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Heterotrimeric G-proteins (a, b and c subunits) are primarily involved in diverse signaling processes by transducing
signals from an activated transmembrane G-protein coupled receptor (GPCR) to appropriate downstream effectors within
cells. The role of a and b G-protein subunits in salinity and heat stress has been reported but the regulation of c subunit
of plant G-proteins in response to abiotic stress has not heretofore been described. In the present study we report the
isolation of full-length cDNAs of two isoforms of Gc [RGG1(I), 282 bp and RGG2(I), 453 bp] from rice (Oryza sativa cv Indica
group Swarna) and described their transcript regulation in response to abiotic stresses. Protein sequence alignment and
pairwise comparison of c subunits of Indica rice [RGG(I)] with other known plant G-protein c subunits demonstrated high
homology to barley (HvGs) while soybean (GmG2) and Arabidopsis (AGG1) were least related. The numbers of the exons
and introns were found to be similar between RGG1(I) and RGG2(I), but their sizes were different. Analyses of promoter
sequences of RGG(I) confirmed the presence of stress-related cis-regulatory signature motifs suggesting their active and
possible independent roles in abiotic stress signaling. The transcript levels of RGG1(I) and RGG2(I) were upregulated
following NaCl, cold, heat and ABA treatments. However, in drought stress only RGG1(I) was upregulated. Strong support
by transcript profiling suggests that c subunits play a critical role via cross talk in signaling pathways. These findings
provide first direct evidence for roles of Gc subunits of rice G-proteins in regulation of abiotic stresses. These findings
suggest the possible exploitation of c subunits of G-protein machinery for promoting stress tolerance in plants.

Introduction

Heterotrimeric G-protein is composed of a, β and c subunits and
constitute one of the most important components of cell signaling
cascade. In eukaryotes, it participates in relaying a wide range of
extracellular signals perceived through their G-protein coupled
receptor (GPCR).1-4 The transmission of stimulus perceived by
signaling machinery into the cell via membrane receptor occurs
through signal transduction triad (receptor/transducer/effector).5

According to the typical paradigm, G-protein exists in inactive state.
G-protein signaling initiates with binding of extracellular ligand that
results in a conformational change in a G-protein coupled receptor
(GPCR). Once activated by the GPCR, the Ga protein, which
possesses a GDP/GTP-nucleotide binding site and GTP-hydrolase
activity, changes its form to a structure that allows exchange of
GDP for GTP. The GTP-bound Ga separates from the associated
Gβc dimer and thus freed Ga and Gβc proteins can then interact
with downstream effector molecules, alone or in combination, to

transduce the signal. Subsequent to signal propagation, the intrinsic
GTPase activity of Ga eventually results in hydrolysis of bound
GTP to GDP, which inactivates Ga and allows its re-association
with the Gβc dimer to reform the inactive G-protein complex.6-8

Recently, the crystal structure of a self-activating G protein a
subunit from Arabidopsis revealed its distinct mechanism of signal
initiation from the well-established mechanism found in animals.9

Trusov et al.10 suggested that G protein gamma subunits provide
functional selectivity in G β-gamma dimer signaling in Arabidopsis
and suggested that some new elements also exist in the
heterotrimeric G protein-signaling complex.

The genes for putative a, β and c subunits of heterotrimeric
G-protein have been isolated from various plant species in higher
plants.11-13 Unlike in mammalians, plants have very small number
of G-protein subunit genes reported.14 For example the model
species Arabidopsis contain only a single canonical Ga gene,
GPA1,11 one Gβ gene, AGB115 and three Gc genes, AGG1,
AGG2 and AGG3.16-18 Two Ga subunit genes in pea (PGA1 and
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PGA2)19,13 and four Ga subunit genes (GmGa1–4) in soybean20

were reported. The fully sequenced genome of rice contains only
one conventional Ga, Gβ, three Gc subunits (RGG1, RGG2 and
RGG3); the RGG3 is a homolog of AGG3, also known as
DEP118 and one GPCR.3 These limited number of components,
however, regulate diverse signaling pathways, including hormone
signaling, environmental sensing, ion channel regulation, disease
response and cell death.13,21,22 Recently, Pandey23 has identified an
elaborate network of G-proteins in soybean. Although additional,
splice variants or non-conventional genes for Gc subunit may also
exist.20 The Gc protein of the G-proteins is essential for its proper
targeting at the plasma membrane and correct functioning.24

G-protein c-subunit is also reported to be involved in guard cell
K⁺-channel regulation and morphological development in
Arabidopsis thaliana.18 Recently, a detail study of Arabidopsis
G-protein interactome revealed a novel role for G-proteins in
regulating cell wall modification.25 However, little is known about
the role of Gc subunits as an individual in stress conditions. In
the present study, we have described the phylogenetic relation-
ship, genomic organization, promoter analysis and transcript
profile of RGG1 and RGG2 subunits of indica rice G-proteins
under different abiotic stress treatments including high salt, cold,
heat, drought and ABA.

Results

Cloning of RGG1(I) and RGG2(I) genes. The complete coding
sequence of RGG1(I) and RGG2(I), were amplified by PCR
using first-strand cDNA templates prepared from total RNA.
Sequence analysis showed that the amplified DNA of 282 bp and
453 bp encoded full-length gene of RGG1(I) and RGG2(I),
respectively. The deduced amino acid sequence revealed a protein
consisting of 93 amino acid residues with a predicted molecular
mass of about 10.49 kDa and pI 4.86 for RGG1(I), and a protein
consisting of 150 amino acid residues with a predicted molecular
mass of 16.83 kDa and pI 5.34 for RGG2(I).

In silico analysis of RGG1(I) and RGG2(I) proteins. Amino
acid sequence alignments of RGG1(I) and RGG2(I) subunits
with their corresponding subunits from Japonica rice, maize,
Sorghum, barley, Arabidopsis and soybean, is shown in
Figure 1A and B. The RGG1(I) and RGG2(I) share 41%
identity with each other. RGG1(I) is identical to RGG1(J)
followed by 84% identity with barley (HvG1), 81% with
sorghum (SbG1), 78% with ZmG1, 53% with soybean
(GmG1), 45% with Arabidopsis (AGG1) and showed least
homology of 30% with soybean (GmG1) (Table 1). The
sequence of RGG1(I) contained all the reported conserved
domains of the Gc1 subunit (Fig. 1A). On the other hand,
RGG2(I) shared 99% identity with RGG2(J), followed by 70%
identity with sorghum (SbG2), 68% with both HvG2 and
ZmG2, 37% with Arabidopsis (AGG2) while showing least
homology of 30% with soybean (GmG2) (Table 1). RGG2 also
has all the reported conserved domains of Gc2 subunit except
isoprenylation site (CAAX box) at C-terminus (Fig. 1B).

The Expasy PROSITE database of protein families and
domains revealed different motifs, patterns and biologically

significant sites in RGG1(I) and RGG2(I) (Fig. 1C). RGG1(I)
had two predicted potent N-myristoylation sites, viz 5–10:
GGgdAG; 6–11: GGdaGD, one protein kinase C phosphoryla-
tion site, 42–44: TdK and one casein kinase II phosphorylation
site, viz 58–61: SkaD. Whereas, different biologically significant
sites predicted in RGG2(I) included two potent N-myristoylation
sites, viz 53–58: GGgaAV; 102–107: GVitST, one cAMP- and
cGMP-dependent protein kinase phosphorylation site, viz 47–50:
RRpT, two casein kinase II phosphorylation sites, viz 82–85:
SlqD; 105–108: TstE, one potential N-glycosylation site, viz
123–126: NASW, two protein kinase C phosphorylation sites, viz
135–137: SsR; 138–140: SnK and one Leucine zipper pattern,
viz 69–90: LsaaiarLdqelqsLqdelneL.

Phylogenetic trees of RGG1(I) and RGG2(I). The phylogene-
tic trees constructed for gamma subunits of G-protein clustered all
monocots together (Fig. 2A and B). The hypothetical proteins
from barley and sorghum were considered in study due to high
homology in Blastn with RGG(I) and were found to be putative
Gc subunits as they possess conserved motifs of G-protein gamma
1 and 2 subunits.

Genomic organization of RGG1(I) and RGG2(I). Alignment
of the genomic sequence of RGG1(I) and RGG2(I) with their
respective cDNA sequence identified four exons (100, 53, 44 and
88 bp) and three introns (3326, 134 and 84 bp) in RGG1(I) and
in RGG2(I) (253, 52, 45 and 103 bp) and (1602, 88 and 105 bp)
as well (Fig. 2C and D). The numbers of the exons and introns
were found to be similar between RGG1(I) and RGG2(I), but
their sizes were different (Fig. 2C and D).

In silico analysis of promoters of RGG1(I) and RGG2(I). The
distribution of regulatory cis-elements in 2.0 kb upstream
promoter region of RGG1(I) and RGG2(I) were also analyzed
and shown in Figure 2E and F, respectively. Stress-responsive cis-
regulatory elements selected in the present study included are
defense, stress responsive element, salt-induced responsive
element (GT-1 motif), heat stress responsive element (HSRE),
low temperature responsive element (LTR) and phytohormones
responsive cis-regulatory elements, like abscisic acid responsive
element (ABRE),26 auxin response factor (TGA-box),27,28 methyl
jasmonate responsive element (MeJAE), salicylic acid responsive
element (SAR), gibberellic acid-responsive element (GARE),29

and auxin response factor (ARF).
The results showed that RGG1(I) gene contained putative

ABRE, HSRE, LTR, ARE, MeJAE and circadian cis-regulatory
elements in their promoter regions (Fig. 2E). Whereas, RGG2(I),
besides containing ABRE, HSRE, LTR, ARE, MeJAE and
circadian, also had a GT-1 motif, which plays a role in pathogen-
and salt-induced SCaM-4 gene expression,30 salicylic acid
responsive element (SAR) and gibberellic acid-responsive element
(GARE) in its 5' upstream region genomic sequence (Fig. 2F).
RGG1(I) contained LTR element (Fig. 2E) that was not present
in RGG2(I) (Fig. 2F).

Transcript profile of RGG1(I) and RGG2(I) by quantitative
real time PCR. The 200 mM NaCl treatment induced the
elevated expression of RGG1(I) and RGG2(I) by more than
10-fold at as early as 1 h. This elevation was maintained in case of
RGG1(I) up to the observation period of 12 h while, RGG2(I)
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showed increased expression up to 23-fold at 12 h (Fig. 3A).
Thus, it appears an early as well as prolong and strong response
against NaCl. However, the same effect was not observed with
200 mM KCl treatment (Fig. 3B) suggesting that increased
transcript levels of RGG1(I) and RGG2(I) was due to the high
level of Na+. Exposure to cold stress caused expression of RGG1

and RGG 2 to increase by ca. 12- and 7-fold, respectively, for
short time duration as soon as by 1h and subsequently, RGG1(I)
expression decreased drastically (ca. 7-fold at 2 h) before
maintaining the transient level (Fig. 3C). However, expression
of RGG2(I) showed a rhythmic response by increasing ca. 13-fold
at 2 h followed by decrease to basal level at 6 h and increased by

Figure 1. Amino acid sequence alignment of rice G-protein gamma subunits using ClustalW program (www.ebi.ac.uk/clustalw). Gaps were inserted to
optimize the alignment are indicated by dashes. (A) RGG1(I) protein aligned with Japonica rice [RGG1(J); AK241226.1], maize (ZmG1; NP_001152725),
barley (HvG1, AK359503), sorghum (SbG1, XP_002464204), Arabidopsis (AGG1; NP_567147.1) and soybean (GmG1; Glyma10 g03610). (B) RGG2(I) protein
with Japonica rice (RGG2; NM_001052368.1), maize (ZmG2; NP_001151842), barley (HvG2, AK367089), sorghum (SbG2, XP_002451511), Arabidopsis
(AGG2; AT3G22942.1) and soybean (GmG2; Glyma02 g16190). (C) RGG1(I) and RGG2(I) aligned together. Identical residues denoted by asterisk.
Different motifs and patterns identified using Expasy PROSITE database.
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ca. 14-fold at 12 h. On the other hand, expression of RGG1(I)
and RGG2(I) under heat stress showed no significant change
during observation period (Fig. 3D). During the drought-stress
condition, expression of RGG1(I) rapidly increased up to 2150-
fold by 1 h and decreased down to 560-fold at 12 h (Fig. 3E). On
the other hand, RGG2(I) transcript level decreased 79-fold
initially at 1h, after that it increased at 3 and 6 h before decreasing
again at 12 h (141-fold) (Fig. 3E). Expression profile of RGG1
and RGG2, under 100 mM ABA treatment appeared as late
response. In this case significant increase in expression of the
RGG1(I) was observed at 6 h (26-fold) that decreased to 2.9-fold
after 12 h (Fig. 3F). Whereas, RGG2(I) increased signifi-
cantly by ca. 4 and 5-fold at 2 h and 6 h respectively, under
ABA treatment (Fig. 3F).

Discussion

Rice is the most important staple crop that is cultivated
worldwide. In the many rice-growing areas, there are frequent
drought, salinity, extreme temperature, oxidative stress, heavy
metal and many more abiotic stresses to impede rice growth and
production. It promotes to elucidate the mechanisms of plant
tolerance or resistance to a variety of stresses and improve the
ability of crops to sustain against stresses. Heterotrimeric
G-protein complex and related G-protein coupled receptor(s)
are reported to play an important role in abiotic stresses.13

Heterotrimeric G-proteins consist of a, β and c-subunits.31 A
number of reports are available regarding the functions of
heterotrimeric G-proteins in higher plants.32 Comprehensive
analysis of plant G-proteins that integrate molecular, genetic and
biochemical characterization and their roles in regulating specific
signal transduction pathways is limited to a and β subunits of

Arabidopsis and rice.3 Studies with mutants lacking a and β
subunits have revealed their roles in transmission of external
stimuli.33,34 However, in higher plants, very little information is
available regarding function of G-protein c subunits in abiotic
stress signaling.

The c subunit of heterotrimeric G-proteins of Indica rice seems
to be an ortholog of the Gc subunit of yeast and mammals. It can
be judged from the length of the amino acid sequence and the
presence of the important motifs. The RGG(I) proteins contain
all the conserved features found in canonical Gc. Both, RGG1(I)
and RGG2(I) contain DPLL motif, which serves as an important
hydrophobic contact to Gβ21. The RGG1(I) contains prenyl-
group binding site (CAAX box) at its C-terminus. Prenylation is a
post-translational lipid modification, which promotes protein-
membrane and protein-protein interactions.35 It is also necessary
for normal control of abscisic acid signaling and other
fundamental processes.36 The increased expression level of
RGG1(I) in presence of ABA at 6 h, suggest its role in ABA
signaling pathway by activating downstream effectors due to
presence of CAAX box. However, comparatively little increase in
RGG2(I) expression under ABA treatment may be due to absence
of prenyl-group-binding site (CAAX box) at its C-terminus.
N-myristoylation is a co-translational or post-translational
covalent modification of protein that can promote its association
with membrane lipid. It is essential for the proper functioning of
proteins in regulation of signaling pathways and involved in
adaptation to high salt stress in plants.37 It is supported by the
presence of N-myrisitoylation sites in RGG(I) subunits.

Although sequences of introns and UTRs are not the part of
protein coding regions but they might have critical roles in gene
expression regulation and evolution. The number and location of
their introns and exons are similar and this conserved gene
structure might lead to similar expression pattern RGG(I) genes.
This is quite evident from their transcript profile under different
abiotic stress conditions. It can be speculated that the structure of
exon and intron might affect the expression RGG(I) of genes.38

Presence of stress responsive cis-regulatory elements in the
promoter regions of RGG(I) genes can be well correlated with
their transcript profile under different abiotic stresses. It strongly
suggests their possible active role in regulation of abiotic stress
signaling pathway. The increased expression levels of the RGG(I)
subunits under high NaCl concentration suggest its possible role
in adaptation to high salt stress. This increase in presence of high
NaCl is unlike to high KCl as high K+/Na+ concentration is a
requisite in view of plant nutrition.39 Moreover, G-protein a
subunit mediated heat-stress signaling have been reported in pea13

and no considerable change in transcript profile of RGG(I) in this
study suggests that 42°C temperature is either not a stress
condition or heat-stress signaling is independent of RGG(I). Stress
responsive genes are known to be expressed either through an
ABA-dependent or ABA-independent pathway.40 This study
suggests that gamma subunit of rice G-protein follow the ABA-
dependent pathway. The presence of stress responsive cis elements
indicate that some transcription factors may bind to these
elements and activate the RGG(I) genes transcription under the
stress conditions.

Table 1. Amino acid sequence identity (%) of Indica rice [RGG(I)] gamma
subunits (1 and 2) with corresponding proteins of Japonica rice [RGG(J)],
maize (ZmG), Sorghum (SbG), barley (HvG), Arabidopsis (AGG) and soybean
(GmG) using ClustalW 2.0 program.

RGG1(I) RGG1(J) ZmG1 SbG1 HvG1 AGG1 GmG1

RGG1(I) *** 100 78 81 84 45 53

RGG1(J) *** 78 81 84 45 53

ZmG1 *** 90 75 44 53

SbG1 *** 76 43 53

HvG1 *** 40 47

AGG1 *** 51

GmG1 ***

RGG2(I) RGG2(J) ZmG2 SbG2 HvG2 AGG2 GmG2

RGG2(I) *** 99 68 70 68 37 30

RGG2(J) *** 68 70 68 37 30

ZmG2 *** 81 67 37 31

SbG2 *** 65 39 32

HvG2 *** 37 33

AGG2 *** 51

GmG2 ***
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A generic signal transduction pathway starts with signal
perception, followed by the generation of second messengers,
which modulates intracellular Ca2+ levels, often initiating a
protein phosphorylation cascade that finally targets proteins
directly involved in cellular protection controlling specific sets of
stress-regulated genes.41 Since the phosphorylation sites are
present in RGG(I), they seems to be involved in cold and

drought condition. Recently, ten Gc genes have been found in
the soybean genome and reported to have interesting expression
profiles across different developmental stages.24

This research identifies the active participation of Gc subunits
in stress response, though its role in stress tolerance needs to be
studied in detail. Taken together, the observations reported in this
study present a first direct evidence for the regulation of transcript

Figure 2. In silico analysis of RGG1(I) and RGG2(I). (A–B) Dendrogram showing evolutionary relationship of RGG1(I) (A) and RGG2(I) (B) with related
proteins. The evolutionary history was inferred using the Neighbor-Joining method and evolutionary distances were computed using the Poisson
correction method. These phylogenetic analyses were conducted in MEGA5. (C–D) The schematic representation of genomic organization (exon–intron
organization) of the genomic sequence of RGG1(I) (C) and RGG2(I) (D) genes. Closed boxes represent exons, and lines between closed boxes represent
introns. The dark boxes represent the UTRs. The position of ATG and TAA are marked. The numbers below the lines and the above boxes indicate
the sizes (bp) of introns, UTR and exons, respectively. (E–F) Stress-responsive cis-elements and phytohormones responsive elements in the 2 kb
5’-upstream regions of RGG1(I) (E) and RGG2(I) (F). The lines represent 5’-upstream regions of RGG(I) genes. The elements located in the positive strand
are above the lines, while those in the reverse strand are indicated below the line. ABRE, abscisic acid responsive element; ARE, auxin responsive factor
(TGA-box; MeJAE, methyl jasmonate responsive element; GARE, gibberellic acid-responsive element; DASR, defense and stress responsive element; GT1-
Box; SAR, salicylic acid responsive element; HSRE, heat stress responsive element; LTR, Low temperature responsive element.
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of Gc1 and Gc2 in response to abiotic stress. These studies could
also provide new insight into the novel function of Gc subunits of
rice G-protein in abiotic stress response, thus suggesting a pre-
viously un-described molecule for manipulating stress tolerance in
plants. These findings also provide an excellent starting point to
investigate the potential roles of other subunits of rice G-proteins
in plant stress tolerance. Overall, this study will contribute to our
better understanding of G-proteins signaling under stress
conditions in higher plants.

Materials and Methods

Plant material and stress treatment. Rice (Oryza sativa cv Indica
group Swarna) seeds were grown in vermiculite in transgenic

house under 16/8 h day light condition. For abiotic stress
treatments the three week old seedlings were transferred to salt
solutions (prepared in 1 � MS medium) in magenta boxes
(200mMNaCl, 200mMKCl), abscisic acid (100 mM ABA) at
room temperature for defined time intervals. For cold (4⁰C) and
heat (42⁰C) treatment, seedlings in 1 � MS medium were kept in
incubators at defined temperatures. Uprooted seedlings were kept
on blotting paper for the mentioned period to mimic drought
conditions. Young leaf blades of the stress treated seedlings were
harvested at different time intervals (viz. 1 h, 2 h, 3 h, 6 h and
12 h). Seedlings grown in 1 � MS medium at room temperature
were taken as a control. After sampling, the leaf blades
(10 seedlings per treatment) were snap frozen in liquid nitrogen
and stored at -80°C until use.

Figure 3. Quantitative real-time PCR analyses showing expression profile of RGG1(I) and RGG2(I) in total RNA isolated from three-week-old rice seedling
leaf blades samples collected at different time intervals, treated under different abiotic stress conditions (A) 200 mM NaCl; (B) 200 mM KCl; (C) Cold (4°C);
(D) Heat (42°C); (E) drought condition and (F) 100 mM ABA. Error bars are SD.
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Isolation of RNA and cDNA preparation. Total RNA was
isolated from 100 mg of stress treated and non-treated rice leaf
blades, with TriZOL LS reagent (Invitrogen Life Technologies
USA). DNaseI treatment was given to remove the contaminating
genomic DNA. The total RNA obtained was used as template for
cDNA synthesis. The first strand cDNA was synthesized from
5 mg of total RNA using Superscript II Reverse Transcriptase
(Invitrogen Life Technologies USA) using oligo(dT)18 primer
according to the manufacturer’s instructions. Experiments were
performed thrice, independently.

Cloning of rice Gc genes. For cloning, of the G-protein c1
subunit [RGG1(I)], the primer pair 5'-CTCGAGCATATGCAG
GCCGGAGGAGGA-3' (Oligo-1, forward) and 5'-GAATTC
TCACAAAAACCAGCATTTGCAT-3' (Oligo-2, reverse), and
for G-protein c2 subunit [RGG2(I)], the primer pair 5'-
CTCGAGCATATGAGGGGGGAGGCGAAC-3' (Oligo-3, for-
ward) and 5'-GAATTCCTAGGAAAAATCTGAGCCTTTG-3'
(Oligo-4, reverse) were used in PCR. The PCR reactions, using
first strand cDNAs from Indica rice as template and respective
primer pairs (Ta = 62°C), amplified DNA amplicon of 282 bp and
453 bp for RGG1(I) and RGG2(I) subunits, respectively. The
full-length rice Gc genes were cloned into the pGEMT easy
vector (Promega). The putative recombinant colonies of E. coli
DH5a, showing desired amplification were used for isolation of
plasmid DNA using QIAprep Spin Miniprep kit (Qiagen)
following manufacturer’s instructions. The plasmid DNA was
confirmed for the gene insertion by restriction digestion using
with NdeI and EcoRI enzymes. The putative positive colonies
were subjected to nucleotide sequencing and thus obtained
sequences were submitted to GenBank as Accession numbers
GU111573 and GU066806 for RGG1(I) and RGG2(I),
respectively.

In silico analysis of RGG1(I) and RGG2(I) proteins. The
deduced amino acid sequences of RGG1 and RGG2 of Indica
rice were compared with each other and with respective subunits
of Japonica rice, maize, barley, Sorghum, Arabidopsis and
soybean by multiple amino acid sequence alignment using
ClustalW 2.0 program (www.ebi.ac.uk/clustalw).42 The pair wise
amino acid sequence identity between RGG1(I) and RGG2(I),
and with respective subunits of Japonica rice, maize, barley,
Sorghum, Arabidopsis and soybean was calculated using
ClustalW2 (EMBL-EBI). The ClustalW aligned amino acid
sequences of RGG1(I) and RGG2(I) subunits, Japonica rice,
maize, barley, Sorghum, Arabidopsis and soybean was used to
infer the evolutionary relationship among them using the
neighbor-joining method. The evolutionary distances were

computed using the Poisson correction method43 and are in
the units of the number of amino acid substitutions per site.
These phylogenetic analyses were performed using MEGA5.44

The functional motifs, patterns and biologically significant sites
in RGG1(I) and RGG2(I) amino acid sequence were located by
ExPASy Proteomics Server ScanPro site (www.expasy.org/tools/
scanprosite/).

In silico analysis of promoters and gene sequence of RGG1(I)
and RGG2(I). In order to analyze the putative cis-elements in the
promoters, we searched 2.0 kb genomic sequence upstream of the
translation initiation codon of RGG1(I) and RGG2(I) genes
on cis-element database (http://bioinformatics.psb.ugent.be/
webtools/plantcare/html/).45 BLAST search in rice genome
annotation project (http://rice.plantbiology.msu.edu/) was used
to identify RGG(I) genomic DNA sequences including 5' and
3'-UTR, exon and intron sequences.

Quantitative real-time PCR. The transcript profile of RGG1
(I) and RGG2(I) under different stress conditions in leaf
blades were determined by quantitative real time PCR. qPCR
reactions were performed on StepOne Real Time PCR system
(Applied Biosystems). Using Power SyberGreen PCR master
mix (Applied BioSystems), a 20 ml reaction mixture
containing 10 pM of each gene specific primer pair (a-tubulin
forward 5'-GGTGGAGGTGATGATGCTTT-3' and reverse
5'-ACCACGGGCAAAGTTGTTAG-3'; RGG1(I) forward
5'-CAAGAAGCTCGAGCAAGAGG-3' and reverse 5'-CGG
ACCTTCAAACCATCTGT-3'; and RGG2(I) forward
5'-TGCAGGATGAACTGAACGAG-3' and reverse 5'-GGA
TGCCCACCATTTGTTAC-3') and 1 ml of stress treatment
specific cDNA was prepared. PCR reaction conditions were as,
one cycle of 10 min for 95°C for initial denaturation followed by
40 cycles of 15s at 95°C, 20s at 59°C and 30s at 72°C. Optical
data were collected after every cycle. PCR products were melted
by gradually increasing the temperature from 55–95°C in 0.5°C
increment at every step. Rice a-tubulin gene was used as internal
reference.46 The qPCR reactions were repeated thrice for each
treatment. Relative gene expressions using the average CT values
following Livaks’ method47 were calculated.
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