion (Step 3). PCR amplification follows with on-board
mechanisms for temperature cycling or external heating
and cooling (Step 4). Finally the generated amplicons
are collected and purified for sequencing (Step 5).
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Single-cell whole-transcriptome counting technologies aim at
absolute precision. One key challenge is to prevent loss of
templates. Losses seriously complicate the interpretation of
the data since the absence of signal would not exclude that the
cells were expressing the RNA. Two strategies to avoid these
losses differ in their trade-off between complexity and sensi-
tivity. Single-molecule sequencing [54] provides direct counts
but offers no protection against losses. The aim of this
approach is, therefore, to simplify the protocol as much as
possible, for instance by sequencing RNA by synthesis instead
of using a cDNA intermediate [55]. On the other hand, in
methods in which the transcripts are amplified, usually as
cDNAs, passive adsorption and similar losses will not cause a
transcript to become undetectable. However, expression levels
may be biased by the amplification unless the cDNAs that
originate from the same mRNA molecule can be recognized
and considered as a single count. This has been done by
Kivioja et al. [56] with the introduction of unique molecule
identifiers (UMIs). Alternatively, the use of random primers in
the reverse transcription will produce a collection of cDNAs
where the random priming site itself can be considered as a
unique molecular identifier, such as in CAGEscan [57], pro-
vided that there is no strand displacement. This strategy could
be generalized to any semi-anchored transcriptome analysis
technology, for instance when the anchor is the RNA 30-end,
via oligo-dT priming or linker ligation.

qPCR and imaging contribute independent
observations

Before reaching a critical mass and becoming well established,
sequence-based data will need to be confirmed by other
methods. In particular, it is still unclear how many RNA
molecules are expected in single cells. Beyond the effects of
stochastic expression, surprisingly large variations can be
found in subpopulations of cells that would otherwise be
considered of the same type. Molecule counting has been
approximated by quantitative PCR using a titration curve.
For instance, Ståhlberg et al. [58] analyzed single astrocytes
and single neurosphere cells by qPCR (50 cycles with opti-
mized primers) and found two sub-populations distinguished
by their low or high expression of marker genes, where the
highest counts exceeded 40,000 for the Vimentin or GFAP
transcripts. Taken together, these two subpopulations could
explain more complex expression patterns as the sum of two
simpler lognormal-style distributions. Molecule counting has
also been implemented by another application of microflui-
dics, digital PCR [59, 60]. In this droplet-based embodiment,
up to one million reactions are parallelized, leading to an
average error of 15%, to be compared with qPCR, which
produces a quantitative error of 100% in just a single cycle
(as it doubles the product once per cycle) [61].

Sequencing methods and qPCR have common limitations.
In particular, they are not in situ and are, therefore, unable to
distinguish nascent RNAs from mature RNAs unless pulse-
labeling or run-on methods are implemented [62]. This would
be challenging in microfluidics devices. Second, they are
inherently limited by the incompleteness of the reverse-tran-
scription step [63]. Therefore, transcript counting by imaging

is an important complementary technique, providing a tech-
nologically independent line of evidence to the sequencing
and qPCR-based measurements. This technology is being
actively developed and is progressing in throughput [4, 64].

Imaging-based analysis of mRNA expression levels is ame-
nable to microfluidics miniaturization. By confining single
cells in channels and tracking them across cell divisions,
Rowat et al. [65] studied the diversity of modes of expression
in yeast. Using three genes as models and GFP fusions as a
reporter system, they could demonstrate constitutive (Rps8b),
inherited (Pho84), and heterogeneous (Hsp12) expression
modes. This diversity has been reported earlier and is often
modeled as bursts of transcription. However, many of the
pioneering studies were focused on a small number of genes.
Using a device for high throughput imaging by batches of 96,
Taniguchi et al. [66] covered the whole genome and reported
no correlation between protein and RNA levels in Escherichia
coli. Importantly, Taniguchi et al. derived a model where
Gamma distribution parameters were interpreted as transcrip-
tion rate and protein burst size. This lack of correlation was
also observed by Raj et al. [7], who noted that while the RNA
polymerase II gene was expressed in bursts, the bursts in other
genes were not synchronous, suggesting that the transcription
noise is buffered at the protein level. Indeed, using a desta-
bilized GFP, Raj et al. observed correlation between protein
andmRNA levels, which could not be observed with the usual,
more stable GFP. Other mechanisms also decouple the expres-
sion levels of proteins andmRNAs. For instance, mRNA can be
stored in P-bodies and stress granules directly after transcrip-
tion [67].

Methods for highly multiplexed transcript counting by
imaging have also been developed. For instance,
NanoStrings [68] were used with single cells by Khan et al.
[69] to demonstrate that the olfactory enhancers function to
increase the number of cells expressing transcripts, as
opposed to the levels of transcript expression in each cell.
This work also showed that hybridization-based technologies
can reach a high stringency, since the authors could
distinguish 577 different olfactory receptors despite strong
homologous sequences.

Cells that look similar can contain different
amounts of transcripts

While studying the distribution of transcript expression levels,
it will be essential to ensure that technical noise is not added
to the biological variations. In particular, a high confidence
level is needed to distinguish between the true absence of a
transcript and the failure of its detection. Indeed, Bengtsson
et al. [70] showed that RT-PCR noise is stronger than biological
variations for transcripts present in less than 100 mRNA or 20
cDNA copies. They also reported striking differences in
reverse-transcription efficiencies, ranging between 2% and
99%. Miniaturization has the potential to mitigate this prob-
lem. For instance, in the device of Zhong et al. [40] theminimal
detectable number of molecules was four, compared to 17 in a
bulk assay. More recently, Reiter et al. [5] showed that in
lymphocytes, the noise associated with reverse-transcription
was far greater than the technical noise caused by the
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presence of cell debris in the mixture, which suggests that
reaction volumes could be reduced in micro-compartments.
Altogether, the methods based on reverse-transcription will
need to be carefully calibrated by comparing them with the
measurements based on imaging.

Zenklusen et al. [9] used 50 probes to study transcription
initiation in S. cerevisiae cells. Nascent transcripts are detected
as a nuclear signal, of which the intensity is a multiple of the
single spots in the cytoplasm. They estimated �60,000
mRNAs per cell, which is 3–6 times higher than previous
estimates. In this study of three house-keeping genes, less
than 10% of the cells did not contain the target RNA, and the
data had a Poisson distribution. Study of the MDN1 gene
indicated pauses longer than one minute between transcrip-
tion initiations. The data fits models of bursts but it is import-
ant to note that other models were also compatible. The study
of other genes suggests that not all genes are transcribed in
bursts. For instance, POL1, regulated by cell cycle, did not
show bursts as most cells did not contain more than one
nascent RNA, in contrast to the SAGA þ TATA-controlled gene
PDR5.

Unlike relative expression levels, expression counts are
dramatically modified at each cell division, where they would
be halved if the division were symmetric. However, with the
exception of very tightly controlled molecules such as chro-
matids, most molecules are not equally segregated between
daughter cells. Huh and Paulsson [71] have demonstrated that
models of random partition noise can also predict stochastic
expression counts, that are often solely modeled as the out-
come of transcription bursts in the literature. Moreover, they
also show that molecular mechanisms such as aggregation or
sub-cellular localization in vesicles can further increase that
noise. In fast-dividing cells, partition noise of low-expressed
upstream regulators might also explain the stochasticity of
expression. In addition to dilution by cell division, levels of
RNAs are also decreased by degradation. This can also be
studied by imaging, for instance by comparing the output
of 50 and 30 probes [7].

Heterogeneity within a population can also be caused by
other mechanisms, such as ageing. Taken on more than a
generation, all cell divisions are potentially asymmetric, as
one daughter cell may inherit a half where the molecules or
the organelles have been synthesized at an earlier generation
and therefore had more time to accumulate damage. In line
with this hypothesis, Wang et al. [72] showed in E. coli that
cells do not die by exponential decay, but rather, the cells that
inherit the halves that have been passed down over many
generations are distinguishable from others by their higher
probability to die. Altogether, cell division has direct implica-
tions on the heterogeneity of the transcriptome.

Perspectives

The microdroplets format offers high throughput opportuni-
ties and will probably become one of the most powerful tools
for profiling a population of cells with single-cell resolution. In
an all-integrated device, one-step lysis and cDNA synthesis
will require thermostabilization [73]. Integrated instruments
will also face the difficulties of merging droplets, and control-

ling reaction temperature, while avoiding leakage of small
molecules from droplets [74]. Commercial solutions have a
strong incentive to overcome the Poisson encapsulation and
the resulting 70% of empty drops. Finally, the collection of
microdroplets for amplicon sequencing will require emulsion
purification [32]. Chamber-based technologies, which are
maturing faster and now arriving on the instrument market,
will remain an excellent complementary technology for
samples delivering a small number of cells, the transcriptomes
of which will be compared to cell population models solidly
established by the comprehensive reference data that will be
produced in the coming years.

These models will also have to integrate multiple sources
of heterogeneity within a cell population, from the most
obvious such as the cell cycle, to less tractable factors such
as a cell’s position within a tissue. There is currently no high-
throughput technology for whole-transcriptome analysis that
preserves spatial coordinates, and while pioneering studies
can be conceived in transgenic models expressing spatially
controlled reporter genes, strategies must be prepared for the
study of human tissues, where this method will not be avail-
able. This calls for the joint application of microfluidics and
other methods achieving single-cell resolution, but that pre-
serve the tissue integrity, or for labeling strategies that allow
us to record and read the spatial information. The relevance of
spatial information has been highlighted by Snijder et al. [75],
who studied HeLa cells infected by five different viruses, and
showed that the cell’s position in a culture determines the
activity of some pathways, such as focal adhesion kinase,
which in turn determines the susceptibility to viruses.
Combinations of imaging and amplification techniques, such
as RT-LAMP [76] or RT-SmartAmp [77], have not yet been
explored for studying expression in situ.

The study of the diversity of cell states can be strengthened
by the collection of other data produced at single-cell resol-
ution. For instance, Kim et al. [78] measured the distribution of
ATP concentration in cells immobilized on a trapping array.
Boitard et al. [79] monitored the metabolic activity of single
yeast cells encapsulated in droplets, using osmotic exchanges
with neighboring empty droplets as a readout for fermentation
of glucose. Kelbauskas et al. [80] measured oxygen consump-
tion rates using extracellular optical sensors in microwells of
subnanoliter volume. Incidentally, an indirect measure of the
number of ribosomes per cell may be provided by transcript
sequencing methods, which usually focus on mRNAs and
discard rRNAs to reduce the cost of sequencing, but which
may now have to skip that step to achieve miniaturization.

What are the current limits?

The cost per read count limits the throughput of analysis.
However, there are incentives for the analysis of large num-
bers of cells. First, high-throughput designs are simple since
they do not require careful handling of a limited amount of
cells, that is, they tolerate losses. Second, identifying cell types
may not be enough to represent a cell population. For
instance, within a cell type, it may be important to determine
if the cells are cycling or resting. The definition, and therefore
the number, of known cell types may change in the next few
years as a result of single-cell transcriptomic studies. It is
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therefore difficult to foresee an optimal number of sequence
reads. However, once population definitions are well seeded
by comprehensive databases of single-cell transcript counts,
there may be a possibility that only a shallow sampling of each
cell’s transcriptome will be enough to classify them and estab-
lish their population structure. This suggests that we may
need to aim for high throughput sequencing in the order of
a million cells per cell type.

Such a high throughput calls for the development of new
computer representations of the results, which would allow us
to share, archive, retrieve, and re-analyze experimental results
at a sustainable cost. This problem is strikingly similar to the
challenge of working with billions of personal genome sequen-
ces, and may be solved by representing each cell by its differ-
ence with a close reference. This again highlights the
importance of seed projects defining cell types in terms of
model distributions of transcript counts. Following transcript
variants, such as splice isoforms, will also be challenging both
from the molecular biology and the computational points of
view.

Beyond stochastic variations, individual differences
between cells of the same type can have significant functional
consequences. For example, whether a cell was captured at
the moment when it was sending a signal or not. This suggests
that the whole transcriptome, and not just the transcripts that
are sufficient to determine a cell’s identity, must be considered
in order to understand a cell’s activity. However, some
methods that are apparently whole-transcriptome are still
restricted in their scope, in particular when the mRNAs are
captured or reverse-transcribed with oligodeoxythymidine pri-
mers, as up to a third of themRNAmay be non-polyadenylated
[81, 82]. Other non-polyadenylated RNAs have attracted con-
siderable attention: the micro RNAs. As long as RNA samples
could be split in long and short fractions, there was no incen-
tive to develop a universal protocol to sequence them together
with mRNAs, but with single-cells as the target, there is no
other choice. Template-switching was used [83] to prepare
miRNA libraries from bacteria and also to study mRNAs
[6, 57, 84], and therefore is a good candidate for such an
universal protocol.

Conclusion

Microfluidic technology is on track to be a serious provider of
single-cell transcriptomes. With miniaturization, the decrease
of reaction volumes brings several advantages. First, the con-
centration of the samples, and therefore the yield, can be
dramatically increased [40]. Second, miniaturization allows
for very high throughputs, in the order of a million cells per
hour [50]. Third, some physical phenomena, including diffu-
sion or heat transfer, are quickly completed in small volumes,
accelerating the transition between protocol steps. The unit of
single-cell whole-transcriptome measurements will be RNA
counts [85], providing a snapshot of a cell’s contents, which
integrates production by the genome, degradation and
dilution through cell division.

Cells can be further divided into smaller compartments
(e.g. nuclear and cytoplasmic) or into compartments produced
by them (e.g. vesicles and exosomes). Secreted exosomes, for

instance, are already the subject of some microfluidic-assisted
transcript expression analysis [86]. Nevertheless, because
cells are a natural functional unit, single-cell whole-transcrip-
tome analyses are likely to become the bulk of the small-
sample studies, aided by microfluidics technologies that will
simplify their handling, thus increasing reproducibility and
providing a high throughput, while aiming at costs similar to
or lower than classical analyses of mixtures. Single-cell resol-
ution will add a new dimension to biological sample analysis,
population transcriptomics.
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