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The plant SNF1-related kinase
(SnRK1) is the a-subunit of the

SnRK1 heterotrimeric compleses.
Although SnRK1 is widely known as
a key regulator of plant response to
various physiological processes including
nutrient- and energy-sensing, regulation
of global metabolism, and control of cell
cycle, development, as well as abiotics
stress, less is known about the function of
SnRK1 during pathogen infection. Our
previous work has demonstrated that a
tomato SNF1-related kinase (SlSnRK1)
can interact with and phosphorylate
βC1, a pathogenesis protein encoded by
tomato yellow leaf curl China betasatel-
lite. Our results also showed that the
plant SnRK1 can affect genimivirus
infection in plant and reduce viral DNA
accumulation. Phosphorylation of βC1
protein negatively impacts its function as
a pathogenicity determinant. Here we
provide more information on interaction
between βC1 and SlSnRK1 and propose a
mechanistic model for the SlSnRK1-
mediated defense responses against gemi-
niviruses and the potential role of SnRK1
in plant resistance to geminivirus.

SUCROSE NON-FERMENTING1
(SNF1) was initially identified in a mutant
yeast (Saccharomyces cerevisiae) defective in
derepressing the Glc-regulated genes and
thus unable to grow on media with sugars
other than Glc.1 The plant SNF1-related
kinase (SnRK1) belongs to a conserved
kinases family and consists of an a
catalytic subunit, and a β and c regulatory
subunit. The plant SnRK1 also shares
great homology with the mammalian
AMP-activated protein kinase (AMPK).2,3

Yeast SNF1, mammalian AMPK and plant
SnRK1 are all known to function in
regulating carbon metabolism and energy
balance in eukaryotes,3-8 and are metabolic
sensors of Glc availability as well as the
AMP to ATP ratios.4 Activity of the plant
SnRK1 can be stimulated by metabolic
stresses including sugar starvation and dark
treatment.9 In addition, the SnRK1 can
phosphorylate and negatively regulate
key metabolic enzymes such as sucrose-
phosphate synthase (SPS), 3-hydroxy-3-
methylglutaryl-coenzyme A reductase,
nitrate reductase and trehalose-6-phos-
phate synthase important for modulating
plant metabolism.10-13 Baena-Gonzalez
et al. indicated previously that the
SnRK1 can act as a master regulator of
global gene expression in plant grown
under the starvation and energy depriva-
tion conditions. They also indicated that
many genes regulated by SnRK1 are
involved in plant primary and secondary
metabolisms.9 The plant SnRK1 is also
known to play roles in development,14-19

and in regulation of essential signaling
pathways through interacting with proteo-
some and ubiquitin ligase components.20

Although the SnRK1-mediated metabolic
changes were considered to be important
in plant defense against viruses,21 the
molecular role of SnRK1 in plant innate
defense systems is largely unknown.

Geminiviridae is a large family of
viruses with circular, single-stranded
DNA genomes. This virus family contains
four genera, and Begomovirus is the largest
genus, consisting more than 200 different
species, which cause devastating diseases
in many economically important crops
world-wide.22,23 Begomoviruses have either
monopartite or bipartite single-stranded
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DNA genomes.22,24 In recent years many
monopartite begomoviruses have been
identified to have a betasatellite molecule
(e.g., a circular, single-stranded DNA
molecule of approximately 1,350 nucleo-
tides). The betasatellite molecule is essen-
tial component in induction of typical
disease symptoms in plants.25-29 All known
betasatellite molecules encode a single
protein known as βC1. Many studies have
identified the βC1 as the determinant of
pathogenicity and suppressor of post-
transcriptional gene silencing (PTGS).30-32

A previous study by Yang et al. showed
that the βC1 of tomato yellow leaf curl
China betasatellite (TYLCCNB) can inter-
act with Arabidopsis ASYMMETRIC
LEAVES1 to cause morphological changes
in leaf, and suppress specific jasmonic acid
responses.33 The βC1 of cotton leaf curl
Multan betasatellite was shown to interact
with a tomato ubiquitin-conjugating
enzyme, SlUBC3 and this interaction is
required for the βC1 pathogenesis.34 In
addition, the βC1 protein can inhibit
methylation-mediated transcriptional gene
silencing (TGS) by interacting with and
inactivating S-adenosyl homocysteine
hydrolase (SAHH), a methyl cycle enzyme
required for TGS.35

Through yeast two-hybrid screen using
a tomato cDNA library, we recently
identified a tomato SNF1-related kinase
(SlSnRK1) as a novel protein that interacts
with βC1. We also determined that the
βC1-interaction site is located in a region
having an internal Ubiquitin-Associated
domain (UBA) and/or a self-regulating
AIS domain of SlSnRK1. Interestingly
the conserved Serine/Threonine protein
kinases catalytic domain (S_TKc) is not
involved in the binding with βC1 as
previously described.36

The catalytic domain is the core region
of protein kinases and it consists of two
lobes: a smaller N-terminal lobe (N-lobe)
and a larger C-terminal lobe (C-lobe).
These two lobes form a cleft that serves as
a docking site for ATP. An activation
segment was reported to present in the
C-lobe and it regulates the catalytic
activity of many protein kinases through
its phosphorylation, except those protein
kinases that can form catalytically active
conformations in the absence of the
activation segment phosphorylation.37,38

More recently the SNF1 kinase found in
the budding yeast was shown to be
activated by three related but functionally
redundant kinases (e.g., SAK1, TOS3 and
ELM1).7,40,41 In animals the SNF1 homo-
log, AMP-activated protein kinase
(AMPK), was reported to be activated by
two upstream protein kinases known as
LKB1 and CaMKKβ.7,42-47 In plants, two
Arabidopsis kinases (e.g., GRIK1 and
GRIK2) can activate the SnRK1.48-50 The
activation of SNF1 kinase through phos-
phorylation may occur after a conforma-
tional change which leads to a change of
the activation loop position and allows
the access to the kinase active site. The
active site of protein kinase is known to
be highly conserved and can be
exemplified by the well-characterized
cyclin-dependent kinase and mitogen-acti-
vated protein kinase (MAPK) cascades.
Certain protein kinases can be activated or
inhibited by specific polypeptide cofactors.
For example, cyclin can partially activate
the cyclin-dependent kinase Cdk2 by
binding to the C helix and orients the
aC helix to form an active conformation.51

In contrast Src-homology SH2 and SH3
domains can inactivate Src tyrosine kinase
by binding to the aC helix and an
inhibitory p-tyrosine in the C-terminal
tail, resulting in an inactive conforma-
tion.52 Many reports have indicated that
some proteins produced by plant patho-
gens can alter functions of certain protein
kinases. For example, the AL2 from
tomato golden mosaic virus (TGMV;
genus Begomovirus) and L2 from beet
curly top virus (BCTV; genus Curtovirus)
were shown to inhibit the activity of an
SNF1-related kinase (SnRK) through pro-
tein-protein interactions.21 The NSP from
cabbage leaf curl virus (CaLCuV) was also
shown to inhibit protein kinase NIKs by
binding to the putative active site within
the NIK1 domain, and to the activation
loop for Ser/Thr kinase. Binding to these
two sites plays critical roles in both
controlling the activity of protein kinases
and substrate recognition.53 Phytophthora
infestans INF1 was also shown to alter
NbLRK1 kinase activity by binding to the
VIb subdomain and then suppressing its
autophosphorylation.54 These published
information together with our previous
results, showing that the βC1-interacting

domain in the SlSnRK1 is not a
kinase domain, suggest that interaction
between βC1 and SlSnRK1 may not
alter SlSnRK1’s kinase activity. To test
this hypothesis, we performed yeast com-
plementation assays and our results
show that indeed βC1 does not inhibit
the kinase activity of SlSnRK1 in yeast
cells.36

Furthermore, we used the NetPhos 2.0
server (www.cbs.dtu.dk/services/NetPhos/)
to predict for the serine, threonine and
tyrosine phosphorylation sites in the βC1
protein and our results show that Ser-33
and Thr-78 are likely the phosphorylation
sites. Our amino acid sequence analysis
revealed that the potential TYLCCNB
βC1 phosphorylation site, Ser-33, is con-
served among βC1 proteins encoded by
different geminiviruses and the Thr-78 site
is less conserved (Fig. 1A). The amino acid
context of the βC1 Thr-78 (Fig. 1B)
exhibits a substrate recognition motif
similar to that reported for the SnRK1.55

Our results show that the interaction
between the βC1 and SlSnRK1 leads to
phosphorylation of the βC1 protein but
does not inhibit the kinase activity of
SlSnRK1. Results of our previous in vitro
kinase assay also indicated that the
SlSnRK1 protein could phosphorylate
βC1 mainly on the threonine at position
78 and serine at position 33.36

We demonstrated previously that
SnRK1 could impact geminivirus infec-
tion and viral DNA accumulation in plant
and phosphorylation of the βC1 protein
could delay geminivirus infection in plant,
attenuate disease symptoms and reduce
viral DNA accumulation.36 With our
new findings and previously published
results4,29,31,33,35,56 we propose a mecha-
nistic model for the SlSnRK1-mediated
defense response against geminiviruses
(Fig. 2). This model shows that SlSnRK1
attenuates geminivirus infection by inter-
acting with and phosphorylating the
pathogenicity determinant βC1 protein.
Future investigations are needed to deter-
mine the effect of phosphorylation on
βC1 protein’s ability to suppress RNA
silencing and/or methylation-mediated
TGS. An investigation on βC1 protein
degradation by the 26S proteasome
may provide critical information to this
model.
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Figure 1. Analyses of TYLCCNB bC1 amino acid sequence. (A) Ser-33 is conserved among the geminivirus bC1 proteins. Predicted bC1 amino acid
sequences of Ageratum yellow leaf curl betasatellite (ALCuB) (AJ316027), okra leaf curl betasatellite (OLCuB) (AJ316031), tomato leaf curl betasatellite
(TLCB) (AJ316036), cotton leaf curl betasatellite (CLCB) (AJ316038), tomato leaf curl betasatellite (TLCuB) (AJ542492), Ageratum yellow vein betasatellite
(AYVB) (AJ542497), tomato yellow leaf curl China betasatellite (TYLCCNB) (AJ781301), tomato leaf curl Joydebpur betasatellite (TLCuJoB) (AJ966244),
Malvastrum yellow mosaic betasatellite (MYMB) (AM236769), chilli leaf curl betasatellite (CLCuB) (AM258978), tomato yellow leaf curl associated
betasatellite (TYLCAB) (DQ644567), tomato leaf curl Joydebpur betasatellite (TLCuJoB) (EF190216), tomato leaf curl betasatellite (TLCB) (EU286799),
Bhendi yellow vein mosaic betasatellite (BYVMB) (NC_003405), tomato leaf curl Java betasatellite (TLCuJaB) (NC_005497), Malvastrum yellow vein Yunnan
betasatellite (MYVYnB) (NC_006632), Ageratum yellow vein China betasatellite (AYVCNB) (NC_007067), cotton leaf curl Bangalore betasatellite (CLCuBaB)
(NC_007219), Sida leaf curl betasatellite (SiLCuB) (NC_007639), pepper leaf curl betasatellite (PLCuB) (NC_010235), radish leaf curl betasatellite (RLCuB)
(NC_010239), Malachra yellow vein mosaic betasatellite (MYVMB) (NC_010328), pepper leaf curl Yunnan betasatellite (PLCuYnB) (NC_010619), Emilia
yellow vein betasatellite (EYVB) (NC_012666), tobacco curly shoot betasatellite (TbCSB) (AJ421484) and tomato yellow leaf curl China betasatellite
(TYLCCNB) (AJ781299) were aligned using the Clustal method with PAM250 residue weight (DNASTAR Inc.). Shading indicates extent of conservation/
similarity. The black triangle represents Ser-33 and Thr-78. (B) A recognition motif for SnRK1 and the amino acid context of bC1 potential phosphorylation
sites.
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