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Mechanosensing and its downstream responses are speculated to involve sensory complexes containing Ca2+-permeable
mechanosensitive channels. On recognizing hypo-osmotic stress, plant cells initiate activation of a widespread signal
transduction network involving second messengers such as Ca2+ to trigger inducible defense responses including the
induction of transcriptional factors.1 However, most of the components involved in these signaling networks still remain
to be identified. Recently we identified and investigated OsMCA1, the sole homolog of the MCA family putative Ca2+-
permeable mechanosensitive channels in rice. Functional characterization of the OsMCA1-suppressed cells as well as the
overexpressing cells indicated that OsMCA1 is involved in the regulation of plasma membrane Ca2+ influx and NADPH
oxidase-mediated generation of reactive oxygen species (ROS) induced by hypo-osmotic stress. Here we will discuss
possible molecular mechanisms and physiological functions of the MCA protein in hypo-osmotic signaling.

Introduction

Plants respond to mechanical stimuli, such as touch, wind,
gravity, pathogen attack and cellular deformation during develop-
ment.2 Mechanical stimuli often trigger an increase in cytosolic
free Ca2+ concentration [(Ca2+)cyt] mediated by mechanosensitive
Ca2+ channels located at the plasma membrane and endomem-
branes.3-6 However, molecular identity, structure and physio-
logical functions of these mechanosensitive channels are still
largely unknown.

Arabidopsis MSL9 and MSL10, homologs of the bacterial
mechanosensitive channel MscS, are reported to be required for
mechanosensitive channel activity at the plasma membrane of
root cells, which are more permeable to Cl– than Ca2+.7,8 We
recently identified the MCA family proteins including MCA1
(At4g35920), MCA2 (At2g17780), NtMCA1 (AB622811)
and NtMCA2 (AB622812) in Arabidopsis and tobacco as putative
Ca2+-permeable mechanosensitive channels.9-11 Ectopic overexpres-
sion ofMCAs enhances Ca2+ uptake in roots9 and cultured cells,11 as
well as [Ca2+]cyt elevation and hypo-osmotic stress-induced gene
expression.9-11 However, components involved in the MCA-
mediated signaling pathways have been still mostly unknown.

Recognition of osmotic stress initiates activation of a
widespread signal transduction network that induces second
messengers and triggers inducible defense responses.1,12-15

Characteristic early signaling events other than Ca2+ influx include
protein phosphorylation and ROS generation, most of which are
often prevented when Ca2+ influx is compromised by either Ca2+

chelators or Ca2+-channel blockers, such as La3+.16,17 These results
suggest that regulation of these osmotic signaling events including
ROS generation requires Ca2+ influx. However, their molecular
basis and regulatory mechanisms have remained poorly elucidated.

Intracellular Localization of OsMCA1

The GFP-OsMCA1 protein was localized at the plasma
membrane in tobacco BY-2 cells.18 We also transiently expressed
in onion epidermal cells and analyzed the intracellular localization
of the GFP-OsMCA1 protein. When GFP alone was expressed,
it localized to the nucleus and the cytoplasm (Fig. 1g–l).
Interestingly, the GFP-OsMCA1 fusion protein was localized
specifically targeted to the plasma membrane in patches and at
punctuated structures on the cell surface (Fig. 1a–f). These
fluorescence signals were also observed in tobacco BY-2 cells
expressing the NtMCA1-GFP fusion protein.11 The patchy
localization of GFP-OsMCA1 at the plasma membrane appears
similar to abscisic acid-binding sites in guard cells19 and GFP-
OsTPC120 and may be related to plasma membrane micro-
domains. The inward rectifying K+ channel, KST1, also forms
clusters in plasma membranes, and its GFP-tagged derivatives
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were observed as patches in both endomembranes and plasma
membranes.21,22 Arabidopsis MCA1 and MCA2 form a homo-
oligomer in yeast cells.23 Plant MCA family proteins may form
clusters or complexes with other signaling molecules such as other
ion channels in planta.

Roles of OsMCA1 in Ca2+- and ROS-Mediated
Hypo-osmotic Signaling

Plasma membrane Ca2+ influx induced by various stresses or
extracellular stimuli are mediated by at least several types of
Ca2+-permeable channels, whose molecular identity are still
mostly elusive in plants. Recent studies revealed that temporal
patterns of [Ca2+]cyt changes vary among stimuli and molecular
nature of Ca2+ channels involved.6,24

Hypo-osmotic shock as well as treatment with trinitrophenol,
an activator of mechanosensitive channels, induce a rapid and
transient rise in [Ca2+]cyt predominantly due to plasma membrane
Ca2+ influx. Both of them are partially impaired in the OsMCA1-
suppressed cells.18 In contrast, a major microbe-associated
molecular pattern, N-acetylchitooligosaccharides, also triggers a
[Ca2+]cyt increase with a similar temporal pattern, which is not
affected by suppression of OsMCA1.18 These results suggest
possible involvement of OsMCA1 as a putative mechanosensitive

Ca2+-permeable channel component in the regulation of mecha-
nical stress-triggered plasma membrane Ca2+ influx.

Hypo-osmotic shock has also been shown to trigger ROS
generation following a [Ca2+]cyt increase in various plant
cells.13,14,17 In rice cultured cells, hypo-osmotic shock-triggered
ROS generation is predominantly attributed to NADPH
oxidases.18 Respiratory burst oxidase homologs (Rbohs) possess
ROS-producing activity synergistically activated by binding of
Ca2+ to the EF-hand motifs in the N-terminal cytosolic domain
and phosphorylation in rice and Arabidopsis.25-28 A functional
NADPH oxidase AtRbohC/RHD2 affects mechanical stress-
induced ROS generation in a Ca2+-dependent manner.29 Both
Arabidopsis MCA1 and ROS generated by AtRbohD and/or
AtRbohF have recently been suggested to be involved in the
regulation of osmo-sensitive metabolic changes.30 These findings
suggest the following initial plasma membrane responses in
response to osmo-stimulation: Activation of the plasma mem-
brane mechanosensitive Ca2+-permeable channels such as MCA
family induces the influx of Ca2+, leading to activation of Rboh(s)
to generate ROS (Fig. 2). The Ca2+-ROS signaling network27 may
play a crucial role in the regulation of downstream events.

In conclusion, OsMCA1 has been shown to be involved in the
regulation of plasma membrane Ca2+ influx and NADPH oxidase-
mediated ROS generation induced by hypo-osmotic stress in

Figure 2. A proposed model for the early plasma membrane responses of rice cells exposed to hypo-osmotic stress. Following the recognition of
hypo-osmotic shock by osmosensors or mechanosensitive channels, cells initiate early signaling events including the influx of Ca2+. Respiratory burst
oxidase homologs (Rbohs) are synergistically activated by binding of Ca2+ to the EF hand motifs and phosphorylation to activate ROS generation.25-28

Signaling network involving Ca2+ and ROS may play a crucial role in induction of stress adaptation. Solid and dotted arrows indicate established and
hypothetical links, respectively.

Figure 1. Intracellular localization of
OsMCA1. A GFP-OsMCA1 plasmid was
introduced into onion epidermal cells
by bombardment. (a–f) 35S::GFP-
OsMCA1, (g–l) 35S::GFP. (a–l) Optical
sections of an onion epidermal cell,
from the surface (a and d, g and j) to
the equatorial plane (c and f, i and l),
were obtained by confocal laser scan-
ning microscopy. Fluorescence of GFP
(a–c and g–i) and merged with bright
field (d–f and j–l). Scale bar: 20 mm.
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cultured rice cells. These findings shed light on our understanding
of mechanical sensing pathways. It should be an important future
subject whether OsMCA1 itself also plays a role as a plasma
membrane mechanical sensor and/or whether a signal is
transduced from unknown mechanical sensor(s) to OsMCA1/
Ca2+-permeable channel(s) (Fig. 2).
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