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On the search for sparingly available nutrients, plants may alter their root architecture to improve soil exploration. So far,
the examples for root system modifications induced by a heterogeneous availability of nutrients have been reported for
the macronutrients nitrogen (N) and phosphorous (P). In an attempt to extend this type of knowledge to other nutrients,
we recently provided evidence that Arabidopsis roots are able to sense a local availability of the micronutrient iron (Fe)
and to respond with lateral root elongation into the Fe-containing patch. This specific root response was caused by
enhanced elongation of cells leaving the root meristem and was dependent on an AUX1-mediated auxin accumulation in
the lateral root apices. In this report, we compare mechanisms underlying this response with those known for other
nutrients and show that a substantial genotypic variation exists among accessions of A. thaliana in the responsiveness of
lateral roots toward localized Fe supplies.

Fe Availability Affects Root System Architecture

To survive in soil environments with patchy or inhomogeneous
nutrient distributions, plant roots have evolved strategies allowing
them to perceive and respond to a spatially restricted availability
of minerals. When grown under a localized supply of ammonium,
nitrate or phosphate, roots undergo profound changes, which
result from the stimulation of either lateral root initiation or
elongation.1-5 We have recently reported that a localized
availability of the micronutrient Fe promotes elongation of those
lateral roots exposed to the Fe patch.6 Under natural and
agricultural growth conditions, such a root system response offers
the plant an adaptive advantage to exploit more distantly localized
Fe sources, since the diffusion rate of this micronutrient in the soil
is generally low.

The effect of localized Fe was mainly restricted to lateral root
elongation, since lateral root density was not significantly changed
by the mode of Fe delivery to roots.6 Like Fe, a localized supply of
nitrate also enhanced lateral elongation,1-4 whereas localized
ammonium stimulated lateral root initiation without causing
additional changes in lateral root elongation.5 Although Fe and
nitrate led to similar changes in lateral root morphology, they
apparently target different processes, since localized nitrate
primarily stimulated cell division in the apical meristems of
lateral roots,1,7 whereas Fe increased the elongation of cells leaving

the meristem.6 Thus, distinct nutrients affect root architecture
by influencing specific steps in the developmental program of
the root.

Localized Fe Alters Auxin Distribution in Lateral Roots

Lateral root development is under tight hormonal control.8 In our
study, we found that the increased lateral root length under
localized Fe was accompanied by an enhanced accumulation of
auxin in lateral root apices.6 Such a response has not yet been
reported for other nutrients when supplied locally to plants.
Importantly, auxin accumulation was stimulated by the internal
Fe pool in the root rather than by externally available Fe.6 In
addition, localized Fe supply enhanced the expression of the auxin
influx carrier AUX1 specifically in lateral roots exposed to Fe. In
the case of nitrate, it was first reported that AXR4, but not AUX1,
is necessary for the lateral root response to localized nitrate,1

whereas a further study found that this response was independent
of AXR4 and AUX1.3 Thus, although similar root architectural
changes are observed when plants are grown under a localized
supply of Fe or nitrate, nutrient-specific mechanisms underlie the
stimulation of lateral root elongation. Our findings suggest that
AUX1 is a Fe-sensitive checkpoint diverting the rootward auxin
flow mainly to lateral roots growing into the Fe-containing patch
thereby stimulating their elongation.6
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Lateral Root Length Under Localized Fe Supply
is Subject to Natural Genetic Variation

To gain an initial insight into the natural genetic variation of
lateral root responsiveness toward a spatially restricted Fe
availability, lateral root length was assessed in four accession lines
of A. thaliana grown under localized Fe. Although the number of
accessions tested was small, significant differences in the response
pattern were observed (Fig. 1). Whereas Col-0 and Col-gl plants
exhibited greatest average lateral root length under 25 to 50 mM
Fe, the accession Ws-0 required Fe concentrations above 50 mM
to fully stimulate lateral root length. By contrast, No-0 plants
showed the highest lateral root length when 25 mM Fe were
supplied (Fig. 1). Lateral roots of No-0 plants were also more
sensitive to high Fe, being repressed when $ 50 mM Fe were
supplied, whereas . 100 mM Fe was required to inhibit lateral
root length in Ws-0 plants. Thus, the Fe concentrations necessary
to trigger or repress lateral root elongation are dependent on the
ecotype, suggesting that genotype-specific factors are involved in
the regulation of this response. Significant natural variation has

also been reported for primary root sensitivity toward the organic
N form L glutamate9 and for root architectural changes under low
P availability.10,11 For the latter, the naturally occurring genetic
variation was used to map a QTL involved in the regulation of
primary root growth under low P,11 allowing the subsequent
identification of LPR1 as a major component of the P sensing
mechanism in primary root tips of Arabidopsis.12

The natural variation in the responsiveness of roots to localized
Fe might reflect genotype-specific differences in Fe sensing or
signaling mechanisms but may also be caused by nutritional
factors such as Fe uptake rates or internal Fe allocation. The
activity of the ferric-chelate reductase, an important component of
the Fe acquisition machinery in roots, also varied in different
accession lines of A. thaliana.13,14 Thus, genetic variation in Fe
uptake efficiency could determine to which extent the plant
invests further resources in elongating lateral roots. Alternatively,
because increased lateral root elongation under localized Fe is
sustained by enhanced auxin accumulation,6 differences in auxin
biosynthesis, sensitivity and/or transport could also affect lateral
root elongation. Such differences in auxin sensitivity among

Figure 1. Average lateral root length in four accessions of A. thaliana grown under localized supply of increasing Fe concentrations. Seeds were
germinated on half-strength MS medium without Fe. After 7 d, seedlings were transferred to segmented agar plates, supplied with the indicated Fe
concentrations only in the middle segment. After 15 d, plants were scanned for root analysis. Bars indicate means± SE (n = 7 plates containing
three plants). Different letters indicate significant differences among means (p , 0.05 by Tukey’s test). For more details about materials and methods,
see Giehl et al.6

712 Plant Signaling & Behavior Volume 7 Issue 7



©
20

12
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
. 

accessions of A. thaliana are for instance caused by genotype-
specific equilibria of the auxin signaling proteins ARF and Aux/
IAA.15 To which extent such differences impact on the
responsiveness of plants to localized Fe remains to be tested.

Concluding Remarks and Future Perspectives

Our initial study indicates that Arabidopsis roots perceive a local
Fe signal and that AUX1 is a sensitive checkpoint that integrates
the Fe nutritional signal into the root developmental program.
Furthermore, our data suggest that the Fe sensing event occurs
upstream of AUX1 and after Fe is taken up by root cells. The
future challenge is to identify additional components involved in
sensing Fe and in transmitting the Fe signal to induce lateral

root elongation. Further studies may then benefit from the
natural genetic variation in the Fe response which paves the way
to identify novel regulatory components determining the
responsiveness of Arabidopsis roots to internal and external Fe
signals.
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