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Abstract Integrative genomics studies have greatly advanced our understanding of cardiovascular pathophysiology over the last
decade. Here, we highlight the strengths and challenges of this cutting-edge approach and provide examples where
novel insights have arisen through the integration of multi-level genomic information and cardiac physiology. Going
forward, the integration of comprehensive next-generation sequencing data sets with quantitative phenotypes at the
molecular, cellular, and whole-heart level using advanced modelling approaches provides an unprecedented oppor-
tunity for cardiovascular science.
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This article is part of the Review Focus on: Cardiovascular Systems Biology.

1. What is integrative genomics?
Genomics is the study of the sequence, structure, and biology of
genome-level data sets (DNA and RNA). In the 1970 s two develop-
ments laid the foundations for the field as we recognize it today. Nu-
cleotide sequencing technologies, and particularly the Sanger
method,1 allowed for the sequencing of genomes of increasing size
and complexity, starting with viral and mitochondrial genomes,1 and
later progressing through bacteria (Haemophilus influenzae 19952)
and model organisms (e.g. Caenorhabditis elegans, 19983) and finally
to humans.4,5 Shortly afterwards Botstein et al.6 demonstrated how
genetic markers (initially restriction fragment length polymorphisms)
could be used to construct a map of the genome. By correlating phe-
notypes with these genome-wide markers, diseases could be genetic-
ally mapped to a genomic locus,7 and the underlying genes identified
on the basis of their position in the genome without prior knowledge
of their function (positional cloning or reverse genetics).8 In contrast
to genetics, which is primarily focused on the study of inheritance,
genomics seeks statistical associations between genomic data and
phenotypes with relatively few assumptions. The term genomics
became established in the late 1980s,9 captured by the publication
of a new journal with that title in 1987, and during the 1980 and
1990s a number of diseases and traits were mapped to the genome,
and many disease genes identified.

A limitation of genomic approaches to date is that a genotype–
phenotype correlation typically identifies an association between a
trait and a locus or list of genes, rather than a trait and a gene. The
subsequent identification of THE causative gene remains a substantial

challenge. Integrative Genomics describes approaches to this problem
that use additional layers of data to inform the search space for can-
didate genes, for example overlaying data on the regulation of gene
expression (coined genetical genomics).10,11 Integrative genomic
methodologies are underpinned by the fundamental hypothesis that
polymorphisms (non-disease causing genetic variation) and/or muta-
tions in or near genes have an effect on the expression of the causa-
tive gene AND are also associated with the trait under study. It is
possible for a gene to have a coding mutation affecting protein func-
tion but not directly influencing gene expression that could escape de-
tection. However, in this instance homoeostatic effects acting to
restore gene function often induce a transcriptional response, or
the mutation affects RNA processing, and this can still be detected
by studying gene expression.

In this review, we will outline some of the genome-level data sets that
may be used in integrative genomics approaches and the methods on
which they depend, review approaches to integrate these data sets
(with an emphasis on DNA and RNA level data), and illustrate these
with examples of their applications to cardiovascular biology.

2. Characterizing phenotypes
As with any statistical approach, integrative genomics demands an
understanding of the type of trait under study: for instance, continu-
ous (e.g. blood pressure) or categorical (e.g. hypertensive/normoten-
sive). However, for complex disease traits the relationship between
disease definition and physiology may not be straightforward. Some
categorical traits (hypertension vs. normotension) represent binary
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classifications of an underlying continuous trait, in which case it is
usually most powerful to apply genomic analyses to the underlying
quantitative variable, if accurate. Indeed, categorization of continuous
phenotypes may increase the risk of false association, and should gen-
erally be avoided. Conversely, a continuous variable may vary in re-
sponse to quite distinct pathophysiological processes (e.g. left
ventricular contractility may be affected by extracellular fibrosis
and/or by myocyte contractility), in which case a more detailed multi-
dimensional description of the phenotype is likely to be informative.
Multivariate statistical methods are ideal in this instance as they pre-
serve complexity (and information content) of the underlying bio-
logical processes. It is our opinion that the precision and
reproducibility of all levels of phenotypic assessment is of fundamental
importance to integrative genomic studies.

The identification of genetic determinants of a phenotype of inter-
est is clearly predicated on that trait being under genetic control.
Many traits are influenced by both genetic and environmental
factors, in which case our ability to identify genetic determinants
will depend on the relative contribution of these two groups of
factors, and the effect size exerted by each contributing gene. It is
therefore common to estimate the heritability of a trait (the propor-
tion of the observed trait variation in a population due to genetic
factors) in order to decide whether the genetic signal is likely to be
sufficiently large to detect.

Genetic variation can have a range of effect sizes on the pheno-
type(s), and this influences strategies to detect such variation.
When genome-wide association studies (GWAS) were first under-
taken the field was dominated by the ‘common disease-common
variant’ hypothesis, which predicted that association mapping would
be powerful in dissecting the causes of complex phenotypes.12 In
fact GWAS have revealed a complex genetic architecture underlying
the regulation of disease, where the vast majority of identified gene
variants exert a limited effect on the complex trait,13,14 and models
have been revised.15 By way of illustration, the QT interval, a
measure of cardiac repolarization, is a complex trait. Many common
variants have been shown to influence the QT interval, though the
effect size of each is typically small. Extreme QT intervals may also
be inherited as Mendelian traits due to single variants, often in the
same genes that harbour common non-coding variants of more
modest effect. An awareness of the likely genetic architecture of
our traits of interest is invaluable in considering genomic strategies
to dissect them. A trait is most likely to be genetically tractable if it
is highly heritable, and if the heritable component consists of a rela-
tively small number of genes exerting a substantial effect, rather
than many genes with small effects. These conditions are perhaps
most likely to be met for molecular endo-phenotypes that are
closely related to, or are direct consequences of, the activity of a
small number of gene products. For instance, transcript expression
levels (mRNA abundance) are tractable endo-phenotypes that are
highly heritable and amenable for genetic mapping,16 with individual
genetic variants having large effects on trait variation, as will be dis-
cussed later.

3. Sources of data for integrative
approaches
Francis Crick’s central dogma17 captures the essence of the informa-
tion flow from genome to protein, which then leads via a chain of

intermediates, interacting with each other and the environment, to
phenotype. Depending on our goals, information at any tier of this
progression may be integrated to infer genome function. The founda-
tional data set is the sequence of the genome, though epigenetic mod-
ifications (DNA methylation and histone modification) not addressed
by the central dogma are also heritable and important. RNA tran-
scripts form the next tier. In addition to simple transcript abundance,
genome-wide assessment of splicing and RNA editing may also be in-
formative, and the biological importance of non-coding RNAs is now
recognized. Finally, proteomics, metabolomics/metabonomics, and
other large-scale assays of biomarkers and intermediate phenotypes
may be included (Figure 1).

4. Genomic data and the
identification of genomic disease
loci
A reference genome sequence is now available for humans and many
model organisms used in cardiovascular research, and sites of
common (and rare) DNA sequence variation have been variably cat-
alogued for each species. Most genomic studies sample the genetic
variation in an individual, genotyping a number of polymorphic
genetic markers spaced across the genome and correlating genotypic
variation with phenotype and/or disease. This may identify a locus
associated with the trait, the size of the locus being dependent on
the resolution of the marker genotyping and the genetic diversity of
the population studied.

Two principal statistical approaches are used for this correlation.
Linkage seeks co-segregation of a genetic marker with a trait in a pedi-
gree or a population of related individuals, while association usually
looks for a correlation between allele frequency and a trait in unre-
lated individuals, though can be adapted to include families. Both tech-
niques had been applied in a targeted way to individual loci before the
description of genome-wide markers, but their genome-wide applica-
tion opened the door to a dramatic acceleration in functional annota-
tion of loci and genes across the genome.

Linkage studies in humans have been fruitful in identifying Mendel-
ian disease genes. The first autosomal disease locus to be identified by
linkage mapping with genome-wide markers was the Huntingdon’s
disease locus,7 and the first gene to be identified by positional-cloning
was for chronic granulomatous disease.8 Cardiovascular disease genes
followed swiftly, for example, the first genes underlying hypertrophic
cardiomyopathy18,19 and long QT syndrome,20,21 two of the com-
moner inherited cardiac conditions, were identified by genome-wide
linkage followed by positional cloning.

In contrast, linkage studies have been of limited benefit in dissecting
continuous traits and common disease in humans. For example, cor-
onary artery disease has been widely studied22 with less than over-
whelming results. As linkage approaches require segregation, their
application is limited by the identification and the recruitment of ap-
propriate families. Large families are most powerful (e.g. Wang et al.23

identified a CAD locus in a single pedigree of 19 genotyped indivi-
duals, of which 13 were affected), but are rare and it may be difficult
to retrieve DNA from all subjects. Alternatively large numbers of
smaller families may be studied (e.g. Pajukanta et al.24 genotyped
364 individuals from 156 families), but often with small reproducibility
of findings across populations, and reduced power to detect relatively
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Figure 1 Integrative genomics across data modalities. The cartoon depicts the flow of biological information from the DNA to the disease level, and
modelling of multi-modality data within different layers: genetic (DNA), transcriptional (RNA), protein, and metabolic. Interaction within each layer of
biological data can be described using network-models and analysed in conjunction with endo-phenotypes at the cellular and organ level to under-
stand human heart disease pathobiology. Network analyses of quantitative biochemical data sets provide information about complex gene–gene inter-
actions and pathway annotation while increasing power to find individual ‘key players’ in disease, which is not possible in single gene studies. Each
network model (genetic, transcriptional, protein, metabolic) can be annotated using extensive bioinformatics and database (db) resources. This
allows inference of the ‘functional context’ in which individual genes or networks operate by combining experimental and -omics data. OMIM,
Online Mendelian Inheritance in Man (http://www.ncbi.nlm.nih.gov/omim/); GWAS db (for instance: https://www.gwascentral.org/), Mutation db
(http://reseq.biosciencedbc.jp/resequence/); GO, Gene Ontology (http://www.geneontology.org/); KEGG, Kyoto Encyclopedia of Genes and
Genomes (http://www.genome.jp/kegg/); Biocarta (http://www.biocarta.com/); BBID, Biological Biochemical Image Database (http://bbid.grc.nia.nih.
gov/); String, Known and Predicted Protein-Protein Interactions (http://string-db.org/); InterPro, InterPro protein sequence analysis & classification
(http://www.ebi.ac.uk/interpro/); SMART, Simple Modular Architecture Research Tool (http://smart.embl-heidelberg.de/); HMP, Human Metabolome
Database (http://www.hmdb.ca/); MetaCyc, Metabolic Encyclopedia of enzymes and metabolic pathways (http://www.metacyc.org/); ENZIME, Enzyme
nomenclature database (http://enzyme.expasy.org/).
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common alleles of modest effect size that underlie such traits in the
general population.

Association studies are more powerful in large human population
samples, and in 2005 GWAS were made possible25,26 by a new high-
resolution catalogue of common single nucleotide variation in the
human genome (produced by the HapMap project), coupled with
relatively cheap high-throughput genotyping technologies (DNA
microarrays). The NIHR catalogue of GWAS (http://www.genome.
gov/gwastudies; accessed 15 June 201227) now contains details of
1271 papers reporting .6000 disease associations with diverse
traits, including �50 cardiovascular traits ranging from risk factors
(blood pressure, diabetes, smoking behaviour), to traits and inter-
mediate phenotypes (heart rate, electrocardiogram parameters), to
diseases (myocardial infarction, atrial fibrillation, ventricular fibrilla-
tion), and drug responses (statins, clopidogrel, and warfarin).

It should be pointed out that linkage studies have been particularly
informative for identifying complex disease loci when applied to gen-
etically tractable model organisms. Experimental breeding strategies
and careful environmental control combine to yield studies of much
greater power and reproducibility than can be achieved in humans.
For example, our groups have worked extensively with a powerful
rodent genetic resource developed for linkage mapping of cardiovas-
cular and other traits: a panel of recombinant inbred rat strains
derived from the spontaneously hypertensive rat (displaying a
number of extreme cardiovascular traits) and the Brown Norway (es-
sentially normal CV physiology).28,29 By investigating the segregation
of cardiovascular traits in experimental crosses derived from these
strains, we and others have identified a large number of ‘quantitative
trait loci’ underlying CV traits including blood pressure, insulin resist-
ance, and left ventricular hypertrophy.28,30– 34 The Rat Genome Data-
base (http://rgd.mcw.edu/; accessed 3 July 2012) currently contains
351 QTL for blood pressure in the rat, 73 QTL for cardiac mass,
and 21 for heart rate.

Whatever the organism or statistical approach, genome–
phenotype correlations typically identify a disease or trait locus,
rather than a gene. Moving from locus to underlying gene and causa-
tive genetic variation requires the integration of further information
(for example, see Glazier et al.35), and remains the biggest challenge
in this field of biology.

5. Integrating transcript expression
data to identify cardiovascular
disease genes
Transcription from DNA to RNA is the first step in the cascade from
genotype to phenotype, and a number of techniques are available to
determine which transcripts are present in a cell, tissue or sample
of interest. Northern blotting, fluorescence in-situ hybridization and
quantitative PCR are relatively low-throughput techniques that
require prior knowledge of the sequence of the transcript to be quan-
tified (or at least part of the sequence). DNA microarrays allow high-
throughput genome-wide expression profiling of known transcripts at
low cost. Sequencing-based approaches have an added advantage of
detecting novel transcripts, but have been expensive to date, and initial-
ly only sequenced short tags, rather than whole transcripts. In the era of
next generation sequencing (NGS), complete quantitative assessment
of transcript expression, splicing, sequence variation, and RNA editing
is now available through direct RNA sequencing.

How then can transcriptome data be used to find disease genes? At
the simplest level, one can ask which genes are expressed in a tissue of
interest. For example, having identified a locus for left ventricular mass,
one may ask whether any genes at the locus are expressed in the heart.
This requires careful consideration of the tissue of interest, which in
turn relies upon refined phenotypic assessment. In the example
above, left ventricular mass may of course be influenced by genes
that are not expressed in the heart, for example, via effects on blood
pressure. Nonetheless, a multivariate approach to the phenotype can
discriminate tissue-specific effects that are independent of secondary
causation. In our studies multivariate analyses have identified blood
pressure-independent regulation of left ventricular mass with an
increased myocyte size, in which context the gene of interest is
expected to be expressed in the ventricle, and most likely the
myocyte, rather than the kidney or adrenal.33,36 Another conceptually
simple approach is to compare transcript levels in two physiological
states, e.g. in cases and controls.37,38 The resulting list of genes that
are up- and down-regulated may highlight pathways and networks
underlying the trait under study, and by intersecting these genes with
a genetic locus we may be able to identify a shortlist of candidates.

A powerful approach focuses instead on the genetic control of
gene expression (genetical genomics10). mRNA transcript levels are
quantitative traits, under the combined influence of genetic and
environmental factors. Having identified a new genetic locus that
determines a trait, we hypothesise that the specific causative variant
responsible exerts its effect by altering transcription of a
gene—either by altering the protein product itself (e.g. truncating var-
iants and single amino acid substitutions underlying Mendelian
disease), or by altering expression levels of gene transcript (particu-
larly for quantitative traits).

If the expression level of a gene transcript can be mapped to the
genome, it is termed an expression quantitative trait locus (eQTL).
When the eQTL coincides with the location of the gene itself it is
termed a cis-eQTL (for example, due to a polymorphism in the
gene promoter), and where the eQTL is distant it is termed a trans-
eQTL (for example, genetic variation in a transcription factor that
regulates in trans the expression of its target genes32). Usually,
disease-genes can be identified where cis-eQTLs are found in
(or co-localize with) loci that are correlated with disease (i.e. QTL
for physiological traits).

In addition, gene expression data can also be used for quantitative
trait transcript analysis (QTT), in which transcript levels are corre-
lated with a phenotype to directly prioritize candidate genes for the
trait.39 Finally, by overlaying data on genome sequence variation, tran-
script expression, and phenotype variation, we can powerfully move
from a list of 100 s of genes at a genetic locus, to a few or even a
single gene that is dysregulated in a given cell-type or tissue, found
at the locus of interest, and whose expression correlated with the
trait (Figure 2). This rationale to select candidate genes assumes that
genetically controlled transcriptional regulation of a given gene is
the mechanism of action that determines susceptibility to disease or
complex trait variation.

The first genome-wide eQTL studies were performed in yeast,40

and subsequently most studies have been carried out in model organ-
isms or cell lines, due to the ready availability of tissue for RNA work
in these systems. Studies in humans have typically used eQTLs identi-
fied in blood, which may overlap with eQTLs in other tissues, but are
likely to miss many tissue-specific eQTLs.41,42 Nonetheless, the ap-
proach has been applied to integrate GWAS hits with cis-eQTLs in
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Figure 2 An integrative genomic approach to identify cardiovascular disease genes. Genotypes and phenotypes are measured in a population of
related individuals, and each genomic marker position is assessed for linkage with the phenotypes. In this case, left ventricular mass (LVM) is
studied in a rodent population. The allelic effect is shown for two genomic markers, marker 1 (m1) on chromosome 3 (chr3) and m2 on chr12.
A linkage plot is shown for the first 12 chromosomes, showing linkage of LVM to a locus on chr3, at the position of marker m1. The y-axis is the
LOD score (logarithm10 of odds), and the dotted line represents genome-wide statistical significance. (A) Microarrays are used to obtain a genome-
wide transcript expression profile for RNA expression in the left ventricle in the same population, and the expression of each transcript is mapped as a
quantitative trait. The expression of transcript 1 (t1) maps to chr3, where this transcript is encoded: it is hence termed a cis-eQTL. t2, encoded at the
same genomic locus, does not appear to be genetically regulated. Although both genes lie within the original LVM locus, t1 is prioritized as the best
candidate after eQTL analysis. Expression of t3, also encoded on chr3, maps to chr4: it is a trans-eQTL. (B) Quantitative trait transcript analysis
involves the direct correlation of phenotype and expression data. After correction for multiple testing a single transcript emerges as most highly cor-
related with LVM. If this is t1 this adds further weight to its candidacy.
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humans. For example, in the cardiovascular domain LIPA (lysosomal
acid lipase A) has been identified as a candidate gene for coronary
artery disease through GWAS,43 supported by evidence that LIPA is
a cis-eQTL associated with the same locus. QTT analysis also demon-
strated a correlation between LIPA and endothelial function. This
demonstrates the added power of an integrated approach over
GWAS alone.44

Further examples are mostly derived from model systems. For
instance, in the rat .200 traits have been quantified in the BXH/
HXB panel previously described, and genetic loci for many of these
have been refined using integrative genomic approaches.34 In our
group, we have used this model to identify genes for cardiac hyper-
trophy. Osteoglycin (Ogn) is a protein that regulates left ventricular
mass in rats, mice, and humans, possibly through the TGF-b signalling
pathway,36 and Endonuclease G (Endog) regulates mitochondrial bio-
genesis and cardiac hypertrophy.33 In each case, we were able to
translate our findings to humans using cardiac transcript level data.
In the Ogn study, we showed that left ventricular mass in patients
with aortic stenosis was only weakly correlated with the severity of
stenosis, but strongly correlated with OGN levels in QTT analysis,
whereas in the EndoG study we carried out co-expression
network analysis using a large human transcriptome data set, and
identified EndoG in a network highly enriched for mitochondrial
genes and oxidative metabolism processes that supported a novel
role for EndoG in mitochondrial biogenesis.

6. Higher-order integration of
multiple data sets
The simple overlay of genetic, expression, and phenotypic variation
described above can be extended to various data multi-modalities, in-
cluding for instance microRNAs, proteins, metabolites, and high-
resolution imaging data (e.g. cardiac MRI). The large dimensionality
of individual data sets and their integration does require, and advo-
cate, the use of sophisticated multivariate modelling able to capture
complex linear and non-linear interactions predictive of physiological
states. In the first instance, these multi-modalities can be considered
(and treated) as distinct layers of data where biological information
is sought to flow from the DNA level (genetically encoded) to the
phenotypic level (Figure 1). Each of these layers can be analysed to
model different kinds of interaction (gene–gene, mRNA–mRNA,
protein–protein, metabolites, structural, etc.), and prior biological in-
formation can be taken into account in the modelling procedure (i.e.
Bayesian modelling45– 47).

Particular attention is paid to predictive networks from this type of
modelling, and how networks can help link DNA-level variation to
physiological states or disease.44 Several commonly used algorithms
to infer gene co-expression networks from microarray data,48– 51

enabled analysis of transcriptional networks across multiple tissues,
and cell-types and their relevance to disease and complex whole-
body phenotypes.

A distinct advantage provided by the network description is the
ability to provide a framework for exploring the functional and mo-
lecular context within which single genes operate. For instance, as
mentioned above, using linkage mapping approaches we identified
EndoG as a major determinant of cardiac hypertrophy, but only by
looking at the network where EndoG was ‘operating’ in the human

heart, were we able to re-annotate EndoG function and reveal a
novel role for the gene in mitochondrial biogenesis.33

Beyond standard eQTL identification approaches, the integration of
eQTLs with network modelling can identify ‘master regulator’ genes
that control in a coordinated fashion the behaviour of multiple
genes (down-stream). For instance, our group identified Ebi2, a
G-protein couple receptor, as the master regulator gene of an inflam-
matory co-expression gene network that was conserved between rats
and humans, and that was associated with increased risk of Type 1 dia-
betes.32 The latter example also showed how network models could
be extended across multiple species,52 revealing conserved pathogen-
ic pathways and opening the door to functional validation experi-
ments that are not possible in humans.

7. Future directions using
integrative approaches
We have seen how the integration of multiple genome-wide data sets
has led to the identification of many human disease genes and path-
ways, increased our understanding of disease pathogenesis, and sug-
gested new targets for therapy. How do we see this developing in
the future?

7.1 Increasing dimensionality and publically
available data
We anticipate that the breadth of data incorporated in integrative
approaches will continue to increase, with particular emphases on
detailed, multi-varied, high-resolution phenotyping, the integration
of electronic patient records,53 and an increasing awareness of the im-
portance of making high-quality data sets publically available, resonat-
ing with the recent discussions on open-access publishing.54

7.2 Next-generation sequencing
NGS has increased the availability of sequencing by orders of magni-
tude, bringing genomic studies that would have required huge inter-
national collaborations a decade ago within reach of individual labs,
and has contributed hugely to the growth of data sets available for in-
tegrative approaches.

In our discussion of genomic data, we focused on approaches that
sample genetic variation in an individual (e.g. DNA microarray genotyp-
ing), as these have formed the basis of most high-throughput studies to
date. NGS now allows us to probe the full spectrum of genetic variation
within an individual. Whole genome sequencing is becoming increasing-
ly available as costs fall, and whole exome sequencing has been widely
adopted as an intermediate genome-wide technique capable of detect-
ing much disease-causing variation.55,56 A full discussion of NGS is
beyond the scope of this review, but Figure 3 gives an overview of
some of the applications of NGS for disease gene discovery.

For integrative genomic studies, high-throughput DNA sequencing
is a double-edged sword. On the one hand, we can identify variants
correlated with phenotypes directly, rather than identifying intermedi-
ate loci. On the other hand, NGS studies using association or segre-
gation often identify many variants that correlate with a phenotype,
and the integration of additional informative data sets remains import-
ant in refining candidate gene/variant lists.

We have already alluded to the role that NGS has played in
transcriptomics—in particular the development of RNA sequencing
that permits the quantification of both known and novel transcripts
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with a wide dynamic range, as well as identifying RNA splicing and
editing events. NGS can also be applied to identify sites of epigenetic
modification and transcriptional control—for example, using
ChIP-Seq (Chromatin Immunoprecipitation sequencing) to identify
transcription factor-binding sites or histone modifications, or bisul-
phite sequencing to detect DNA methylation.

7.3 The role of model organisms
We see a changing relationship between model organisms and humans
for gene discovery. Rather than identifying candidate disease genes in
model systems, and validating findings in humans (for example, see Pet-
retto et al.36), we see a shift towards primary discovery through reverse
genetics in humans, largely enabled by increasing availability of sequen-
cing technology coupled with efforts to collate and curate large-scale

human phenotypic data. We believe that primary discovery in model
organisms will increasingly take the form of ambitious (and costly) high-
throughput forward genetic screens in lower organisms, as have been
applied in yeast,57 flies,58 and fish.59

Whatever the organism used for the primary genetic discovery, sub-
sequent validation remains essential to prove gene effects. Here, we are
seeing more ‘disease in a dish’ models, with patient-derived-induced
pluripotent stem (iPS) cells a particularly exciting modality for function-
al genetic studies. Finally, an increasingly sophisticated range of tools for
genome manipulation is available for translation to animals, such as zinc
finger nucleases and TALENs. Rats offer several advantages over mice
for cardiovascular research, and effective knock-out and transgenic
technologies applicable to species other than the mouse are extremely
welcome.

Figure 3 Different approaches for gene discovery in humans using next-generation sequencing (NGS). (A) One of the simplest applications of NGS
is deep sequencing genes at a known disease locus to identify functional variants that may be responsible for the observed effect. Here, a C/T sub-
stitution generates a novel stop codon, which truncates a gene product that may be functionally important. (B) Mendelian disease within a single family
is typically genetically homogenous: in the absence of phenocopies affected individuals will all share the same causative variant. Whole-genome or
whole-exome sequencing can be used to identify functional variants segregating with disease in a family. Many variants will be shared through
simple relatedness, so large families are needed for this approach. It also makes assumptions about which classes of variants are likely to underlie
Mendelian diseases—typically truncating variants and very rare non-synonymous SNPs. If the causative variant is synonymous or non-coding then
it is unlikely to be detected by targeted NGS approaches. (C) An alternative methodology is to sequence unrelated individuals with the same pheno-
type or endophenotype. Here, we do not expect that affected individuals will carry the same variant, but we hypothesize that they may carry distinct
variants in the same gene. This is a powerful approach for genetically homogenous conditions, but inherited cardiac conditions are typically heter-
ogenous (variation in many different genes yields the same phenotype) limiting the applicability of this approach. (D) Strategy C can be extended
to continuous traits. If rare variants of moderately large effect contribute to the phenotype then we may be able to detect these by focusing sequen-
cing efforts on the extremes of a very large population, seeking genes that are enriched for rare functional variants using burden testing. (E) Where
disease is caused by de novo variation, this may be detected by sequencing trios (proband and both parents). This approach may also be applied to
recessive phenotypes. (F ) RNA sequencing not only measures total transcript abundance, but can also quantify different isoforms, detect novel tran-
scripts and novel splicing events, and identify sequence variants. Here, isoform 1 is the predominant transcript, but RNAseq provides evidence for two
other isoforms. This can be used in integrative genomic studies.
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