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Sucrose synthase (SuSy) catalyzes the reversible conversion of sucrose and NDP into the corresponding nucleotide-
sugars and fructose. The Arabidopsis genome possesses six SUS genes (AtSUS1–6) that code for proteins with SuSy
activity. As a first step to investigate optimum fructose and UDP-glucose (UDPG) concentrations necessary to measure
maximum sucrose-producing SuSy activity in crude extracts of Arabidopsis, in this work we performed kinetic analyses of
recombinant AtSUS1 in two steps: (1) SuSy reaction at pH 7.5, and (2) chromatographic measurement of sucrose
produced in step 1. These analyses revealed a typical Michaelis-Menten behavior with respect to both UDPG and
fructose, with Km values of 50 mM and 25 mM, respectively. Unlike earlier studies showing the occurrence of substrate
inhibition of UDP-producing AtSUS1 by fructose and UDP-glucose, these analyses also revealed no substrate inhibition of
AtSUS1 at any UDPG and fructose concentration. By including 200 mM fructose and 1 mM UDPG in the SuSy reaction
assay mixture, we found that sucrose-producing SuSy activity in leaves and stems of Arabidopsis were exceedingly
higher than previously reported activities. Furthermore, we found that SuSy activities in organs of the sus1/sus2/sus3/sus4
mutant were ca. 80–90% of those found in WT plants.

Sucrose synthase (SuSy) catalyzes the following reversible reaction:

sucrose + NDP<NDP-glucose + fructose

where N stands for uridine, adenosine, guanosine, cytidine,
thymidine or inosine. This sucrolytic enzyme is highly regulated
both at transcriptional and post-translational levels.1-5 In many
heterotrophic organs SuSy activity acts as a major determinant of
sink strength that highly controls the conversion of sucrose into
ADP-glucose (ADPG) and UDP-glucose (UDPG) linked to the
biosynthesis of starch and cell wall polysaccharides, respectively.6-12

Genetic evidence demonstrating the importance of SuSy in starch
and cell wall polysaccharide production, and in sink strength
determination in heterotrophic organs comes from QTL analyses
of maize endosperms and cotton,13,14 from the altered biomass and
fiber yield in cotton plants with altered SuSy expression,11,15 from
the substantial (ca. 50–70%) reduction of starch levels in the seed
endosperms of sh1 maize mutants,6 and from genetically
engineered potato tubers and carrot roots exhibiting altered SuSy
activity.8,12,16 In addition, SuSy has been suggested to be involved,
at least in part, in the direct conversion of sucrose into ADPG
linked to starch biosynthesis in autotrophic organs.17,18

The Arabidopsis genome possesses six SUS genes (AtSUS1–6)
displaying different developmental expression patterns that code
for proteins with SuSy activity.19 Earlier studies20,21 have
questioned the involvement of SuSy activity in starch and
cellulose biosynthesis in Arabidopsis, showing that (a) leaves,
siliques, seeds, stems and roots of the sus1/sus2/sus3/sus4 mutant
impaired in SuSy activity accumulate wild type (WT) content of
ADPG, UDPG, cellulose and starch, and (b) SuSy activity in WT
leaves is too low to account for the rate of starch accumulation in
illuminated leaves. Most recently however, we22 have shown that
SuSy activity in the cleavage direction in WT Arabidopsis leaves is
ca. 10-fold higher than UDP-producing SuSy activities shown in
earlier studies,20,21 greatly exceeding the minimum needed to
support normal rate of starch accumulation during illumination.
Furthermore, we found that SuSy activities in the insoluble and
soluble fractions of sus1/sus2/sus3/sus4 stems were ca. 10- and
100-fold higher, respectively, than previously reported activities.21

Finally, we also found that SuSy activities in the leaves and stems
of the sus1/sus2/sus3/sus4 mutants were ca. 85% of those of WT
plants, thus concluding that SuSy activity in sus1/sus2/sus3/sus4
mutants is sufficient to support normal cellulose and starch
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to the claims of Barratt et al.,21 Angeles-
Núñez and Tiessen23 showed that
developing seeds of single sus2 and
sus3 mutants accumulate considerably
reduced levels of transitory starch. This
and the fact that AtSUS2 is strongly
associated with plastids24 would support
the idea that SUS is involved in a specific
route for ADPG synthesis in Arabidopsis
seeds.

There are several possible reasons that,
individually or collectively, can explain
why the values of SuSy activity shown in
earlier reports20,21 were a gross under-
estimate and differed greatly from those
presented by Baroja-Fernández et al.22

First, Bieniawska et al.20 and Barratt
et al.21 measured SuSy activity in the
UDP synthetic direction, whereas
Baroja-Fernández et al.22 measured
SuSy activity in the more physiological
sucrose breakdown (UDPG and ADPG
synthesis) direction. Second, the SuSy
reaction assay mixture employed by
Bieniawska et al.20 and Barratt et al.21

contained MgCl2 and its pH was 9.0–
9.5. Under these conditions, UDPG
(the substrate for SuSy reaction in the
sucrose synthetic direction) is highly
unstable, being spontaneously converted
into UMP and glucose-1,2-monopho-
sphate.22 Third, the SuSy reaction assay
mixture employed by Bieniawska et al.20

and Barratt et al.21 contained 6 mM
fructose, a concentration which is com-
parable, or even lower, than the reported
Km values for fructose in SuSy from
many species.25,26 Such low fructose
concentration in the SuSy reaction assay
mixture would prevent substrate inhibi-
tion by both fructose and UDPG, a

Figure 1. Kinetic studies of sucrose-
producing activity of recombinant AtSUS1.
(A) UDPG-dependent AtSUS1 activity was
measured in the presence of different
concentrations of fructose (5–800 mM).
(B) Fructose-dependent AtSUS1 activity was
measured in the presence of different
concentrations of UDPG (0.02–2 mM).
(C) AtSUS1 activity was measured in
the presence or absence of 200 mM
glucose, the indicated fructose concentra-
tions and 1 mM UDPG. We define 1 unit (U)
of enzyme activity as the amount of
enzyme that catalyzes the production of
1 mmol of product per min.
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phenomenon reported by several independent groups when
measuring UDP-producing SuSy activity from UDPG and
fructose.20,26-29

As a first step to investigate the optimum fructose and UDPG
concentrations in the reaction mixture for assaying maximum
SuSy activity in crude extracts of Arabidopsis, in this work we
performed kinetic analyses of recombinant AtSUS1 in the sucrose
synthetic direction in two steps: (1) SuSy reaction, and (2)
measurement of sucrose produced during the reaction in step 1.
The SuSy reaction assay mixture contained 50 mM HEPES,
3 mM MgCl2, the indicated amounts of fructose and UDPG, and
recombinant AtSUS1 obtained as previously described.22 After
3 min at 25°C (still under initial velocity conditions), reactions
were stopped by boiling the assay mixture for 1 min. Sucrose was
then measured by HPLC with pulsed amperometric detection on
a DX-500 system (Dionex) fitted to a CarboPac PA10 column.
Preliminary analyses of optimum pH in the absence of MgCl2
revealed that sucrose producing AtSUS1 activity has a broad pH
optimum between 7.5 and 9.5, which is consistent with previous
reports.27,30,31 Because UDPG is highly unstable in the presence of
MgCl2 at pH values higher than 7.5,22 the step one reaction in
our kinetic analyses was conducted at pH 7.5.

Kinetic studies of sucrose producing AtSUS1 activity revealed a
typical Michaelis-Menten behavior with respect to UDPG
(Fig. 1A) and fructose (Fig. 1B), with Km values of 50 mM and
25 mM, respectively, as calculated using Lineweaver-Burk plots.
These analyses revealed no substrate inhibition of SuSy by high
concentrations of UDPG or fructose. Also, we found that glucose
did not exert any inhibitory effect on AtSUS1 (Fig. 1C).
Essentially the same results were obtained using SuSy purified
from developing maize endosperm (not shown). Although
consistent with previous reports showing the absence of substrate
inhibition of SuSy by fructose and UDPG,31-34 our results conflict
with those of an earlier report20 obtained using a one-step
continuous method for the enzymatic assay of UDP-producing
SuSy in the presence of 3 mM MgCl2 at pH 9.5. Results included
in this report20 showed inhibitory effect of UDPG, fructose and
glucose on UDP-producing AtSUS1 activity, and pointed to the
occurrence of an ordered kinetic mechanism where (1) UDPG
binds to AtSUS1 first and UDP dissociates last, (2) fructose binds
to the AtSUS1-UDP complex forming a dead-end ternary
complex, and (3) glucose binds to the AtSUS1-UDP complex,
probably at the site vacated by sucrose.

Based on the kinetic properties obtained above, we measured
maximum sucrose-producing SuSy activity in crude extracts from
leaves and stems of WT and sus1/sus2/sus3/sus4 mutants using the
above described two-step assay method for SuSy activity. These
analyses revealed that total sucrose-producing SuSy activities in
leaves and stems of WT plants were 119 ± 13 mU g FW21 and
68 ± 4 mU g FW21, respectively (Fig. 2), which are exceedingly
higher than those shown in previous reports.20,21 Furthermore,
consistent with our earlier studies of SuSy activity in the cleavage
direction,22 we found that total sucrose-producing SuSy activities
in the leaves and stems of sus1/sus2/sus3/sus4 mutants were 80–
90% of those of WT plants (Fig. 2).
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Figure 2. Sucrose-producing SuSy activity in crude extracts of (A) leaves
and (B) stems of WT and sus1/sus2/sus3/sus4 Arabidopsis plants. SuSy
activity was measured following the two-step assay method described in
the main text. The SuSy reaction assay mixture of step 1 included 50 mM
HEPES (pH 7.5), 3 mM MgCl2, 1 mM UDPG and 200 mM fructose.
After 3 min at 25°C (still under initial velocity conditions), reactions were
stopped by boiling the assay mixture for 1 min. Sucrose was then
measured by HPLC with pulsed amperometric detection on a DX-500
system (Dionex) fitted to a CarboPac PA10 column. The results are
the mean ± SD of three independent experiments.
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