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ABSTRACT Current efforts in systems genetics have focused on the development of statistical approaches that aim to disentangle
causal relationships among molecular phenotypes in segregating populations. Reverse engineering of transcriptional networks plays
a key role in the understanding of gene regulation. However, transcriptional regulation is only one possible mechanism, as methylation,
phosphorylation, direct protein–protein interaction, transcription factor binding, etc., can also contribute to gene regulation. These
additional modes of regulation can be interpreted as unobserved variables in the transcriptional gene network and can potentially
affect its reconstruction accuracy. We develop tests of causal direction for a pair of phenotypes that may be embedded in a more
complicated but unobserved network by extending Vuong’s selection tests for misspecified models. Our tests provide a significance
level, which is unavailable for the widely used AIC and BIC criteria. We evaluate the performance of our tests against the AIC, BIC, and
a recently published causality inference test in simulation studies. We compare the precision of causal calls using biologically validated
causal relationships extracted from a database of 247 knockout experiments in yeast. Our model selection tests are more precise,
showing greatly reduced false-positive rates compared to the alternative approaches. In practice, this is a useful feature since follow-up
studies tend to be time consuming and expensive and, hence, it is important for the experimentalist to have causal predictions with low
false-positive rates.

A key objective of biomedical research is to unravel the
biochemical mechanisms underlying complex disease

traits. Integration of genetic information with genomic, pro-
teomic, and metabolomic data has been used to infer causal
relationships among phenotypes (Schadt et al. 2005; Li et al.
2006; Kulp and Jagalur 2006; Chen et al. 2007; Zhu et al.
2004, 2007, 2008; Aten et al. 2008; Liu et al. 2008; Chaibub
Neto et al. 2008, 2009; Winrow et al. 2009; Millstein et al.
2009). Current approaches for causal inference in systems
genetics can be classified into whole network scoring meth-
ods (Zhu et al. 2004, 2007, 2008; Li et al. 2006; Liu et al.
2008; Chaibub Neto et al. 2008, 2010; Winrow et al. 2009;
Hageman et al. 2011) or pairwise methods, which focus on
the inference of causal relationships among pairs of pheno-

types (Schadt et al. 2005; Li et al. 2006; Kulp and Jagalur
2006; Chen et al. 2007; Aten et al. 2008; Millstein et al.
2009; Li et al. 2010; Duarte and Zeng 2011). In this article
we develop a pairwise approach for causal inference among
pairs of phenotypes.

Two key assumptions for causal inference in systems
genetics are genetic variation preceding phenotypic variation
and Mendelian randomization of alleles in unlinked loci.
These conditions together, which provide temporal order and
eliminate confounding of other factors, justify causal claims
between QTL and phenotypes. Causal inference among
phenotypes is justified by conditional independence relations
under Markov properties (Li et al. 2006; Chaibub Neto et al.
2010).

Given a pair of phenotypes, Y1 and Y2, that co-map to the
same quantitative trait locus, Q, our objective is to learn which
of the four distinct models, M1, M2, M3, and M4, depicted in
Figure 1, is the best representation for the true relation be-
tween Y1 and Y2. Models M1, M2, M3, and M4 represent, re-
spectively, the causal, reactive, independence, and full models
as collapsed versions of more complex regulatory networks.
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For instance, when the data are transcriptional and one
gene is upstream of other genes, the regulation of the up-
stream gene may affect those downstream, even when the
regulation takes place via post-transcriptional mechanisms
and, hence, is mediated by unobserved variables. Tran-
scriptional networks should be interpreted as collapsed
versions of more complicated networks, where the pres-
ence of an arrow from a QTL to a phenotype or from one
phenotype to another simply means that there is a direc-
tional influence of one node on another (that is, there is at
least one path in the network where the node in the tail of
the arrow is upstream of the node in the head). Supporting
Information, Figure S1 shows a few examples of networks
and their collapsed versions. Our goal in this article is to
infer the causal direction between two nodes, and the term
“causal” should be interpreted as causal direction, meaning
either direct or indirect causal relations.

In this article, we propose novel causal model selection
hypothesis tests and compare their performance to the AIC
and BIC model selection criteria and to a causality inference
test (CIT) proposed by Millstein et al. (2009). AIC (Akaike
1974) and BIC (Schwarz 1978) are widely used penalized
likelihood criteria performing model selection among mod-
els of different sizes. Overparameterized models tend to
overfit the data and, when comparing models with different
dimension, it is necessary to counterbalance model fit and
model parsimony by adding a penalty term that depends on
the number of parameters. CIT is an intersection-union test,
in which a number of equivalence and conditional F tests are
conservatively combined in a single test. P-values are com-
puted for models M1 and M2 in Figure 1, but not for the M3

orM4 models, and the decision rule for model calling goes as
follows: (1) call M1 if the M1 P-value is less than a signifi-
cance threshold a and the M2 P-value is greater than a; (2)
call M2 if it is the other way around; (3) call Mi if both
P-values are greater than a; and (4) make a “no call” if both
P-values are less than a. The Mi call actually means that the
model is not M1 or M2 and could correspond to an M3 or M4

model. Note that the CIT makes a no call when both M1 and
M2 models are simultaneously significant.

Our causal model selection tests (CMSTs) adapt and
extend Vuong’s (1989) and Clarke’s (2007) tests to the com-
parison of four models. Vuong’s model selection test is a for-
mal parametric hypothesis test devised to quantify the
uncertainty associated with a model selection criterion, com-
paring two models based on their (penalized) likelihood
scores. It uses the (penalized) log-likelihood ratio scaled
by its standard error as a test statistic and tests the null
hypothesis that both models are equally close to the true data
generating process. While the (penalized) log-likelihood
scores can determine only whether, for example, model A
fits the data better than model B, Vuong’s test goes one step
further and attaches a P-value to the scaled contrast of (pe-
nalized) log-likelihood scores. In this way it can interrogate
whether the better fit of model A compared to model B is
statistically significant. Vuong’s test tends to be conservative

and low powered. Clarke (2007) proposed a nonparametric
version that achieves an increase in power at the ex-
pense of higher miss-calling error rates by using the
median rather than the mean of (penalized) log-likelihood
ratio.

We propose three distinct versions of causal model
selection tests: (1) the parametric CMST test, which
corresponds to an intersection-union test of six separate
Vuong’s tests; (2) the nonparametric CMST test, constructed
as an intersection-union test of six of Clarke’s tests; and (3)
the joint-parametric CMST test, which mimics an intersection-
union test and is derived from the joint distribution of
Vuong’s test statistics. These CMST tests inherit from
Vuong’s test the property that none of the models being
compared need be correct. That is, the true model may de-
scribe a more complicated network, including unobserved
factors. Our approach simply selects the wrong model that
is closest to the (unknown) true model.

Methods

Vuong’s model selection test

The Kullback–Leibler Information Criterion (KLIC) (Kullback
1959) measures the closeness of a probability model to the
true distribution of data. Sawa (1978) showed that the KLIC
orders approximate models by comparing the expected value
of the log likelihood under the true model. Vuong (1989)
used this result to develop an empirical test of two models
based on the sample mean of the log-likelihood ratio scaled
by its sample standard error.

Formally, {f(y|x; u) : u 2 Q} represents a parametric
family of conditional models and

KLIC
�
h0; f

� ¼ E0
�
log h0ðyjxÞ�2 E0 ½log f ðyjx; u*Þ�

¼
Z
x

�Z
y
h0ðyjxÞlog h0ðyjxÞ

f ðyjx; u*Þ
dy

#
h0ðxÞ dx;

(1)

where E0 represents the expectation with respect to the true
joint distribution h0(y, x) = h0(y|x)h0(x), and u* is the pa-
rameter value that minimizes the KLIC distance from f to the
true model (Sawa 1978). Note that f need not belong to the
same parametric family as h0.

A model f1(y|x; u1*), denoted f1 for short, is regarded as
a better approximation to the true model h0(y|x), than the
alternative model f2(y|x; u2*) if and only if KLIC(h0; f1)
, KLIC(h0; f2), or alternatively, E0[log f1]. E0[log f2] (Sawa
1978). Vuong’s model selection test is based on the latter
criterion and the null and alternative hypotheses are defined
as

H0 : E0½LR12� ¼ 0; H1 : E0½LR12�. 0; H2 : E0½LR12�, 0;
(2)

where LR12 = log f1 2 log f2. The null hypothesis is f1 and f2
are equally close to the true distribution. The alternative
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hypothesis H1 means that f1 is better than f2 and conversely
for the alternative H2.

The quantity E0[LR12] is unknown, but under fairly
general conditions the sample mean and variance of
LR̂12;i ¼ log f̂ 1;i 2 log f̂ 2;i converge almost surely to
E0[LR12] and Var0[LR12] = s12.12, where f̂ 1;i ¼ f1ðyijxi; û1Þ
and û1 is the maximum-likelihood estimate of u1 (Vuong
1989). Let LR̂12 ¼ Pn

i¼1 LR̂12;i, then, under H0,

n21=2LR̂12=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ12:12

p
/d Nð0; 1Þ: (3)

Under H1 this test statistic converges almost surely to N,
whereas, under H2, it converges to 2N (Vuong 1989).

Vuong’s test is based on the unadjusted log-likelihood
ratio statistic. However, competing models may have different
dimensions, requiring a complexity penalty. The penalized
log-likelihood ratio is given by LR̂*

12 ¼ LR̂12 2D12 , where
the penalty D12 is the difference of the number of parameters
between models 1 and 2 (for AIC) or this value rescaled by
(log n)/2 (for BIC). Because the penalty term is of smaller
size than n1/2, the adjusted log-likelihood ratio accounting for
different model dimensions

Z12 ¼ n21=2 LR̂*
12=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ12:12

p
(4)

has the same asymptotic properties as n21=2LR̂12=
ffiffiffiffiffiffiffiffiffiffiffiffi
ŝ12:12

p
(Vuong 1989).

The P-value of Vuong’s test is given by p12 = P(Z12 $ z12) =
12 F(z12), whereF() represents the cumulative density func-
tion of a standard normal variable (Vuong 1989). Note that
since Z12 = 2Z12; p21 = 1 2 F(z21) = F(z12), so that p12 +
p21 = 1. This property of the Vuong’s test ensures that the
P-values of the intersection-union tests cannot be simulta-
neously significant.

Figure S2 illustrates how Vuong’s test trades a reduc-
tion in false positives against a reduction in statistical
power. In our applications we need to account for both
nested and nonnested models. While the presented test
corresponds to Vuong’s test for strictly nonnested mod-
els, it is also valid for nested models when we adopt
penalized likelihood scores (see File S1, for further
details).

Clarke’s model selection paired sign test

The model selection paired sign test (Clarke 2007) is a non-
parametric alternative to Vuong’s test, testing the null hy-
pothesis that the median log-likelihood ratio is 0. Clarke’s
test statistic, T12, is a sign test on LR̂12;i. Under the null
hypothesis that the median log-likelihood ratio is zero, T12
has a binomial distribution, and the P-value for comparing
models 1 and 2 is

p12 ¼ PðT12 $ t12Þ ¼
Xn
k¼t12

Cn
k2

2n; (5)

with Cn
k ¼ n!=k!ðn2 kÞ!. The P-values for T12 and T21 do not

add to 1 since the statistics are discrete,
p12 þ p21 ¼ 1þ Cn

t122
2n. Nonetheless, the Cn

t122
2n term

decreases to 0 as n increases, and, in practice, p12 + p21 �
1 even for moderate sample sizes. We adjust this test using
the AIC or BIC penalty D12,

T12 ¼
Xn
i¼1

11
n
LR̂12;i 2 n21D12 . 0

o
; (6)

to account for the varying dimensionality of the models.

Causal model selection tests

The four models M1, M2, M3, and M4 (Figure 1) are used to
derive intersection-union tests based on the application of
six separate Vuong (or Clarke) tests comparing, namely, f1 ·
f2, f1 · f3, f1 · f4, f2 · f3, f2 · f4, and f3 · f4. Sun et al. (2007)
implicitly used intersection unions of Vuong’s tests to select
among three nonnested models. Here, we present three dis-
tinct versions of the CMST: (1) parametric, (2) nonparamet-
ric, and (3) joint-parametric CMST tests. We implement the
tests with penalized log likelihoods, but state results for log
likelihoods.

Here we focus on model M1 and P-value p1, with analo-
gous results and notation for the other three models. Start-
ing with the parametric version, we test the null H0: model
M1 is no closer to the true model than M2, M3 or M4, against
the alternative H1: M1 is closer to the true model than M2,
M3, and M4. More explicitly, we test,

Figure 1 Pairwise causal models. Y1 and
Y2 represent phenotypes that co-map to
the same QTL, Q. Models M1, M2, M3,
and M4 represent, respectively, the
causal, reactive, independent, and full
model. In model M1 the phenotype Y1

has a causal effect on Y2. In M2, the
phenotype Y1 is actually reacting to
a causal effect of Y2, hence the name
reactive model. In the independence
model, M3, there is no causal relation-
ship between Y1 and Y2 and their corre-

lation is solely due to Q. The full model,M4, corresponds to three distribution equivalent modelsMa
4,M

b
4, andMc

4 which cannot be distinguished as their
maximized-likelihood scores are identical. Model Mb

4 represents a causal independence relationship where the correlation between Y1 and Y2 is
a consequence of latent causal phenotypes, common causal QTL, or of common environmental effects. Models Ma

4 and Mc
4 correspond to causal-

pleiotropic and reactive-pleiotropic relationships, respectively.

Causality for Pairs of Phenotypes 1005

www.genetics.org/cgi/data/genetics.112.147124/DC1/11
http://www.genetics.org/content/suppl/2013/01/03/genetics.112.147124.DC1/FileS1.pdf


H0 :
�
E0½LR12� ¼ 0

	 [ �
E0½LR13� ¼ 0

	 [ �
E0½LR14� ¼ 0

	
;

(7)

against

H1 :
�
E0½LR12�. 0

	 \ �
E0½LR13�. 0

	 \ �
E0½LR14�. 0

	
:

(8)

The rejection region for this test is min{z12,z13,z14} . ca,
where ca is the a-critical value of the standard normal.
The intersection-union P-value is p1 = max{p12, p13, p14}.
For any a, if p1 # a, then min{p2,p3,p4} $ 12a. Therefore,
the proposed CMST test has at most one significant model
P-value at a time, in contrast to the CIT approach.

The nonparametric CMST test corresponds to an intersec-
tion union of Clarke’s tests, exactly analogous to the paramet-
ric version. Because in practice p12 + p21 � 1 for Clarke’s test,
the nonparametric CMST test also does not allow the detec-
tion of more than one significant model P-value.

Simple application of separate Vuong tests overlooks the
dependency among the test statistics. A multivariate exten-
sion, the joint parametric CMST test, can be developed to
address this caveat. For model M1, and under the same
general regularity conditions of Vuong (1989), the sample
covariance of LR̂12;i and LR̂13;i, ŝ12:13, converges almost
surely to Cov0[LR12, LR13] = s12.13 (and similarly for all
other covariance terms). Therefore, the sample covariance
matrix, Ŝ1, converges almost surely to S1. From the multi-
variate central limit and Slutsky’s theorems (Shao 2003), if0

@E0½LR12�
E0½LR13�
E0½LR14�

1
A ¼

0
@ 0

0
0

1
A (9)

then Z1 ¼ diagðŜ1Þ21 =

2 LR̂1 =
ffiffiffi
n

p
/d N3ð0; r1Þ; where LR̂1 ¼

ðLR̂12; LR̂13; LR̂14ÞT and r1 ¼ diagðS1Þ21 =

2 S1diagðS1Þ21 =

2 is
the correlation matrix

r1 ¼
0
@ 1 r12:13 r12:14

r12:13 1 r13:14
r12:14 r13:14 1

1
A: (10)

The condition in (9) is the worst case of the more general
null hypothesis that M1 is not better than at least one of M2,
M3, M4, or

H0 : min
�
E0½LR12�; E0½LR13�; E0½LR14�

	
# 0: (11)

We test this against the alternative that M1 is better than all
three, or

H1 : min
�
E0½LR12�; E0½LR13�; E0½LR14�

	
. 0; (12)

using the statistic W1 = min{Z1}, with P-value

PðW1 $w1Þ ¼ PðminfZ12; Z13; Z14g$w1Þ
¼ PðZ12 $w1; Z13 $w1; Z14 $w1Þ: (13)

The joint-parametric CMST test with W1 follows the spirit of an
intersection union test while accounting for dependency among
test statistics. Table 1 depicts the joint CMST tests for all models.

The CMST tests are implemented in the R/qtlhot package
available at CRAN. Although not explicitly stated in the
notation, the pairwise models can easily account for additive
and interactive covariates, and our code already implements
this feature. When using this package please cite this article.

Simulation studies

We conducted two simulation studies. In the first “pilot
study,” we focus on performance comparison of the AIC,
BIC, CIT, and CMST methods with data generated from
simple causal models. The goal is to understand the behav-
ior of our methods in diverse settings. In the second “large-
scale study,” we perform a simulation experiment, with data
generated from causal models emulating QTL hotspot pat-
terns. The goal is to understand the impact of multiple test-
ing on the performance of our causality tests.

The pilot simulation study has data generated from
models A to E in Figure 2. We conducted 10 simulation
studies, generating data from the five models described
above under sample sizes 112 (the size of our real data
example) and 1000. For each model, we simulated 1000
backcrosses. We chose simulation parameters to ensure that
99% of the R2 coefficients between phenotypes and QTL
ranged between 0.08 and 0.32 for the simulations based
on sample size of 112 subjects and between 0.01 to 0.20
for the simulations based on 1000 subjects (see File S2, File
S3, and File S4 for details). We evaluated the method’s
performance using statistical power, miss-calling error rate,
and precision. These quantities were computed as,

Power ¼ TP
N
; Miss-calling error ¼ FP

N
;

Precision ¼ TP
TPþ FP

;

where N is the total number of tests, and TP (true positives)
and FP (false positives) are defined according to Table 2,
which depicts possible calls against simulated models and
tabulates whether a specific call correctly represents the

Table 1 Model selection tests for models M1, M2, M3, and M4

H0 Null distribution P-value

H0
M1 Z1 ¼ ðZ12; Z13; Z14ÞT � N3ð0; r̂1Þ p1 = P(Z12 $ w1, Z13 $ w1, Z14 $ w1)

H0
M2 Z2 ¼ ðZ21; Z23; Z24ÞT � N3ð0; r̂2Þ p2 = P(Z21 $ w2, Z23 $ w2, Z24 $ w2)

H0
M3 Z3 ¼ ðZ31; Z32; Z34ÞT � N3ð0; r̂3Þ p3 = P(Z31 $ w3, Z32 $ w3, Z34 $ w3)

H0
M4 Z4 ¼ ðZ41; Z42; Z43ÞT � N3ð0; r̂4Þ p4 = P(Z41 $ w4, Z42 $ w4, Z43 $ w4)

Here wk = min{zk} for k = 1,...,4, and rk is defined in analogy with r1 in Equation 10.
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causal relationship between the phenotypes in the model
from which the data were generated.

In the large-scale simulation study we investigate the
empirical FDR (1 minus the precision) and power levels
achieved by the CMST tests using the Benjamini and
Hochberg (1995) and the Benjamini and Yekutieli (2001)
FDR control procedures (denoted, respectively, by BH and
BY), as well as no multiple testing correction. We simulate
data from the models in Figure 3, which emulate eQTL hot-
spot patterns, i.e., genomic regions to which hundreds or
thousands of traits co-map (West et al. 2007). In each sim-
ulation we generated 1000 distinct backcrosses with pheno-
typic data on 5001 traits on 112 individuals. We simulated
unequally spaced markers for model F, but equally spaced
markers for G, with Q1 and Q set 1 cM apart. Because we fit
almost three million hypothesis tests in this simulation
study, we did not include the CIT tests in this investigation,
restricting our attention to the computationally more effi-
cient CMST tests. The details for our choice of simulation
parameters and QTL mapping are presented in File S2, File
S3, and File S4. A frequent goal in eQTL hotspots studies is
to determine a master regulator, i.e., a transcript that reg-
ulates the transcription of the other traits mapping to the
hotspot. A promising strategy toward this end is to test the cis
traits (i.e., transcripts physically located close to the QTL
hotspot) against all other co-mapping traits. Our simula-
tions evaluate the performance of the CMST tests in this
setting.

Results

Pilot simulation study results

Figure 4 depicts the power, miss-calling error rate, and pre-
cision of each of the methods based on the simulation results
of all five models in Figure 2. The results of the AIC and BIC
approaches are constant across all significance levels since
these approaches do not provide a measure of statistical
significance. For those methods, we simply fit the models
to the data and select the model with the best (smallest)
score.

Overall, the AIC, BIC, and CIT showed high power, high
miss-calling error rates, and low precision. The CMST
methods, on the other hand, showed lower power, lower
miss-calling error rates, and higher precision. The non-
parametric CMST tended to be more powerful but less
precise than the other CMST approaches. As expected, for

sample size 1000, all methods showed an increase in power
and precision and decrease in miss-calling error rate.

Figure S3, Figure S4, Figure S5, Figure S6, and Figure S7
show the simulation results data for each one of models A to
E, when sample size is 112. Figure S8, Figure S9, Figure
S10, Figure S11, and Figure S12 show the same results for
sample size 1000. Some of the simulated models were in-
trinsically more challenging than others. For instance, in the
absence of latent variables the causal and independence
relations can often be correctly inferred by all methods
(see the results for models A and D in Figure S3, Figure
S6, Figure S8, and Figure S11). However, the presence of
hidden variables in models B and E tend to complicate mat-
ters. Nonetheless, although the AIC, BIC, and CIT methods
tend to detect false positives at high rates in these compli-
cated situations, the CMST tests tend to forfeit making calls
and tend to detect fewer false positives (see Figure S4, Figure
S7, Figure S9, and Figure S12). Model C is particularly chal-
lenging (Figure S5 and Figure S10), showing the highest
false-positive detection rates among all models.

In genetical genomics experiments we often restrict our
attention to the analysis of cis-genes against trans-genes. In
this special case it is reasonable to expect the pleiotropic

Figure 2 Models used in the simulation study. Y1 and
Y2 represent phenotypes that co-map to the same QTL,
Q. Model A represents a causal effect of Y1 on Y2.
Model B represents the same, with the additional com-
plication that part of the correlation between Y1 and
Y2 is due to a hidden-variable H. Model C represents

a causal-pleiotropic model, where Q affects both Y1 and Y2 but Y1 also has a causal effect on Y2. Model D shows a purely pleiotropic model, where both
Y1 and Y2 are under the control of the same QTL, but one does not causally affect the other. Model E represents the pleiotropic model, where the
correlation between Y1 and Y2 is partially explained by a hidden-variable H.

Table 2 True and false positives

CMST Model A Model B Model C Model D Model E

M1 TP TP FP FP FP
M2 FP FP FP FP FP
M3 FP FP FP TP FP
M4 FP FP TP FP TP
CIT Model A Model B Model C Model D Model E

M1 TP TP FP FP FP
M2 FP FP FP FP FP
Mi FP FP TP TP TP

Each entry i, j represents whether the call on row i is a true positive (TP) or as false
positive (FP), when the data are generated from the model on column j. For in-
stance, when data are generated from models A or B, a M1 call represents a true
positive, whereas a M2, M3, or M4 call represents a false positive for the AIC, BIC,
and CMSTs approaches (for the CIT a M2 or Mi call represents false positive). Note
that a M4 call is considered a true positive for model C (in addition to model E)
because it corresponds to model Ma

4 on Figure 1 and, hence, is distribution equiv-
alent to model M4. Please note too that because the CIT provides P-values for only
the M1 and M2 calls, but not for the M3 and M4 calls, and its output is M1, M2, or
Mi, we classify a Mi call as a true positive for models C, D, and E. Observe that by
doing so we are actually giving an unfair advantage for the CIT approach, since
when the data are generated from, say, model E, the CIT needs only to discard
models M1 and M2 as nonsignificant to detect a “true positive.” The AIC, BIC, and
CMST approaches, on the other hand, need to discard models M1, M2, and M3 as
nonsignificant and accept model M4 as significant.
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causal relationship depicted in model C to be much less
frequent than the relationships shown in models A, B, D,
and E, so that the performance statistics shown in Figure 4
might be negatively affected to an unnecessary degree by
the simulation results from model C.

To investigate the performance of methods in the cis-
against trans-case, we present in Figure 5 the simulation
results based on models A, B, D, and E only. Comparison
of Figures 4 and 5 show an overall improvement in power,
decrease in miss-calling rates and increase in precision.

In the analysis of trans- against trans-genes there is no
a priori reason to discard the relationship depicted in model
C, and more false positives should be expected. The CMST
approaches, specially the joint parametric and parametric
CMST methods, tend to detect a much smaller number of

false positives than the AIC, BIC, and CIT approaches, as
shown in Figure S5 and Figure S10.

Large-scale simulation study results

With the possible exception of the nonparametric version,
the previous simulation study suggests that the CMST tests
can be quite conservative. Therefore, it is reasonable to ask
whether multiple testing correction is really necessary to
achieve reasonable false discovery rates (FDR).

Figure 6 presents the observed FDR and power using un-
corrected, BH corrected, and BY corrected P-values for the sim-
ulations based on model G. Figure 6, top, shows that, except for
the AIC-based nonparametric CMST, the observed FDRs were
considerably lower than the P-value cutoff, suggesting that mul-
tiple testing adjustment is not necessary for the CMST tests.
Furthermore, comparison of the bottom panels shows that the
BH and BY adjustments leads to a reduction in power (specially
for the BY adjustment) for the joint and parametric tests at the
expense of small drop in FDR levels (that were already low
without any correction). For the nonparametric tests, on the
other hand, BH corrections leads to bigger drops in FDR (spe-
cially for the AIC based test) and smaller drops in power. The
BY correction appears too conservative even for the nonpara-
metric tests. The results for model F are similar (Figure S13).

Yeast data analysis and biologically
validated predictions

We analyzed a budding yeast genetic genomics data set
derived from a cross of a standard laboratory strain and a wild
isolate from a California vineyard (Brem and Kruglyak 2005).

Figure 3 Models generating hotspot patterns. Y1 represents a cis-expression
trait. Yk, k = 2, ..., 5001 represent expression traits mapping in trans to the
hotspot QTL Q. H represents an unobserved expression trait. Model F gener-
ates a hotspot pattern derived from the causal effect of the master regulator,
Y1, on the transcription of the other traits. Model G gives rise to a hotspot
pattern, due to the causal effect of H on Yk, but where the cis-trait Y1 maps to
Q1, a QTL closely linked to the true QTL hotspot Q, and is actually causally
independent of the traits mapping in trans to the Q.

Figure 4 Power (A and D), miss-
calling error rate (B and E), and
precision (C and F) across the
simulated models depicted in Fig-
ure 2. The x-axis represents the
significance levels used for com-
puting the results. (A—C) The
simulations based on sample size
112; (D—F) the results for sample
size 1000. Dashed and solid
curves represent, respectively,
AIC- and BIC-based methods.
Green: parametric CMST. Red:
nonparametric CMST. Blue:
joint-parametric CMST. Black:
AIC and BIC. Orange: CIT. The
shaded line on B and E corre-
sponds to the a levels.
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The data consist of expression measurements on 5740 tran-
scripts measured on 112 segregant strains with dense geno-
type data on 2956 markers. Processing of the expression
measurements raw data was performed as described in Brem
and Kruglyak (2005), with an additional step of converting

the processed measurements to normal scores. We performed
QTL analysis using Haley–Knott regression (Haley and Knott
1992) with the R/qtl software (Broman et al. 2003). We used
Haldane’s map function, genotype error rate of 0.0001,
and set the maximum distance between positions at which

Figure 5 Power (A and D), miss-
calling error rate (B and E), and
precision (C and F) restricted to
the cis- vs. trans-cases. The x-axis
represents the significance levels
used for computing the results.
The results were computed using
only the simulated models A, B,
D, and E in Figure 2, since the
pleiotropic causal relationship
depicted in model C is expected
to be much less frequent than
the others when testing cis- vs.
trans-case. (A–C) The simulations
based on sample size 112; (D–F)
the results for sample size 1000.
Dashed and solid curves repre-
sent, respectively, AIC- and BIC-
based methods. Green: parametric
CMST. Red: nonparametric CMST.
Blue: joint-parametric CMST.
Black: AIC and BIC. Orange: CIT.
The shaded line on B and E corre-
sponds to the a levels.

Figure 6 Observed FDR and
power for the simulations based
on model G. The x-axis repre-
sents the P-value cutoffs used
for computing the results.
Dashed and solid curves repre-
sent, respectively, AIC- and BIC-
based methods. Green: parametric
CMST. Red: nonparametric CMST.
Blue: joint-parametric CMST. Black:
AIC and BIC. The shaded line in the
top corresponds to the a levels.
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genotype probabilities were calculated to 2 cM. We adopted
a permutation LOD threshold (Churchill and Doerge 1994)
of 3.48, controlling the genome-wide error rate of falsely
detecting a QTL at a significance level of 5%.

To evaluate the precision of the causal predictions made
by the methods we used validated causal relationships
extracted from a database of 247 knock-out experiments
in yeast (Hughes et al. 2000; Zhu et al. 2008). In each of
these experiments, one gene was knocked out, and the ex-
pression levels of the remainder genes in control and
knocked-out strains were interrogated for differential ex-
pression. The set of differentially expressed genes form the
knock-out signature (ko-signature) of the knocked-out gene
(ko-gene) and show direct evidence of a causal effect of the
ko-gene on the ko-signature genes. The yeast data cross and
knocked-out data analyzed in this section are available in
the R/qtlyeast package at GITHUB (https://github.com/
byandell/qtlyeast).

To use this information, we: (i) determined which of the
247 ko-genes also showed a significant eQTL in our data set;
(ii) for each one of the ko-genes showing significant
linkages, we determined which other genes in our data
set also co-mapped to the same QTL of the ko-gene,
generating, in this way, a list of putative targets of the ko-
gene; (iii) for each of the ko-gene/putative targets list, we
applied all methods using the ko-gene as the Y1 phenotype,
the putative target genes as the Y2 phenotypes, and the ko-
gene QTL as the causal anchor; (iv) for the AIC- and BIC-
based nonparametric CMST tests we adjusted the P-values
according to the Benjamini and Hochberg FDR control pro-
cedure; and (v) for each method we determined the “vali-
dated precision,” computed as the ratio of true positives by
the sum of true and false positives, where a true positive is
defined as an inferred causal relationship where the target
gene belongs to the ko-signature of the ko-gene, and a false
positive is given by an inferred causal relation where the
target gene does not belong to the ko-signature.

In total 135 of the ko-genes showed a significant QTL,
generating 135 putative target lists. A gene belonged to the
putative target list of a ko-gene when its 1.5 LOD support
interval (Lander and Botstein 1989; Dupuis and Siegmund
1999; Manichaikul et al. 2006) contained the location of the
ko-gene QTL. The number of genes in each of the putative
target lists varied from list to list, but in total we tested
31,975 “ko-gene/putative target gene” relationships.

Figure 7 presents the number of inferred true positives,
number of inferred false positives, and the prediction pre-
cision across varying target significance levels for each one
of the methods. The CIT, BIC, and AIC had a higher number
of true positives than the CMST approaches, with the AIC-
based CMST methods having less power than the BIC-based
CMST methods. However, the CIT, BIC, and AIC also
inferred the highest numbers of false positives (Figure 7B)
and showed low prediction precisions (Figure 7C). From
Figure 7C we see that the CMST tests show substantially
higher precision rates across all target significance levels

compared to the AIC, BIC, and CIT methods. Among the
CMST approaches, the joint-parametric CMST tended to
show the highest precision, followed by the nonparametric
and parametric CMST tests.

The results presented in Figure 7 were computed using
all 135 ko-genes. However, in light of our simulation results,
which suggest that the analysis of cis- against trans-genes is
usually easier than the analysis of trans- against trans-genes,
we investigated the results restricting ourselves to ko-genes
with significant cis-QTL. Only 28 of the 135 ko-genes were
cis-traits, but, nonetheless, were responsible for 2947 of the
total 31,975 “ko-gene/putative target gene” relationships.
Figure 8 presents the results restricted to the cis-ko-genes.
All methods show improvement in precision, corroborating
our simulation results. Once again, the CMST tests showed
higher precision than the CIT, AIC, and BIC.

Discussion

In this article, we proposed three novel hypothesis tests that
adapt and extend Vuong’s and Clarke’s model selection tests
to the comparison of four models, spanning the full range of
possible causal relationships among a pair of phenotypes.
Our CMST tests scale well to large genome wide analyses
because they are fully analytical and avoid computationally
expensive permutation or resampling strategies.

Another useful property of the CMST tests, inherited
from Vuong’s test, is their ability to perform model selection
among misspecified models. That is, the correct model need
not be one of the models under consideration. Accounting
for the misspecification of the models is key. In general, any
two phenotypes of interest are embedded in a complex net-
work and are affected by many other phenotypes not con-
sidered in the grossly simplified (and thus misspecified)
pairwise models.

Overall, our simulations and real data analysis show that
the CMST tests are better at controlling miss-calling error
rates and tend to outperform the AIC, BIC, and CIT methods
in terms of statistical precision. However, they do so at the
expense of a decrease in statistical power. While an ideal
method would have high precision and power, in practice
there is always a trade-off between these quantities. Whether
a more powerful and less precise, or a less powerful and more
precise, method is more adequate depends on the biologist’s
research goals and resources. For instance, if the goal is to
generate a rank-ordered list of promising candidates genes
that might causally affect a phenotype of interest and the bi-
ologist can easily validate several genes, a larger list generated
by more powered and less precise methods might be more
appealing. However, in general, follow-up studies tend to be
time consuming and expensive, and only a few candidates can
be studied in detail. A long list of putative causal traits is not
useful if most are false positives. High power to detect causal
relations alone is not enough. A more precise method that
conservatively identifies candidates with high confidence can
be more appealing (see also Chen et al. 2007).

1010 E. Chaibub Neto et al.

https://github.com/byandell/qtlyeast
https://github.com/byandell/qtlyeast


Further, the exploratory goal is often to identify causal
agents without attempting to reconstruct entire pathways.
Therefore, much information about the larger networks in
which the tested pairs of traits reside is unknown and
generally unknowable and contributes to the large un-
explained variation that in turn results in low power. Our
method accurately reflects this difficulty to detect causal
relationships in the presence of noisy high-throughput data
and poorly understood networks.

Interestingly, our data analysis and simulations also
suggest that the analysis of cis-against trans-gene pairs is
less prone to detect false positives than the analysis of trans-
against trans-gene pairs. Our simulations suggest that model
selection approaches have difficulty ordering the pheno-
types when the QTL effect reaches the truly reactive gene
by two or more distinct paths, only one of which is mediated
by the truly causal gene (see Figure S1C, for an example).

When we test causal relationships among gene expres-
sion phenotypes, the true relationships might not be a direct
result of transcriptional regulation. For instance, the true
causal regulation might be due to methylation, phosphory-
lation, direct protein–protein interaction, transcription fac-
tor binding, etc. Margolin and Califano (2007) have pointed
out the limitations of causal inference at the transcriptional
level, where molecular phenotypes at other layers of regula-
tion might represent latent variables. ModelM4 (see Figure 1)
can account for these latent variables and can test this sce-
nario explicitly.

Furthermore, as pointed out by Li et al. (2010), causal
inference depends on the detection of subtle patterns in the
correlation between traits. Hence, it can be challenging even
when the true causal relations take place at the transcrip-
tional level. The authors point out that reliable causal in-
ference in genome-wide linkage and association studies
require large sample sizes and would benefit from: (i) in-
corporating prior information via Bayesian reasoning;

(ii) adjusting for experimental factors, such as sex and age,
that might induce correlations not explained the the causal
relations; and (iii) considering a richer set of models than the
four models accounted in this article.

The CMST tests represent a step in the direction of
reliable causal inference in three accounts. First, they tend
to be precise, declining to make calls in situations where
alternative approaches usually deliver a flood of false-
positive calls. Second, the CMST tests can adjust for
experimental factors by modeling them as additive and
interactive covariates. Third, the CMST tests can be applied
to nonnested models of different dimensions and can be
readily extended to incorporate a larger number of models
by implementing intersection-union tests on a larger num-
ber of Vuong’s tests. For the joint-parametric test a higher-
dimensional null distribution is required.

FDR control for the CMST approaches is a challenging
problem as our tests violate the key assumption, made by
FDR control procedures, that the distribution of the P-
values under the null hypothesis are uniformly distributed
(Benjamini and Hochberg 1995; Storey and Tibshirani
2003). Recall that the CMST P-values are computed as the
maximum across other P-values, and the maximum of mul-
tiple uniform random variables no longer follows a uniform
distribution. Additionally, the CMST tests are usually not
independent since we often test the same cis-trait against
several trans-traits, so that the additional assumption of in-
dependent test statistics made by the original Benjamini–
Hochberg procedure does not hold. The Benjamini–Yekutieli
(BY) procedure relaxes the independent test statistics as-
sumption, and we explore both these corrections in our sim-
ulations. Our results suggest that BH and BY multiple testing
correction should not be performed for the joint and the para-
metric CMST tests, as the FDR levels are lower than the nom-
inal level without any correction and are too conservative with
severe reduction in statistical power with the application of

Figure 7 Overall number of true
positives (A), number of false
positives (B), and precision (C)
across all 135 ko-gene/putative
target lists. The x-axis represents
the significance levels used for
computing the results. Dashed
and solid curves represent, re-
spectively, AIC- and BIC-based
methods. Green: parametric CMST.
Red: nonparametric CMST. Blue:
joint-parametric CMST. Black: AIC
and BIC. Orange: CIT.

Causality for Pairs of Phenotypes 1011

www.genetics.org/cgi/data/genetics.112.147124/DC1/10


BH and BY control. The nonparametric CMST tests, on the
other hand, seemed to benefit from BH correction, showing
slight decrease in power with concomitant decrease in FDR,
in spite of the nonparametric CMST tests being based on
discrete test statistics and the BH procedure being devel-
oped to handle P-values from continuous statistics. Inspec-
tion of the P-value distributions (see Figure S14, Figure S15,
Figure S16, and Figure S17) suggests that the smaller
P-values of the nonparametric tests, relative to the other
approaches, are the reason for the higher power achieved
by the BH corrected nonparametric tests. The BY procedure,
on the other hand, tended to be too conservative even for
the nonparametric CMST tests.

The CMST approach is currently implemented for inbred
line crosses. Extension to outbred populations involving mixed
effects models is yet to be done. Although in this article we
focused on mRNA expression traits, the CMST tests can be
applied to any sort of heritable phenotype, including clinical
phenotypes and other “omic” molecular phenotypes.

The higher statistical precision and computational effi-
ciency achieved by our fully analytical hypothesis tests will
help biologists to perform large-scale screening of causal
relations, providing a conservative rank-ordered list of
promising candidate genes for further investigations.
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Figure S 1 Network models and their collapsed versions. The collapsed networks

(bottom panels) represent simplified versions of the true networks (top panels), where

nodes other than Q, Y1 and Y2 are ignored, even though they still represent the correct

causal flow among these three nodes in the true network. Consider, for example,

network c and its collapsed version c′. The path Q → Y3 → Y1 in c is collapsed to

Q → Y1 in c′. The paths Y1 → Y5 → Y2 and Y1 → Y6 → Y2 in c are collapsed to Y1 → Y2

in c′. The path Q → Y3 → Y4 → Y7 → Y2 in c is collapsed to Q → Y2 in c′.
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Figure S2 Model selection via log-likelihood ratio versus Vuong’s test.

Figure S2 illustrates how Vuong’s test works. We generated 1,000 data-sets from the

model X → Y1 → Y2 and applied Vuong’s test to the comparison of models M1 : X →

Y1 → Y2 against M2 : X → Y2 → Y1. The top panels present 3D scatter plots of the test

statistics Z12 against the R2 values of the regression of Y1 on X, R2(Y1, X), and the R2

values of the regression of Y2 on X, R2(Y2, X). The data points are color coded as blue,

red and grey, representing, respectively, M1, M2 and “no calls”. Note that because model

M1 corresponds to the true model, we have that the a M1 call is always correct, whereas
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a M2 call is always incorrect in this example. Therefore, blue and red points represent,

respectively, correct and incorrect calls. The bottom panels follow the same color coding

and show the projections of the 3D scatter plots into the R2(Y1, X) by R2(Y2, X) plane.

The left panels of Figure S2 show the model selection results based on the log-likelihood

ratio (LR) criterium, where positive LR̂12 values support M1 and negative LR̂12 values

support M2 (note that we actually use the Z12 test statistics, instead of LR̂12 statistics,

but the results are equivalent). Because we generate the data from model X → Y1 → Y2,

it will usually be the case that X explains a greater proportion of the variability of Y1

than of Y2. In other words, R2(Y1, X) will tend to be higher than R2(Y2, X). However,

some of the data-sets show the opposite trend due to random noise on the data. The

bottom left panel shows that the log-likelihood criterium tends to make incorrect calls

when R2(Y1, X) < R2(Y2, X).

The right panels of Figure S2 show the model selection results derived from Vuong’s

test. Now we see that most of the incorrect calls made by the log-likelihood criterium

(red points) are not significant (grey points) according to Vuong’s test, that requires that

Z12 ≤ −1.64 or Z12 ≥ 1.64 for statistical significance at a 5% level. The drawback is the

reduction in power to detect the correct calls, since not only red dots are replaced by grey

dots, but many of the blue dots are turned into grey, as well. These figures illustrate how

Vuong’s test trade an increase in precision for a reduction in statistical power to detect

true positives.
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File S1

A technical note on Vuong’s test

Vuong (1989) fully characterized the asymptotic distribution of the log-likelihood ratio

statistic under the most general conditions. He showed that the form of the asymptotic

distribution of the log-likelihood ratio depends on whether the models are observationally

identical or not. Two models are observationally identical if their probability densities

are the same, when evaluated at the respective pseudo-true parameter values, i.e., f1(y |

x ; θ1∗) = f2(y | x ; θ2∗) for almost all (y,x), where the pseudo-true parameter values,

θk∗, corresponds to the parameter value that minimizes the Kullback-Leibler distance

from the true model (Sawa 1978).

Explicitly, Vuong showed (Theorem 3.3 on page 313) that under very general condi-

tions:

1. If f1(y | x ; θ1∗) = f2(y | x ; θ2∗), then 2LR12(θ̂1, θ̂2) converges in distribution to a

weighted sum of chi-square distributions.

2. If f1(y | x ; θ1∗) ̸= f2(y | x ; θ2∗), then

1√
n

(
LR12(θ̂1, θ̂2)− E0

[
log

f1(y | x ; θ1∗)

f2(y | x ; θ2∗)

])
→d N(0, σ12.12)

Because of this interesting asymptotic behavior Vuong had to proposed 3 distinct

model selection tests: one for strictly non-nested models, that are always not observation-

ally identical; another for overlapping models that might or might not be observationally

identical; and a third for nested models, that are always observationally identical. (Nested

models are always observationally identical because the nested model cannot be better
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than the full model and both models are equally close to the true model if and only if

they are the same.)

In our applications, models M1, M2 and M3 are not nested on each other, but are

nested on models Ma
4 , M

c
4 and M b

4 , respectively (Figure 1 in the main text). Hence, our

model selection tests consider pairs of models that are either non-nested or nested. In

the Methods section we presented Vuong’s test for not observationally identical models,

that is suitable for the comparison of strictly non-nested models (M1×M2, M1×M3 and

M2 ×M3).

We point out, however, that even though we perform model selection tests between

nested models (M1 ×M4, M2 ×M4 and M3 ×M4) we don’t need to use Vuong’s test for

nested models because our test statistics are based on penalized log-likelihoods instead

of log-likelihoods, and our penalized models are not observationally identical for nested

models too. In other words, even though f1(y | x ; θ1∗) = f4(y | x ; θ4∗) when model 1 is

nested in model 4, we have that f1(y | x ; θ1∗)−p1 ̸= f4(y | x ; θ4∗)−p4 since the penalty

p1 is smaller than p4. Therefore, we can simply use Vuong’s test for not observationally

identical models in this case too.

On a technical note, we point out that Vuong’s Theorem 3.3 still holds when we replace

the log-likelihood ratio by the penalized log-likelihood ratio. The demonstration mimics

Vuong’s original proof presented on page 327. We just need to replace the log-likelihoods

by penalized log-likelihoods in the Taylor expansion of the log-likelihoods around the

maximum likelihood estimates.
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Simulation studies

Here we provide further details on the simulation studies presented in the main text.

File S3

Pilot simulation study

We conducted a total of 10 simulation studies, generating data from the five models

described in Figure 2 in the main text using sample sizes 112 and 1,000 (the choice 112

was motivated by the sample size in our real data example). For each model, we sim-

ulated 1,000 backcrosses composed with 3 chromosomes of length 100cM containing 101

unequally spaced markers per chromosome. For each one of the simulated backcrosses, the

additive and dominance genetic effects were sampled, respectively, from the U [−0.75, 0.75]

and U [0, 0.75] distributions, where U [a, b] represents the uniform distribution on the in-

terval [a, b]. Residual error rates were sampled from U [0.5, 1.5], and the phenotype to

phenotype regression coefficients in Figures 2 A, B and C were sampled from U [−1, 1].

The hidden-variable to phenotype regression coefficients on Figures 2 B and E were sam-

pled from U [−1, 1] and U [0.5, 1], respectively. This choice of parameters ensured that

approximately 99% of the R2 coefficients between phenotypes and QTL ranged between

0.08 and 0.32 for the simulations based on sample size of 112 subjects (see Figure SI.2a,

and the axis scales on Figures S3-S7) and between 0.01 to 0.20 for the simulations based

on 1,000 subjects (see Figure SI.2b, and the axis scales on Figures S8-S12).

The backcross simulations and the QTL mapping analyses were performed using the

R/qtl software (Broman et al. 2003). We performed Haley-Knott regression (Haley and

Knott 1992) and adopted Haldane’s map function, genotype error rate of 0.0001, and set
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the maximum distance between positions at which genotype probabilities were calculated

to 2cM. We used a permutation LOD threshold (Churchill and Doerge 1994) of 2.24 for the

QTL mapping analysis, aiming to control the genome wide error rate of falsely detecting

a QTL at a 5% rate.

Often times the phenotypes map to nearby but not precisely the same QTL, and

we need to decide which QTL to use as the causal anchor. When testing expression

traits against clinical traits, Millstein et al. (2009) and Schadt et al. (2005) suggest

using the clinical trait QTL as the anchor. We adopt a different approach. When the

phenotypes map to distinct regions that are less than 2cM apart we determine the QTL

position using both phenotypes, jointly, as follows. For each pair of phenotypes (Y1,Y2) we

perform unconditional mapping analysis for Y1 and Y2 and conditional mapping analysis

for Y2 given Y1. Let LOD1 represent a LOD score for the mapping analysis of Y1, and

LOD2|1 for the mapping analysis of Y2 given Y1. Since

log10

{
f(y1, y2 | q)
f(y1, y2)

}
= log10

{
f(y1 | q)
f(y1)

}
+ log10

{
f(y2 | y1, q)
f(y2 | y1)

}
, (1)

we compute the joint LOD score of (Y1,Y2) as LOD1,2 = LOD1+LOD2|1 (or equivalently

as LOD1,2 = LOD2 + LOD1|2). We determine the peak QTL position, λ, using the

LOD1,2 scores profile and assign the QTL to Y1 and Y2 if LOD1 and LOD2 are greater

than the mapping threshold at the λ position. Figure SI1 illustrates our approach. When

both phenotypes co-map to more than one QTL we select the QTL with the highest joint

mapping peak.
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Figure SI.1 We simulated data from a model Q → Y1 → Y2, with a QTL, Q, at 50cM.

The blue and red curves show the (unconditional) LOD profiles of phenotypes Y1 and

Y2, respectively. The black curve depicts the joint LOD curve, and the peak QTL

position λ is given by the black vertical line. Instead of having to perform an arbitrary

choice between the QTLs given by the red and blue vertical lines we use the QTL given

by the black line. The dashed line shows the QTL mapping threshold.
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Large scale simulation study

We performed two separate simulation studies generating data from the models in

Figure 5 in the main text. In model F , Y1 plays the role of a master regulator cis trait,

and all other traits map in trans to QTL hotspot QTL Q because of the causal effect of

Y1. In model G, Y1 plays the role of a cis trait mapping to a QTL closely linked to Q,

and, therefore, causally independent of the trans traits in the hotspot.

In each simulation study we generated 1,000 distinct backcrosses with genetic data

composed of 3 chromosomes of length 100cM containing 101 markers per chromosome,

and phenotypic data on 5,001 traits on 112 individuals. We simulated unequally spaced

markers for model F , but equally spaced markers forG, withQ1 andQ set 1cM apart. The

additive and dominance genetic effects of Q on Y1 were sampled, respectively, from the

U [0.5, 1] and U [0, 0.5] distributions. Residual error rates were sampled from U [0.5, 1.5],

and the coefficients of the regressions of Yk on Y1 were sampled from U [0.5, 1]. Figure SI.3

shows the overall R2 distributions. QTL mapping was performed as in the pilot study,

but here we used the QTL for trait Y1 as a causal anchor.

For each simulated data set we tested Y1 against all other phenotypes Yk, k =

2, . . . , 5001, that share the QTL with Y1, so that the number of hypothesis tests var-

ied from simulation to simulation. Figure SI.4 shows the distribution of the number of

tests per simulation study. In total we performed 1,656,261 tests for the simulations with

model F , and 1,286,243 tests for the simulations with model G.

The empirical FDR (that corresponds to one minus the precision) was computed as

the ratio of the number of FPs by the sum of the number of FPs and TPs across all

tests. The empirical power was computed as before. For model F , a FP is defined as any
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statistically significant M2, M3, or M4 call, and a TP is given by a significant M1 call. For

model G, on the other hand, a FP corresponds to any statistically significant M1, M2, or

M4 call, and a TP is given by a significant M3 call. For the evaluations without multiple

testing correction, a call Mk was statistically significant if the respective p-value, pk, was

smaller than a fixed significance level α.

Multiple testing correction procedures based on the control of family wise error rates

tend to be very conservative, and are not generally advisable (Benjamini and Hochberg

1995). Here, we investigate the performances of the Benjamini and Hochberg (1995) and

Benjamini and Yekutieli (2001) FDR control procedures (denoted, respectively, by BH

and BY for now on). The BH and BY adjusted p-values were computed based on the p-

values across all simulations pooled together, separately by model call (e.g., for the model

F simulations, we pool together all 1,656,261 M1 p-values and apply the BH adjusted for

this set of p-values, and similarly for the M2, M3 and M4 p-values), and then compute

the FDR and power empirical estimates using the adjusted p-values.
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Figure SI.2 Overall distribution of the R2 statistics across all simulated models in

Figure 2. Panels a and b present the R2 statistics for sample sizes 112 and 1,000,

respectively.
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Figure S3 Simulation results for Model A in Figure 2 and sample size 112. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots

(CIT plot only) represent Mi calls. Grey dots show the “no calls”. Results were

computed using significance level 0.05. For this model, blue dots represent true

positives. Red, green and black dots represent false positives for the AIC, BIC and

CMST methods. Red and yellow dots represent false positives for the CIT.
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Figure S4 Simulation results for Model B in Figure 2 and sample size 112. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots

(CIT plot only) represent Mi calls. Grey dots show the “no calls”. Results were

computed using significance level 0.05. For this model, blue dots represent true

positives. Red, green and black dots represent false positives for the AIC, BIC and

CMST methods. Red and yellow dots represent false positives for the CIT.
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Figure S5 Simulation results for Model C in Figure 2 and sample size 112. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots (CIT

plot only) represent Mi calls. Grey dots show the “no calls”. Results were computed

using significance level 0.05. For the AIC, BIC and CMST methods, black dots

represent true positives, and blue, red and green dots represent false positives. For the

CIT test, yellow dots represent true positives and blue and red dots show false positives.
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Figure S6 Simulation results for Model D in Figure 2 and sample size 112. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots (CIT

plot only) represent Mi calls. Grey dots show the “no calls”. Results were computed

using significance level 0.05. For the AIC, BIC and CMST methods, green dots

represent true positives, and blue, red and black dots represent false positives. For the

CIT test, yellow dots represent true positives and blue and red dots show false positives.
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Figure S7 Simulation results for Model E in Figure 2 and sample size 112. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots (CIT

plot only) represent Mi calls. Grey dots show the “no calls”. Results were computed

using significance level 0.05. For the AIC, BIC and CMST methods, black dots

represent true positives, and blue, red and green dots represent false positives. For the

CIT test, yellow dots represent true positives and blue and red dots show false positives.

E. Chaibub Neto et al. 17 SI



0.05 0.10 0.15 0.20

0.
02

0.
08

AIC

R2(Y1, Q)

R
2 (Y

2, 
Q

)

0.05 0.10 0.15 0.20

0.
02

0.
08

BIC

R2(Y1, Q)
R

2 (Y
2, 

Q
)

0.05 0.10 0.15 0.20

0.
02

0.
08

CIT

R2(Y1, Q)

R
2 (Y

2, 
Q

)

0.05 0.10 0.15 0.20

0.
02

0.
08

Joint CMST − AIC

R2(Y1, Q)

R
2 (Y

2, 
Q

)

0.05 0.10 0.15 0.20

0.
02

0.
08

Parametric CMST − AIC

R2(Y1, Q)

R
2 (Y

2, 
Q

)

0.05 0.10 0.15 0.20

0.
02

0.
08

Non−parametric CMST − AIC

R2(Y1, Q)

R
2 (Y

2, 
Q

)

0.05 0.10 0.15 0.20

0.
02

0.
08

Joint CMST − BIC

R2(Y1, Q)

R
2 (Y

2, 
Q

)

0.05 0.10 0.15 0.20

0.
02

0.
08

Parametric CMST − BIC

R2(Y1, Q)

R
2 (Y

2, 
Q

)

0.05 0.10 0.15 0.20

0.
02

0.
08

Non−parametric CMST − BIC

R2(Y1, Q)

R
2 (Y

2, 
Q

)

Figure S8 Simulation results for Model A in Figure 2 and sample size 1,000. Blue,

red, green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots

(CIT plot only) represent Mi calls. Grey dots show the “no calls”. Results were

computed using significance level 0.05. For this model, blue dots represent true

positives. Red, green and black dots represent false positives for the AIC, BIC and

CMST methods. Red and yellow dots represent false positives for the CIT.
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Figure S9 Simulation results for Model B in Figure 2 and sample size 1,000. Blue,

red, green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots

(CIT plot only) represent Mi calls. Grey dots show the “no calls”. Results were

computed using significance level 0.05. For this model, blue dots represent true

positives. Red, green and black dots represent false positives for the AIC, BIC and

CMST methods. Red and yellow dots represent false positives for the CIT.
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Figure S10 Simulation results for Model C in Figure 2 and sample size 1,000. Blue,

red, green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots

(CIT plot only) represent Mi calls. Grey dots show the “no calls”. Results were

computed using significance level 0.05. For the AIC, BIC and CMST methods, black

dots represent true positives, and blue, red and green dots represent false positives. For

the CIT test, yellow dots represent true positives and blue and red dots show false

positives.
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Figure S11 Simulation results for Model D in Figure 2 and sample size 1,000. Blue,

red, green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots

(CIT plot only) represent Mi calls. Grey dots show the “no calls”. Results were

computed using significance level 0.05. For the AIC, BIC and CMST methods, green

dots represent true positives, and blue, red and black dots represent false positives. For

the CIT test, yellow dots represent true positives and blue and red dots show false

positives.
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Figure S12 Simulation results for Model E in Figure 2 and sample size 1,000. Blue,

red, green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots

(CIT plot only) represent Mi calls. Grey dots show the “no calls”. Results were

computed using significance level 0.05. For the AIC, BIC and CMST methods, black

dots represent true positives, and blue, red and green dots represent false positives. For

the CIT test, yellow dots represent true positives and blue and red dots show false

positives.

22 SI E. Chaibub Neto et al.



0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

uncorrected

p−value cutoff

ob
se

rv
ed

 F
D

R

0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

BH corrected

p−value cutoff

ob
se

rv
ed

 F
D

R

0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

BY corrected

p−value cutoff

ob
se

rv
ed

 F
D

R

0.02 0.04 0.06 0.08 0.10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

uncorrected

p−value cutoff

ob
se

rv
ed

 P
ow

er

0.02 0.04 0.06 0.08 0.10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

BH corrected

p−value cutoff

ob
se

rv
ed

 P
ow

er

0.02 0.04 0.06 0.08 0.10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

BY corrected

p−value cutoff

ob
se

rv
ed

 P
ow

er

Figure S13 Observed FDR and power for the simulations based on model F . The

x-axis represents the p-value cutoffs used for computing the results. Dashed and full

curves represent, respectively, AIC- and BIC-based methods. Green: parametric CMST.

Red: non-parametric CMST. Blue: joint-parametric CMST. Black: AIC and BIC. The

grey line in the top panels corresponds to the α levels.
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Figure SI.3 Overall R2 statistics distributions for the large scale simulation study.

The left and right panels show the distribution for the cis-traits and trans-traits,

respectively.

24 SI E. Chaibub Neto et al.



Model F

number of co−mapping traits

F
re

qu
en

cy

0 1000 3000 5000

0
50

15
0

25
0

Model G

number of co−mapping traits

F
re

qu
en

cy

0 1000 3000 5000

0
50

15
0

25
0

Figure SI.4 For each model F and G we performed 1,000 separate simulations, and

tested Y1 against all other phenotypes Yk, k = 2, . . . , 5001, that shared the QTL with Y1,

at each simulation. The panels show the distribution of the number of tests, i.e, the

number of trans-traits that co-mapped to Y1, per simulation study. In total, we

performed 1,656,261 tests across the 1,000 simulations with model F , and 1,286,243

tests across the simulations with model G.
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Figure S14 Uncorrected p-value distributions for the BIC-based CMST tests with

data simulated from model F in Figure 5. Results based on 1,656,261 tests. For these

simulations, the M1 call is the correct one, hence the skewed distribution towards small

p-values at the left panels. The skewness towards larger p-values for the M2, M3, and

M4 calls follows from the fact that whenever a p-value for one model is smaller than α,

then the p-values for the other three models are greater than 1− α. Note the larger

frequency of small M1 p-values for the non-parametric CMST test (bottom left panel -

the discrete nature of the histogram is a consequence of the test statistic being discrete

for the non-parametric test).
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Figure S15 Uncorrected p-value distributions for the AIC-based CMST tests with

data simulated from model F in Figure 5. Results based on 1,656,261 tests. For these

simulations, the M1 call is the correct one, hence the skewed distribution towards small

p-values at the left panels. The skewness towards larger p-values for the M2, M3, and

M4 calls follows from the fact that whenever a p-value for one model is smaller than α,

then the p-values for the other three models are greater than 1− α. Note the larger

frequency of small M1 p-values for the non-parametric CMST test (bottom left panel -

the discrete nature of the histogram is a consequence of the test statistic being discrete

for the non-parametric test).
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Figure S16 Uncorrected p-value distributions for the BIC-based CMST tests with

data simulated from model G in Figure 5. Results based on 1,286,243 tests. For these

simulations, the M3 call is the correct one, hence the skewed distribution towards small

p-values at the M3 panels. The skewness towards larger p-values for the M1, M2, and

M4 calls follows from the fact that whenever a p-value for one model is smaller than α,

then the p-values for the other three models are greater than 1− α. Note the larger

frequency of small M3 p-values for the non-parametric CMST test (bottom left panel -

the discrete nature of the histogram is a consequence of the test statistic being discrete

for the non-parametric test).
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Figure S17 Uncorrected p-value distributions for the AIC-based CMST tests with

data simulated from model G in Figure 5. Results based on 1,286,243 tests. For these

simulations, the M3 call is the correct one, hence the skewed distribution towards small

p-values at the M3 panels. The skewness towards larger p-values for the M1, M2, and

M4 calls follows from the fact that whenever a p-value for one model is smaller than α,

then the p-values for the other three models are greater than 1− α. Note the larger

frequency of small M3 p-values for the non-parametric CMST test (bottom left panel -

the discrete nature of the histogram is a consequence of the test statistic being discrete

for the non-parametric test).
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