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Abstract
Tropospheric ozone is one of the six criteria pollutants regulated by the United States
Environmental Protection Agency under the Clean Air Act and has been linked with several
adverse health effects, including mortality. Due to the strong dependence on weather conditions,
ozone may be sensitive to climate change and there is great interest in studying the potential effect
of climate change on ozone, and how this change may affect public health. In this paper we
develop a Bayesian spatial model to predict ozone under different meteorological conditions, and
use this model to study spatial and temporal trends and to forecast ozone concentrations under
different climate scenarios. We develop a spatial quantile regression model that does not assume
normality and allows the covariates to affect the entire conditional distribution, rather than just the
mean. The conditional distribution is allowed to vary from site-to-site and is smoothed with a
spatial prior. For extremely large datasets our model is computationally infeasible, and we develop
an approximate method. We apply the approximate version of our model to summer ozone from
1997–2005 in the Eastern U.S., and use deterministic climate models to project ozone under future
climate conditions. Our analysis suggests that holding all other factors fixed, an increase in daily
average temperature will lead to the largest increase in ozone in the Industrial Midwest and
Northeast.
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1. INTRODUCTION
Beginning in 1970, the United States Clean Air Act (CAA) directed the U.S. Environmental
Protection Agency (EPA) to consider the best available science on exposure to and effects of
several ambient air pollutants, emitted by a wide array of sources. National Ambient Air
Quality Standards (NAAQS) were set for pollutants to which the public was widely
exposed. Since the inception of NAAQS, EPA has determined that photochemical-oxidant
air pollution, formed when specific chemicals in the air react with light and heat, is of
sufficient public-health concern to merit establishment of a primary NAAQS. EPA has since
1979 identified ozone, a prominent member of the class of photochemical oxidants, as an
indicator for setting the NAAQS and tracking whether areas of the country are in
compliance with the standards. To attain the current ozone standard, the three-year average
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of the fourth-highest daily maximum eight-hour average ozone concentrations measured at
each monitor within an area over each year must not exceed 0.075 ppm (standard effective
since May 27, 2008).

Most ozone in the troposphere is not directly emitted to the atmosphere, although there are
minor sources of such ozone, including some indoor air cleaners. Rather, it is formed from a
complex series of photochemical reactions of the primary precursors: nitrogen oxides
(NOx), volatile organic compounds (VOCs), and to a smaller extent other pollutants, such as
carbon monoxide (CO). Since the reactions that form ozone are driven by sunlight, ambient
ozone concentrations exhibit both diurnal variation (they are typically highest during the
afternoon) and marked seasonal variation (they are highest in summer). Ambient
concentrations are highest during hot, sunny summer episodes characterized by low
ventilation (a result of low winds and low vertical mixing).

Due to the strong dependence on weather conditions, ozone levels may be sensitive to
climate change (Seinfeld and Pandis 2006). There is great interest in studying the potential
effect of climate change on ozone levels, and how this change may affect public health
(Bernard et al. 2001; Haines and Patz 2004; Knowlton et al. 2004; Bell et al. 2007). In this
article we also study the potential changes in ozone due to climatic change. This type of
work is needed to address the impact of climate change on emission control strategies
designed to reduce air pollution. Using future numerical climate model forecasts of
meteorological conditions, we forecast potential future increases or decreases in ozone
levels. In particular, based on current relationships between temperature, cloud cover, wind
speed, and ground-level ozone, we predict the percent change in ozone given future
temperature and cloud cover levels.

The objective of the article is to develop an effective statistical model for the daily
tropospheric ozone distribution as a function of daily meteorological variables. The daily
model is then used to study trends in ozone levels over space and time, and to forecast
yearly summaries of ozone under different climate scenarios. We build our model using
spatial methods to borrow strength across nearby locations. Several spatial models have
been proposed for ozone (Guttorp, Meiring, and Sampson 1994; Carroll et al. 1997; Meiring,
Guttorp, and Sampson 1998; Huang and Hsu 2004; Huerta, Sanso, and Stroud 2004;
Gilleland and Nychka 2005; Sahu, Gelfand, and Holland 2007). These models assume
normality for either untransformed ozone or for the square root of ozone. Exploratory
analysis suggests that ozone data are non-Gaussian even after a square root transformation.
Ozone is often right-skewed (Lee et al. 2006; Zhang and Fan 2008) in which case Gaussian
models may underestimate the tail probability. Correctly estimating the tail probability is
critically important in studying the health effects of ozone exposure, and has policy
implications because EPA standards are based on the fourth highest day of the year
(approximately the 99th percentile). A further challenge is that the relationship between
meteorological predictors and the ozone response can be nonlinear and the meteorological
effects are not restricted to the mean. The variance and skewness of the response varies
depending on location and meteorological conditions. Recently several methods have been
developed for non-Gaussian spatial modeling (Gelfand, Kottas, and MacEachern 2005;
Griffin and Steel 2006; Reich and Fuentes 2007; Dunson and Park 2008). These methods
treat the conditional distribution of the response given the spatial location and the covariates
as an unknown quantity to be estimated from the data. We follow this general approach to
model the conditional ozone density.

Although these models are quite flexible, one drawback is the difficulty in interpreting the
effects of each covariate. For example, many of these models are infinite mixtures, where
the spatial location and/or covariates affect the mixture probabilities. In this very general
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framework, it is difficult to make inference on specific features of the conditional density,
for example, whether there is an interaction between cloud cover and temperature, or
whether there is a statistically significant time trend in the distribution’s upper tail
probability. As a compromise between fully-general Bayesian density regression and the
usual additive mean regression, we propose a Bayesian spatial quantile regression model.
Quantile regression models the distribution’s quantiles as additive functions of the
predictors. This additive structure permits inference on the effect of individual covariates on
the response’s quantiles.

There is a vast literature on quantile regression (e.g., Koenker 2005), mostly from the
frequentist perspective. The standard model-free approach is to estimate the effect of the
covariates separately for a few quantile levels by minimizing an objective function. This
approach is popular due to computational convenience and theoretical properties. Sousa et
al. (2008) applied the usual quantile regression method to ozone data and found it to be
superior to multiple linear regression, especially for predicting extreme events. An active
area of research is incorporating clustering into the model-free approach (Jung 1996; Lipsitz
et al. 1997; Koenker 2004; Wang and He 2007; Wang and Fygenson 2008). Recently,
Hallin, Lu, and Yu (2009) propose a quantile regression model for spatial data on a grid.
They allow the regression coefficients to vary with space using local regression. This
approach, and most other model-free approaches, perform separate analyses for each
quantile level of interest. As a result, the quantile estimates can cross, that is, for a particular
combination of covariates the estimated quantile levels are nonincreasing, which causes
problems for prediction. Several post-hoc methods have been proposed to address this
problem (He 1997; Yu and Jones 1998; Takeuchi et al. 2006; Dette and Volgushev 2008) for
nonspatial data.

Incorporating spatial correlation may be more natural in a Bayesian setting, which
necessarily specifies a likelihood for the data. Model-based Bayesian quantile regression
methods for independent (Kottas and Gelfand 2001; Yu and Moyeed 2001; Hjort and
Walker 2009; Kottas and Krnjajic 2009) and clustered (Geraci and Bottai 2007) data that
focus on a single quantile level have been proposed. Dunson and Taylor (2005) propose a
method to simultaneously analyze a finite number of quantile levels for independent data.
To our knowledge, we propose the first model-based approach for spatial quantile
regression.

Rather than focusing on a single or finite number of quantile levels, our approach is to
specify a flexible semiparametric model for the entire quantile process across all covariates
and quantile levels. We assume the quantile function at each quantile level is a linear
combination of the covariates and model the quantile functions using a finite number of
basis functions with constraints on the basis coefficients to ensure that the quantile function
is noncrossing for all covariate values. An advantage of this approach is that we can center
the prior for the conditional density on a parametric model, for example, multiple linear
regression with skew-normal errors. Our model is equipped with parameters that control the
strength of the parametric prior. Also, the quantile function, and thus the conditional density,
is allowed to vary spatially. Spatial priors on the basis coefficients are used to allow the
quantile process to vary smoothly across space.

The article proceeds as follows. Section 2 proposes the spatial quantile regression model.
While this model is computationally efficient for moderately sized datasets, it is not feasible
for very large datasets. Therefore Section 3 describes an approximate model which is able to
handle several years of daily data for the entire Eastern U.S. Section 4 conducts a brief
simulation to compare our model with other methods and examine sensitivity to hyperprior
choice. In Section 5 we analyze a large spatiotemporal ozone dataset. We discuss
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meteorologically adjusted spatial and temporal trends for different quantile levels and use
the estimated conditional densities to forecast future ozone levels using deterministic climate
model output. Section 6 concludes.

2. BAYESIAN QUANTILE REGRESSION FOR SPATIOTEMPORAL DATA
Let yi be the observed eight-hour maximum ozone for space/time location (s, t)i, and denote
the day and spatial location of the ith observation as ti and si, respectively. Our interest lies
in estimating the conditional density of yi as a function of si and covariates Xi = (Xi1, … ,
Xip)′, where Xi1 = 1 for the intercept. In particular, we would like to study the conditions
that lead to extreme ozone days. Extreme events are often summarized with return levels.
The n-day return level is the value cn so that P(yi > cn) = 1/n. Given our interest in extreme
events and return levels, we model yi’s conditional density via its quantile (inverse CDF)
function q(τ|Xi, si), which is defined so that P{yi < q(τ|Xi, si)} = τ ∈ [0, 1]. We model q(τ|
Xi, si) as

(1)

where β(τ, si) = (β1(τ, si), … , βp(τ, si))′ are the spatially varying coefficients for the τth
quantile level. Directly modeling the quantile function makes explicit the effect of each
covariate on the probability of an extreme value.

Several popular models arise as special cases of Model (1). For example, setting βj(τ, s) ≡ βj
for all τ, s, and j > 1 gives the usual linear regression model with location shifted by

 and residual density determined by β1(τ, s). Also, setting βj(τ, s) ≡ βj(s) for all τ
and j > 1 gives the spatially varying coefficients model (Gelfand et al. 2003) where the
effect of Xj on the mean varies across space via the spatial process βj(s). Allowing βj(τ, s) to
vary with s and τ relaxes the assumption that the covariates simply affect the mean response,
and gives a density regression model where the covariates are allowed to affect the shape of
the response distribution. In particular, the covariates can have different effects on the center
(τ = 0.5) and tails (τ ≈ 0 and τ ≈ 1) of the density.

2.1 Model for the Quantile Process
We begin modeling the quantile function by ignoring spatial location and assuming the
intercept-only model with Xi = 1. In this case, the quantile function in (1) reduces to q(τ) =
β(τ). The process β(τ) must be constructed so that q(τ) is nondecreasing in τ. Let

(2)

where M is the number of basis functions, Bm(τ) is a known basis function of τ, αm are
unknown coefficients that determine the shape of the quantile function. We use Bernstein
basis polynomials

(3)

An attractive feature of these basis functions is that if αm ≥ αm−1 for all m > 1, then β(τ),
and thus q(τ), is an increasing function of τ. This reduces the complicated monotonicity
constraint to a sequence of simple constraints δm = αm − αm−1 ≥ 0, for m = 2, … , M. These
constraints are sufficient, but not necessary, to ensure an increasing function. As is typical
for semiparametric models, for finite M this model does not span the entire class of
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continuous monotonic functions. However, as M increases, the Bernstein polynomials basis
with these constraints induces a prior with dense support on the space of continuous
monotone functions from  (Chang et al. 2007).

Since the constraints on α = (α1, … , αM) are expressed in terms of the difference between
adjacent terms, we reparameterize to δ1 = α1 and δm = αm − αm−1 for m = 2, … , M. The

original basis function coefficients are then . Following Cai and Dunson (2007),
we ensure the quantile constraint by introducing a latent unconstrained variable  and

taking  and

(4)

from m > 1.

The  have independent normal priors , with unknown hyperparameters Θ.

We pick  to center the quantile process on a parametric distribution f0(y|Θ), for

example, a  random variable with Θ = (μ0,σ0). Letting q0(τ|Θ) be the quantile

function of f0(y|Θ), the  are then chosen so that

(5)

where . The  are chosen to correspond to the following ridge
regression estimator:

(6)

where dm ≥ 0 for m > 1, {τ1, … , τK} is a dense grid on (0, 1). We find that simple
parametric quantile curves can often be approximated almost perfectly with fewer than M
terms. Therefore several combinations of d give essentially the same fit, including some

undesirable solutions with negative values for elements of . For numerical stability we add

the ridge penalty . Setting the tuning constant λ to zero gives the unpenalized fit

and setting λ to infinity gives  for all terms. We pick λ = 1 because this allows the

parametric quantile curve to be approximated well and gives  values that vary smoothly
from term to term. As σ → 0, the quantile functions this resembles are increasing shrunk
towards the parametric quantile function q0(τ|Θ), and the likelihood is similar tof f0(y|Θ).

2.2 Model for the Spatial Quantile Process With Covariates
Adding covariates, the conditional quantile function becomes
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(7)

As in Section 2.1, the quantile curves are modeled using Bernstein basis polynomials

(8)

where αjm are unknown coefficients. The processes βj (τ) must be constructed so that q(τ|
Xi) is nondecreasing in τ for all Xi. Collecting terms with common basis functions gives

(9)

where . Therefore, if  for all m > 1, then , and
thus q(τ|Xi), is an increasing function of τ.

To specify our prior for the βjm to ensure monotonicity, we assume that Xi1 = 1 for the
intercept and the remaining covariates are suitably scaled so that Xij ∈ [0, 1] for j > 1. Since
the constraints are written in terms of the difference between adjacent terms, we
reparameterize to δj1 = αj1 and δjm = αjm − αjm−1 for m = 2, … , M. We ensure the quantile

constraint by introducing latent unconstrained variable  and taking

(10)

for all j = 1, … , p and m = 1, … , M. Recalling Xi1 = 1 and Xij ∈ [0, 1] for j = 2, … , p, and
thus Xijδjm ≥ XijI(δjm < 0)δjm ≥ I (δjm < 0)δjm for j > 1,

(11)

for all Xi, giving a valid quantile process. As in Section 2.1 we center the intercept curve on

a parametric quantile function q0(Θ). The remaining coefficients have  for j > 1.

Although this model is quite flexible, we have assumed that the quantile process is a linear
function of the covariates, simplifying interpretation. In some applications the linear quantile
relationship may be overly restrictive. In this case, transformations of the original predictors
such as interactions or basis functions can be added to give a more flexible model. However,
(10) may be prohibitive if quadratic or higher-order terms are added to the model since (10)
unnecessarily restricts the quantile function for combinations of the covariates that can never
occur, for example, the linear term being zero and the quadratic term being one. Also, the
linear relationship between the predictors and the response is not invariant to
transformations of the response. To alleviate some sensitivity to transformations, it may be
possible to develop a nonlinear model for q(τ|Xi), so that q(τ|Xi) and T(q(τ|Xi)) span the
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same class of functions (and therefore response distributions) for a class of transformations
T.

For spatial data, we allow the quantile process to be different at each spatial location,

(12)

where αjm(s) are spatially varying basis-function coefficients. We enforce the monotonicity

constraint at each spatial location by introducing latent Gaussian parameters . The

latent parameters relate to the basis-function coefficients as  and

(13)

for all j = 1, … , p and m = 1, … , M.

To encourage the conditional density functions to vary smooth across space we model the

 as spatial processes. The  are independent (over j and m) Gaussian spatial

processes with mean  and exponential spatial covariance

, where  is the variance of  and ρj
determines the range of the spatial correlation function.

3. APPROXIMATE METHOD
Section 2’s spatial quantile regression model can be implemented efficiently for moderately
sized datasets. However, it becomes computationally infeasible for Section 5.3’s analysis of
several years of daily data for the Eastern U.S. To approximate the full Bayesian analysis,
we propose a two-stage approach related to that of Daniels and Kass (1999). We first
perform separate quantile regression at each site for a grid of quantile levels to obtain
estimates of the quantile process and their asymptotic covariance. In a second stage, we
analyze these initial estimates using the Bayesian spatial model for the quantile process.

The usual quantile regression estimate (Koenker 2005) for quantile level τk and spatial
location s is

(14)

This estimate is easily obtained from the quantreg package in R and is consistent for the
true quantile function and has asymptotic covariance (Koenker 2005)

(15)

Reich et al. Page 7

J Am Stat Assoc. Author manuscript; available in PMC 2013 February 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where ns is the number of observations at site s,

 is the conditional density of yi

evaluated at , and .

Although consistent as the number of observations at a given site goes to ∞, these estimates
are not smooth over space or quantile level, and do not ensure a noncrossing quantile
function for all X. Therefore we smooth these initial estimates using the spatial model for
the quantile process proposed in Section 2. Let

 and  [with
elements defined by (15)]. We fit the model

(16)

where the elements of β(si) = [β1(τ1, si), … , β1(τK, si), β2(τ1, si), … , βp(τK, si)]′ are
functions of Bernstein basis polynomials as in Section 2.2. This approximation provides a
dramatic reduction in computational time because the dimension of the response is reduced
from the number of observations at each site to the number of quantile levels in the
approximation, and the posteriors for the parameters that define β are fully conjugate
allowing for Gibbs updates and rapid convergence.

The correlation between initial estimates is often very high. To avoid numerical instability
we pick the number of quantile levels in the initial estimate, K, so that the estimated
correlation is no more than 0.95. For the simulated and real data, we use K = 10. Also, our
experience with this approximation suggests that this approximation has coverage
probability below the nominal level. Therefore, we inflate the estimated variance by a factor

of c2 and fit the model . We pick c by first fitting the model with c = 1.
We then generate R datasets from the fitted model, analyze each dataset with c = {0.5, 0.75,
1, 1.25, 1.5}, and compute the proportion (averaged over space, quantile level, and
covariate) of the 90% intervals that cover the coefficients used to generate the data. We pick
the smallest c with 90% coverage. For large datasets with many locations and several
covariates we find R = 1 is sufficient to give reasonable coverage probabilities.

This simplification may permit extensions to more sophisticated spatial models for the basis
coefficients, such as nonstationary and non-Gaussian spatial models. Details of the MCMC
algorithm for this model and the full model are given in the Appendix. It may also be
possible to develop an EM-type algorithm or a constrained optimization routine, although
MCMC is well suited as described above.

4. SIMULATION STUDY
In this section we analyze simulated data to compare our method with standard quantile
regression approaches, and to examine the performance of Section 3’s approximate method.
For each of the S = 50 simulated datasets we generate n = 20 spatial locations si uniformly

on [0, 1]2. The p = 3 covariates are generated as X1 ≡ 1 and , independent
over space and time. The true quantile function is

(17)

which implies that β1(τ, si) = 2si2+(τ+1)Φ−1(τ), β2(τ, si) = 0, and β3(τ, si) = 5si1τ2, where Φ
is the standard normal distribution function. Figure 1(a) plots the density corresponding to
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this quantile function for various covariates and spatial locations. The density is generally
right-skewed to mimic ozone data. The second spatial coordinate simply shifts the entire
distribution by increasing the intercept function β1. The first predictor X2 has no effect on
the density because β2(τ, s) = 0. The second predictor X3 has little effect on the left tail
because β3(τ, s) is near zero for small τ, but increasing X3 adds more mass to the density’s
right tail.

Each dataset contains 100 replicates at each spatial location. We first consider the situation
where the replicates are independent over space and time. We also generate data with
spatially and temporally correlated residuals using a Gaussian copula. To generate spatially
correlated residuals, we first generate Ui as independent (over time) Gaussian processes with
mean zero and exponential spatial covariance exp(−||s − s′||/ρZ), and then transform using

the marginal quantile function . We assume the
spatial range of the residuals is ρZ = 0.5. We also generate data with no spatial correlation,
but temporal correlation at each site. The latent Gaussian process at each site has mean zero
and exponential covariance Cor(Ui, Uj) = exp(−|i − j′|/ρU), where ρU = −1/ log(0.5) so the
correlation between subsequent sites is 0.5.

For each simulated dataset we fit three Bayesian quantile methods: the full model described

in Section 2, the model in Section 2 without spatial modeling [i.e., ],
and Section 3’s approximate method. For the Bayesian quantile regression models (full and
approximate) we use M = 10 knots and vague yet proper priors for the hyperparameters that

control the prior covariance of the quantile function,  ~ InvGamma(0.1, 0.1) and ρj ~
Gamma(0.06, 0.75). The prior for the ρj is selected so the effective range −ρj log(0.05), that
is, the distance at which the spatial correlation equals 0.05, has prior mean 0.25 and prior
standard deviation 1. The centering distribution f0 was taken to be skew-normal (Azzalini

1985) with location μ0 ~ N(0, 102), scale  ~ InvGamma(0.1, 0.1), and skewness ψ0 ~ N(0,
102). We also compare our methods with the usual frequentist estimates in (14), computed
using the quantreg package in R. Of course these estimates do not smooth over quantile
level or spatial location, so they may not be directly comparable in this highly-structured
setting.

For each simulated dataset and each method we compute point estimates (posterior means
for Bayesian methods) and 90% intervals for βj(τk, si) for j = 1, 2, 3, τk ∈ {0.05, 0.10, … ,
0.95}, and all spatial locations si. We compare methods using mean squared error, coverage
probability, and power (i.e., the proportion of times in repeated samples under the alternative
that the 90% interval excludes zero) averaged over space, quantile levels, and simulated
dataset. Specifically, mean squared error for the jth quantile function is computed as

(18)

where  is the point estimate for the simulation number sim. Coverage and power
are computed similarly.

Table 1 presents the results. We first discuss the results without residual correlation. By
borrowing strength across quantile level and spatial location all three Bayesian methods
provide smaller mean squared error and higher power than the usual quantile regression
approach. Figure 1(b) shows the true quantile curve for β3 for each spatial location for one
representative dataset with line width proportional to the first spatial coordinate. The usual
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estimates in Figure 1(c) fluctuate greatly across quantile levels compared to the smooth
curves produced by the Bayesian spatial quantile regression model in Figure 1(d).

The approximate method which smooths the initial estimates from usual quantile regression
reduces mean squared error. In fact, in this simulation the approximate method often has
smaller mean squared error than the full model. Therefore, the approximate model appears
to provide a computationally efficient means to estimate the true quantile function to be used
for predicting future observations. However, the full model gives higher power for the
nonnull coefficient β3.

Adding residual correlation does not affect mean square error. Spatial correlation in the
residuals has a small effect on the coverage probabilities, perhaps because the spatially
varying regression parameters absorb some of the residual correlation. However, adding
temporal correlation reduces the coverage probability below 0.8. Therefore, strong residual
correlation should be accounted for, perhaps using a copula model as discussed in Section 6.

In this simulation we assumed M = 10 basis functions,  ~ InvGamma(0.1, 0.1), and the
prior standard deviation of the effective range was one. We reran the simulation (with
independent residuals) with S = 10 datasets using the full model three times, each varying
one of these assumptions. The alternatives were M = 25 basis functions, σj) ~
InvGamma(0.001, 0.001), and the prior standard deviation of the effective range set to five.
The results of the simulation were fairly robust to these changes; the mean squared error
varied from 0.06 to 0.11 for X1, from 0.07 to 0.12 for X2, and from 0.18 to 0.26 for X3, and
the average coverage probability was at least 0.86 for all fully Bayes models and all
covariates. The prior for the effective range was most influential. Altering this prior affected
the posterior of the spatial range, but had only a small effect on the mean squared errors and
coverage probabilities.

5. ANALYSIS OF EASTERN U.S. OZONE DATA
In this section we analyze monitored ozone data from the Eastern U.S. from the summers of
1997–2005 and climate model output from 2041–2045. Section 5.1 describes the data.
Sections 5.2 and 5.3 analyze monitored ozone data from 1997–2005, first using the full
model and a subset of the data, and then using Section 3’s approximate model and the
complete data. Sections 5.4 and 5.5 analyze the computer model output.

5.1 Description of the Data
Meteorological data were obtained from the National Climate Data Center (NCDC; http://
www.ncdc.noaa.gov/oa/ncdc.html). We obtained daily average temperature and daily
maximum wind speed for 773 monitors in the Eastern U.S. from the NCDC’s Global
Summary of the Day Database. Daily average cloud cover for 735 locations in the Eastern
U.S. was obtained from the NCDC’s National Solar Radiation Database.

Maximum daily eight-hour average ozone was obtained from the US EPA’s Air Explorer
Database (http://www.epa.gov/airexplorer/index.htm). We analyze daily ozone
concentrations measured at 631 locations in the Eastern U.S. during the summers (June–
August) of 1997–2005 (470,239 total observations), plotted in Figure 2(a). Meteorological
and ozone data are not observed at the same locations. Therefore we imputed meteorological
variables at the ozone locations using spatial Kriging. Spatial imputation was performed
using SAS version 9.1 and the MIXED procedure with spatial exponential covariance
function, with covariance parameters allowed to vary by variable and year. We treat these
predictors as fixed. Li, Tang, and Lin (2009) discuss the implications of ignoring uncertainty
in spatial predictors. Temperature and cloud cover are fairly smooth across space and thus
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have small interpolation errors, however there is more uncertainty in the wind speed
interpolation. Accounting for uncertainty in the predictors using a spatial model for the
meteorological variables warrants further consideration.

The final source of data is time slice experiments from the North American Regional
Climate Change Assessment Program (http://www.narccap.ucar.edu/data/). These data are
output from the Geophysical Fluid Dynamics Laboratory’s (GFDL) deterministic
atmospheric computer model (AM2.1) with three hour × 50 km resolution. We use data
from two experiments. The first provides modeled data from 1968 to 2000 using observed
sea surface temperature and sea-ice extent. These data are a reanalysis using boundary
conditions determined by actual historical data. The second provides modeled data for 2038
to 2070 using deviations in sea surface temperature and sea-ice extent from the GFDL’s
CM2.1 A2 scenario. From these experiments we obtain modeled daily average temperature,
maximum wind speed, and average cloud cover fraction. These gridded data do not have the
same spatial support as ozone and meteorology data obtained from point-reference monitors.
Throughout we use the ozone monitoring locations as the spatial unit, and we match
modeled climate data with ozone data by extracting climate data from the grid cell
containing the ozone monitor.

5.2 Atlanta Substudy
We begin by comparing several models using only data from the 12 stations in the Atlanta
area. The continuous variables temperature and wind speed are standardized and
transformed to the unit interval (as assumed in the monotonicity constraints described in
Section 2) by the normal CDF

(19)

where m(temp) and s(temp) are the sample mean and standard deviation of daily
temperature over space and time. Cloud cover proportion naturally falls on the unit interval.
We also include the year to investigate temporal trends in the quantile process. The year is
transformed as Xj (year − 1997)/8. We also include the interaction XjXl between
temperature and cloud cover and quadratic effects 4(Xj − 0.5)2.

We fit the full and approximate model with and without quadratic terms and compare these
models with the fully Gaussian spatial model with spatially varying coefficients,

(20)

where βj(s) are spatial Gaussian processes with exponential covariance, μ(s, t) are
independent (over time) spatial Gaussian processes with exponential covariance, and

 is the nugget effect. For both the full and approximate Bayesian quantile
regression models, the centering distribution f0 is taken to be skew-normal with location μ0

~ N(0, 102), scale  ~ InvGamma(0.1, 0.1), and skewness ψ0 ~ N(0, 102). Figure 2(b)
shows that this distribution is flexible enough to approximate the ozone distributions.
However, the parametric mean regression model with parametric skew-normal errors would
not allow for the shape of the right tail to depend on covariates. We note that the quantile
regression models do not explicitly model spatial or temporal association in the daily ozone
values. Effects of residual correlation are examined briefly in Section 5.5 and alternative

models are discussed in Section 6. We use M = 10 knots and priors  ~ InvGamma(0.1,
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0.1) and) ρj ~ Gamma(0.5, 0.5), which gives ) prior 95% intervals (0.00, 0.99) and (0.00,
0.80) for the correlation between the closest and farthest pairs of points, respectively.

To compare models we randomly removed all observations for 10% of the days (N = 910

total observations), with these test observations labeled . For each deleted
observation we compute the posterior predictive mean  and the posterior predictive 95%
equal-tailed intervals. Table 2 gives the root mean squared prediction error

, mean absolute deviation , and the
coverage probabilities and average (over i) width of the prediction intervals. Note that the
RMSEs reported here are larger than those reported by other spatial analyses of ozone data,
for example, Sahu, Gelfand, and Holland (2007), that withhold all observations for some
sites, rather than all observations for some days. In contrast, we withhold all observations on
a subset of days, and therefore our predictions rely entirely on correctly modeling the
relationship between meteorology and ozone, and do not use spatial interpolation. Since
ozone shows a strong spatial pattern, this results in higher RMSE. We feel this approach to
cross-validation is more relevant for our goal of prediction for future days without any
observed values.

The coverage probabilities of the 95% intervals are near or above the nominal rate for all
models in Table 2. The Gaussian models have the highest RMSE and MAD. To test for a
possible transformation to normality, we also fitted the Gaussian model using the square
root of ozone as the response. RMSE and MAD are compared by squaring the draws from
the predictive distribution. RMSE (14.4 for linear predictors, 14.2 for quadratic predictors)
and MAD (9.6 for linear predictors, 9.2 for quadratic predictors) were similar to the
untransformed response, so we use the untransformed response for ease of interpretation.
The approximate method with quadratic terms minimizes both RMSE and MAD, has good
coverage probability, justifying its use for prediction.

Figure 3 summarizes the posterior for the full Bayesian spatial quantile regression model
with quadratic terms. Panels (a)–(c) plot the quantile curves for one representative location.
The main effects are all highly significant, especially for the upper quantile levels. As
expected ozone concentration increases with temperature and decreases with cloud cover
and wind speed. Figure 3 reveals a complicated relationship between ozone and temperature.
The linear temperature effect is near zero for low quantile levels and increases with τ.

Figure 3(c) plots the data and several fitted quantile curves (τ ranging from 0.05 to 0.95) by
year with the transformed meteorological variables fixed at 0.5. All quantile levels decrease
from 1997 to 2002; after 2002 the lower quantiles plateau while the upper quantiles continue
to decline. Note that in this plot more than 5% of the observations fall above the 95%
quantile level. This is the result of plotting the quantile functions without regard to
variability in the meterological variables (i.e., fixing them at 0.5). To give a sense of the
spatial variability in the quantile curves, Figure 3(d) plots the posterior mean of the main
effect for year for all locations. All sites show a decreasing trend, especially for upper
quantile levels. The decreasing trends are adjusted for meteorology, and may be explained
by other factors, such as emission reductions. There is considerable variation from site to
site. The posterior 95% interval for the difference between the year main effect at τ = 0.8 for
the sites with largest and smallest posterior mean is (10.4, 25.0).

5.3 Analysis of Eastern U.S. Ozone Data
Analyzing data for the entire Eastern U.S. using the full Bayesian spatial quantile regression
model is not computationally feasible, so we use only the approximate model. We selected
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variance inflation c = 1. We considered other values of c, but the estimates were nearly
identical so we pick c = 1 for simplicity. Based on Section 5.2’s results, we include
quadratic terms for all predictors. Also, we use the same priors as in Section 5.2. The
posterior median (95% interval) for the skewness parameter ψ0 of the skew-normal base
distribution is 3.76 (1.12, 10.54), supporting a non-Gaussian analysis. To justify that this
model fits well, we randomly removed observations for 2% of the days (N = 12,468
observations) and the out-of-sample coverage probability of the 95% prediction intervals
was 93.4%.

Figure 4 maps the posterior means of several quantile functions. The two strongest
predictors are temperature and cloud cover. The model includes interaction and quadratic
terms, so to illustrate the effects, we plot linear combinations of all terms involving these
predictors,

(21)

where X1 and X2 are temperature and cloud cover values, respectively, and β1–β5 are the
corresponding quantile curves. Figure 4(a)–(d) plot the posterior means of linear
combinations using X1 that correspond to 20°C and 30°C and X2 that correspond to 10%
and 90% cloud cover.

For both temperature values ozone concentrations are generally higher when cloud cover is
low. For clear days with 10% cloud cover temperature has a strong effect on ozone in the
north, but only a weak effect in the south. For cloudy days with 90% cloud cover,
temperature has less effect overall, but remains significant in the northeast.

The linear time trend for the 95th quantile in Figure 4(e) is generally decreasing, especially
in the south. This agrees with Chan (2009). To compare the rate of decrease in the upper and
lower tails, Figure 4(f) plots the difference between the linear time trend for the 95th and 5th
quantile [βj(0.95, s) − βj(0.05, s)]. In the Middle Atlantic (red) the negative trend is stronger
in the lower tail than the upper tail; in contrast in Florida the trend is stronger in the upper
tail.

5.4 Calibrating Computer Model Output
Before applying our statistical model to project ozone levels, we must calibrate the climate
model with the observed data. For example, calibration is necessary to account for
systematic differences between grid cell averages and point measurements. Figure 5 plots
the sample quantile function for the observed and modeled temperature and wind speed for
all days in 1997–1999 in Georgia. The distribution of daily average temperature agrees quite
well below the median, however the modeled temperature has a heavier right tail than the
observed temperature. The standard approach to calibration is to simply shift and scale the
computer model output by matching the sample mean and standard deviation. However, in
light of the differences in the tail of the distributions and our desire to accurately model
extreme events, a more sophisticated approach is warranted.

We use nonlinear monotonic regression on the sample quantile functions to calibrate these
distributions. Let  and  be the τkth sample quantiles of the observed and
modeled 1997–1999 data, respectively. These distributions are standardized by the nonlinear
model  using sample quantiles on the grid τk ∈ {0.01, 0.02, … , 0.99}.
We model g using M = 20 Bernstein polynomial basis functions with monotonicity
constraints (fitted using restricted least squares) as in Section 2 to ensure that g is an
increasing function. Figure 5 shows the transformed temperature for Georgia. Model outputs
for 2041–2045 with large temperatures are reduced to resolve the discrepancy between
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observed and modeled 1997–1999 data. The meteorological predictors are transformed
separately by state to account for spatial variation in the calibration.

We compare this calibration method to the simple method of adjusting each site by the state
mean and variance using five-fold cross-validation. We randomly divided the observed
temperature data into five groups. For each group we used the observations from the
remaining four groups to calibrate the computer model output for the group. For each site,
we computed the squared difference between the mean observed temperature and the mean
of the calibrated computer output, as well as the Kolmogorov–Smirnov test statistic for the
test that the observed temperature and calibrated computer model output follow the same
distribution. The quantile calibration method has smaller squared error (average of 3.26
compared to 3.31, smaller at 56% of sites) and KS-statistic (average of 0.139 compared to
0.149, smaller at 59% of sites) than the mean/variance calibration method.

5.5 Projecting Ozone Levels Under Different Climate Scenarios
The additive structure of the quantile regression model gives the effect of each covariate on
the maximum daily eight-hour average ozone in closed form. In addition, policy makers are
often interested in the effect of covariates on the yearly ozone distribution. For example, in
this section we explore the relationship between temperature and yearly median and 95th
percentile of ozone. Here we use Section 5.3’s estimate of the conditional density of daily
ozone to simulate several realizations of the ozone process to forecast yearly summaries
under different climate scenarios. These simulations vary temperature, wind speed, and
cloud cover and assume all other factors (emissions, land use, etc.) are fixed. Certainly other
factors will change in the future (e.g., emissions may decline in response to new standards)
so these projections are not meant to be realistic predictions. Rather, they are meant to
isolate the effect of climate change on future ozone levels.

Two factors contribute to the effect of climate changes on ozone levels at a given location:
the magnitude of the climate change and the strength of the association of meteorology and
ozone. To quantify spatial variability in the effect of temperature increase on yearly
summaries, we generate 500 replicates of the ozone process at the data points under different
climate scenarios. The first scenario is no change in the meteorological variables. In this
case, replicates are generated by simulating the ozone concentration each day at each spatial
location from the Section 5.3’s conditional daily ozone distribution given the observed
meteorological values for that location on that day. For this and all other simulations we fix
the year variable to 2005 for all observations to represent the most recent ozone distribution.
The rth replicate at location s and day t, y(r)(s, t), is generated by first drawing ust) ~ U(0, 1)
independent over space and time and then transforming to

(22)

where  is the posterior mean of βj(ust, s). For each replication we calculate the

yearly summaries , the τth quantile of {y(r)(s, 1), … , y(r)(s, nt)}, and , the
three-year (2003–2005) average of the fourth-highest daily maximum eight-hour average
ozone concentrations.

The second scenario increases the daily average temperature by 2°C every day at every

location and keeps all other variables fixed. Denote  and  as the yearly
summaries for replication r from this scenario. Figure 6 plots the mean (over r) of

 for τ = 0.5 and τ = 0.95 to illustrate the effect of a shift in daily
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temperature holding all other variables fixed. The change in median and 95th quantile of
yearly ozone are both the largest in Michigan and Northeast U.S. The current (as of 2008)
EPA ozone standard is that the three-year average of the fourth-highest daily maximum
eight-hour average ozone concentrations is less than 0.075 ppm.

The third scenario uses the calibrated GFDL projected temperature, wind speed, and cloud
cover for 2041–2045. The projected temperature change from the observed 1997–2005
temperatures and calibrated 2041–2045 temperatures varies spatially, but is generally
between 1-4°C and is largest in the Midwest. As an example of the analysis that can be
conducted using the rich output of the Monte Carlo simulation, Figures 7(c) and 7(d) plot
the probability of the three-year (2041–2043) average of the fourth-highest daily maximum
eight-hour average ozone concentrations is greater than 0.075 ppm under the current and
future climate scenarios, respectively. Also, Table 3 shows the mean and standard deviation
of the Monte Carlo samples for the stations with the largest projected difference in fourth-
highest daily maximum eight-hour average ozone. The largest increases are in the Northeast
and Midwest.

To test for sensitivity to modeling assumptions, we also make projections under the future
climate scenario without calibration of the computer model and with temporal correlation in
the Monte Carlo samples. The results were quite different without calibration. For example,
the projected average (over space) change in median and 95th percentile yearly ozone,
respectively, is 3.54 and 5.43 without calibration, compared to 2.29 and 2.26 with
calibration. To test for sensitivity to correlation in the Monte Carlo samples, we generate the
latent ust as ust = Φ(Ust), where Ust are independent across space, and mean zero, Gaussian,
with temporal covariance Cov(Ust, Ust+h) = 0.4h, where the correlation 0.4 was chosen to
match a lag-1 residual autocorrelation of a typical location. The projected average (over
space) change in median and 95th percentile yearly ozone with correlated draws are 2.29
and 2.21, respectively. Therefore the projections are not sensitive to residual autocorrelation.

6. DISCUSSION
In this article we propose a Bayesian spatial quantile method for tropospheric ozone. Our
model does not assume the response is Gaussian and allows for complicated relationships
between the covariates and the response. Working with a subset of data from the Atlanta
area we found that temperature, cloud cover, and wind speed were all strongly associated
with ozone, and that the effects are stronger in the right tail than the center of the
distribution. Working with the entire Eastern U.S. dataset we found a decreasing time trend,
especially in the South. Applying the model fit under different climate scenarios suggests
that the effect of a warmer climate on ozone levels will be strongest in the Industrial
Midwest and Northeast, and that a warmer climate will increase the probability of exceeding
the EPA ozone standard in these areas.

Our model accounts for spatial variability by modeling the conditional distribution as a
spatial process. However, we do not directly account for the correlation of two nearby
observations on the same day or two observations at the same location on consecutive days.
A spatial copula (Nelsen 1999) could be used to account for this source of correlation while
preserving the marginal distribution specified by the quantile function. We experimented
with a spatial Gaussian copula and found it dramatically improved prediction of withheld
observations when several observations on the same day were observed. However, when all
observations on a day were withheld, prediction did not improve substantially. Since our
objective is to predict ozone on days with no direct observations, and MCMC convergence
and run times are slower using a copula, we elect to present results from the independent
model. An efficient way to account for residual correlation is an area of future work.
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In addition to projecting ozone levels, the analysis in this article could be combined with
health effects estimates to study changes in ozone health risks. The Monte Carlo simulation
in Section 5.5 produces samples of the joint spatiotemporal distribution of ozone and
meteorology. For each sample, we could generate a realization of the mortality time series,
and compare the distributions of mortality rates across climate scenarios. In this analysis, it
would be important to account for spatially varying health effects as well as interactions
between ozone and meteorology.
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APPENDIX: MCMC DETAILS
MCMC sampling is carried out using the software package R. Different sampling schemes

for the full and approximate models are used to update the regression coefficients ; all
other parameters are updated identically for both methods. For Section 2.2’s full model, the

 are updated individually using Metropolis sampling. This requires computing the
likelihood for each observation. This likelihood is approximated by computing q(τk|Xi, si)
on a grid of 100 equally spaced τk from 0 to 1, and taking p(yi|Xi, δ(si)) ≈ 1/[q(τj+1|Xi, si) −
q(τj|Xi, si)], where τj is the quantile level so that q(τj|Xi, si) ≤ q(τj+1|Xi, si).

Using Section 3’s approximate model, the latent  have conjugate full conditionals and
are updated using Gibbs sampling. Denote the quantile process at location si evaluated on
the grid of τ in (16) as β(si) = Ωδ(si), where Ω is the appropriate matrix of basis functions,

δ(si) the vector of δjm(si), and δ*(si) the vector of . The full joint posterior for δ*(si)

is the product of the Gaussian likelihood  and the Gaussian spatial prior
for δ*(si). However, in this normal/normal model δ*(si) does not have a Gaussian full
conditional since δ(si), a truncated version of δ*(si), appears in the likelihood instead of

δ*(si). However, the individual components  do have conjugate full conditionals,
given below.

Define  as the conditional prior from the Gaussian spatial
model, Ωjm as the column of Ω that corresponds to δjm(si),

 as the residuals not accounting for the terms

corresponding to δ1m(si), … , δpm(si), and  as the residuals not
accounting for the term corresponding to δjm(si). Then twice the negative log of the full

conditional of  is the sum of a constant that does not depend on  and

(A.1)

where . In both cases of (A.1), the full
conditional is proportional to a Gaussian distribution. Therefore, the full conditional of

 is a mixture of two truncated normal densities
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(A.2)

where NA(m, s2) is the truncated normal density with location m, scale s, and domain A. The
first truncated normal density corresponds to δjm(s) = 0 and the mth term dropping from the
likelihood, and so the parameters of the truncated normal are the prior mean and variance.

The second term corresponds to , and has parameters m2 and , where

, .

The probability π and cutpoint c depend on j and m. The first term is unconstrained, so if m
= 1 then π = 0 and c = −∞. Terms with m > 1 are constrained. For these terms if j = 1 then

 and

(A.

3)

Finally, we give the full conditional for terms with m > 1 and j > 1. For these terms, if

 then π = 1 and c = ∞ and if c* < 0 then c
= c* and π is given by (A.3).

For both full and approximate methods, the spatial variances  have conjugate inverse
gamma priors and are updated using Gibbs sampling. The spatial ranges ρj and centering
distribution parameters Θ are updated individually using Metropolis sampling with Gaussian
candidate distributions.

For all analyses we generate 20,000 MCMC samples and discard the first 10,000 as burn-in.
Convergence is monitored using trace plots of the deviance and several representative
parameters.
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Figure 1.
True and estimated quantile curves for the simulation study. Panel (a) gives the true density
as a function of space and covariates, panel (b) plots the true quantile function β3(s,τ), panel
(c) plots the usual quantile estimate for one dataset, and panel (d) plots the posterior mean
from spatial quantile regression for one dataset.
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Figure 2.
Panel (a) maps the sample median ozone concentration; the points are the 631 monitoring
locations. Panel (b) plots the skew-normal(34.5, 24.3, 1.8) over the histogram of ozone
concentrations, pooled over spatial location. Panels (c) and (d) plot ozone by daily average
temperature and cloud cover proportion, respectively; the data are pooled over space and the
width of the boxplots are proportional to the number of observations in the bins. The online
version of this figure is in color.
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Figure 3.
Results for Atlanta substudy. Panels (a)–(c) plot the results for one location. Panels (a) and
(b) give posterior 95% intervals for main effect and second-order quantile curves. Panel (c)
plots the data by year, along with the posterior mean quantile curves for several quantile
levels ranging from τ = 0.05 to τ = 0.95 with all covariates fixed at 0.5 expect year. Panel
(d) plots the posterior mean of the year main effect for each location. The online version of
this figure is in color.
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Figure 4.
Summary of the posterior mean of βj(τ, s). Panels (a)–(d) plot linear combinations of βj(τ, s)
as discussed in (21). Panels (e) and (f) plot the posterior mean of βj(0.95, s) and βj(0.95, s) −
βj(0.05, s), respectively. The units are parts per billion in all plots. The online version of this
figure is in color.
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Figure 5.
Calibration plots for meteorological data in Georgia.
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Figure 6.
Estimates of the change (ppb) in yearly median and 95th quantile due to shifting each daily
average temperature by 2°C (standard errors are less than 3 ppb for all sites and quantiles).
The online version of this figure is in color.
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Figure 7.
Panels (a) and (b) plot estimates of the change in yearly median and 95th quantile under the
future and current climate scenarios. Panels (c) and (d) give the probability that the three-
year (2041–2043) average of the fourth-highest daily maximum eight-hour average ozone
concentrations exceeds 75 ppb for current and future climate scenarios, respectively. The
online version of this figure is in color.
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