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ABSTRACT We used simulations to evaluate methods for assessing statistical significance in association studies. When the statistical
model appropriately accounted for relatedness among individuals, unrestricted permutation tests and a few other simulation-based
methods effectively controlled type I error rates; otherwise, only gene dropping controlled type I error but at the expense of statistical
power.

DETERMINING statistical significance thresholds is an
essential part of quantitative trait locus (QTL) mapping.

Computationally efficient methods have been proposed to
obtain significance thresholds via approximating the test
statistic by an Ornstein–Uhlenbeck diffusion process (Lander
and Botstein 1989; Dupuis and Siegmund 1999; Zou et al.
2001) or Davis’ approximation (Davis 1987; Rebaï 1994;
Piepho 2001) or by estimating the effective number of in-
dependent tests (Cheverud 2001; Moskvina and Schmidt
2008). However, these methods may not provide satisfactory
results (Zou et al. 2001; Dudbridge and Gusnanto 2008).
Simulation-based tests are still recommended (Lander and
Schork 1994) and have been used extensively in QTL map-
ping. Permutation tests (Fisher 1935) have been a standard
method with which to estimate significance thresholds in
QTL mapping since they were introduced for this purpose
by Churchill and Doerge (1994). Problems may arise when
complex mapping populations or complicated statistical
analyses are used (Zou et al. 2006; Churchill and Doerge
2008). In these situations, naive application of unrestricted
permutation tests may lead to invalid inference because the
fundamental assumption of exchangeability is violated. This
problem typically occurs in mapping populations where

individuals share varying degrees of genetic relatedness
and has raised questions about whether permutation tests
should be applied in such situations (Abney et al. 2002; Zou
et al. 2005; Peirce et al. 2008; Cheng et al. 2010).

In this study, we performed extensive simulations to
evaluate the permutation test as well as several other
simulation-based methods: parametric bootstrapping (Efron
1979), gene dropping and genome reshuffling for advanced
intercross permutation (GRAIP), for assessing significance us-
ing linear mixed effect models and advanced intercross lines
(AIL) (Darvasi and Soller 1995), where individuals are known
to be genetically unequally related. The primary purpose of
this work was to investigate the performance of these meth-
ods with respect to type I error rates and statistical power in
the context of statistical modeling and to provide useful in-
sight in the choice of methods for estimating significance
thresholds when subjects are genetically unequally related.
In contrast to Valdar et al. (2009), which focused on mod-
eling, our study focuses on methods for determining signi-
ficance thresholds when relatedness is a concern. We report
our main findings while leaving the details in Supporting
Information, File S1, File S2, and File S3.

Simulation Results

We generated an AIL pedigree and sampled 576 individuals
from F26 (Table S1). The phenotype was generated such
that polygenic variation approximately accounted for 56,
46, or 32% of the total phenotypic variation, corresponding
to the standard deviation 0.7, 1, or 1.5 of the residual effect.

Copyright © 2013 by the Genetics Society of America
doi: 10.1534/genetics.112.146332
Manuscript received October 1, 2012; accepted for publication December 6, 2012
Supporting information is available online at http://www.genetics.org/lookup/suppl/
doi:10.1534/genetics.112.146332/-/DC1.
1Corresponding author: Department of Human Genetics, University of Chicago, 920 E.
58th St., CLSC-507D, Chicago, IL 60637. E-mail: aap@uchicago.edu

Genetics, Vol. 193, 1015–1018 March 2013 1015

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.146332/-/DC1/genetics.112.146332-1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.146332/-/DC1/genetics.112.146332-1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.146332/-/DC1/genetics.112.146332-8.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.146332/-/DC1/genetics.112.146332-5.zip
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.146332/-/DC1/genetics.112.146332-4.zip
http://genetics.org/lookup/suppl/doi:10.1534/genetics.112.146332/-/DC1/genetics.112.146332-2.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.146332/-/DC1
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.146332/-/DC1
mailto:aap@uchicago.edu


Type I error

First, we ignored polygenic variation. Only the gene-dropping
method effectively controlled the type I error rates; all other
methods produced inflated type I error rates (Figure 1A). The
larger the polygenic variation was relative to the environmen-
tal variation, the more seriously the type I error rates were
inflated. GRAIP performed much better than either bootstrap
or permutation but was still not able to control false positives
at the expected significance level.

Next we took polygenic variation into account. All themethods
controlled type I error rates at the expected levels (Figure 1B).
Misspecification of the residuals produced somewhat overly con-
servative results, but had little impact overall (Table S2).

Statistical power

One QTL was generated with a heritability of �2.8, 2.3, or
1.6%, corresponding to the standard deviation 0.7, 1, or 1.5

of the residual effect. Figure 1C reports power even when
type I error is not controlled (e.g., permutation, bootstrapping).
This reflects a combination of both true and false positives. The
power was comparable for all of the four methods when poly-
genic variation was accounted for in the model (Figure 1D).
Notably, gene dropping has a higher statistical power when the
relatedness was accounted for (Figure 1, C and D).

Simulations with different family sizes
and subpopulation structure

We performed additional simulations by randomly choosing
288 individuals from the F26 sample and 288 individuals
from a real data set (see below). The results were similar
(data not shown), suggesting that variable family size did
not negatively affect the procedures. We then considered
different allele (A/a) frequencies at the founder generation:
3/1 for F26 vs. 1/3 for F34. Under these conditions both per-
mutation and bootstrap failed to control type I error when the

Figure 1 Type I error rates and statistical power. Type I error rates (A and B) and statistical power (C and D) estimated at genome-wide significance level
0.05 by each of the following methods: permuting genotypic data (Permut), bootstrapping phenotypic data (Bootstr), gene dropping (GeneDr), and
GRAIP. The distribution of the residual was exponential, normal, or uniform, each with a standard deviation 0.7, 1, or 1.5.

1016 R. Cheng and A. A. Palmer

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.146332/-/DC1/genetics.112.146332-7.pdf


residual was exponentially distributed and permutation also
failed to control type I error when the residual was uni-
formly distributed (Table 1). This is broadly consistent with
our main point, which is that when the model used to ana-
lyze the data are correctly chosen, permutation is an effec-
tive strategy for analyzing the data.

Real data example

We used a data set from a 34th generation of a mouse AIL,
which consisted of body weight measurements and geno-
types for 688 mice at 3105 SNPs (Cheng et al. 2010; Parker
et al. 2011). We did not perform the exact GRAIP procedure;
instead, we shuffled simulated F33 haplotype pairs within
sex and then simulated F34 genotypes. This simplified the
analysis while maintaining the key property of GRAIP, i.e.,
its ability to retain relatedness solely for full sibship. The
estimated thresholds were similar when polygenic variation
was accounted for in the model (Table S3). Both permuta-
tion and bootstrap produced similar thresholds regardless of
whether polygenic variation was ignored or accounted for in
the model. In contrast, both gene dropping and GRAIP
yielded significantly larger thresholds when polygenic vari-
ation was ignored.

Discussion

There has been widespread concern about the use of permu-
tation tests in complex mapping designs (Abney et al. 2002;
Zou et al. 2005; Churchill and Doerge 2008; Peirce et al.
2008). In a previous publication we observed that permuta-
tion and gene dropping produced similar thresholds in the
analysis of an AIL when polygenic variation was incorpo-
rated in the model (Cheng et al. 2010); however, that article
did not explore the finding, consider alternative methods, or
explore statistical power. Here we studied four simulation-
based methods for obtaining empirical significance thresh-
olds: permuting genotypes, bootstrapping phenotypes, gene

dropping, and GRAIP. The permutation test has been a stan-
dard simulation-based method in QTL mapping, the boot-
strap test is among the most useful empirical methods in
statistics and has been recommended in mixed effect models
(Pinheiro and Bates 2000; Valdar et al. 2009), and gene
dropping is appropriate when pedigree information is avail-
able. We found that all these methods worked well when
polygenic variation was appropriately taken into account in
the model; however, when polygenic variation was ignored,
only gene dropping was able to control type I error rates and
this came at the expense of statistical power (Figure 1, C and
D). Thus, it is important to specify an appropriate statistical
model in QTL mapping, especially in complex populations
such as AIL; an inappropriate model can invalidate statistical
inference. These principles should extend to general cases
where unequal relatedness or a population structure exists.

We found that the estimated distribution of the test
statistic under the null hypothesis (no real QTL) was similar
whether or not polygenic variation was accounted for in the
model for some of the methods we examined but not for
others (Table S4). In particular, the estimated distribution
was significantly different when using gene dropping and
GRAIP but not when using bootstrap or permutation. The
take-home message is that if the model is appropriate for
a genome-wide scan, we may ignore the random polygenic
effect to reduce computation when performing permutation
tests to estimate the significance threshold. We also found
that when the polygenic variation was accounted for in the
model, the estimated distributions of the test statistic for all
the four methods were not significantly different from one
another. One possible explanation for this is that the trait
values of genetically related individuals tend to be similar
and thus the test statistic is inflated because of the con-
founding effect between the genotype and the phenotype
adjusted for other effects in the model when the polygenic
variation is ignored. Gene dropping (or to a lesser extent
GRAIP) retains the relationship and is therefore capable of

Table 1 Estimated Type I Error Rate and Statistical Power

Type I error rate Statistical power

Distra Methodb a = 0.10 a = 0.05 a = 0.01 a = 0.10 a = 0.05 a = 0.01

Exp Permut 0.191*** 0.113*** 0.028*** 0.493 0.387 0.235
Bootstr 0.145*** 0.078*** 0.022*** 0.451 0.360 0.235
GeneDr 0.108 0.045 0.009 0.402 0.312 0.164
GRAIP 0.116* 0.052 0.012 0.416 0.315 0.164

Norm Permut 0.129*** 0.059 0.012 0.478 0.379 0.241
Bootstr 0.090 0.048 0.007 0.409 0.343 0.223
GeneDr 0.090 0.051 0.010 0.416 0.355 0.239
GRAIP 0.086* 0.044 0.010 0.418 0.342 0.217

Unif Permut 0.136*** 0.079*** 0.014 0.488 0.397 0.241
Bootstr 0.104 0.057 0.011 0.435 0.352 0.219
GeneDr 0.104 0.062* 0.011 0.429 0.351 0.220
GRAIP 0.105 0.060 0.011 0.430 0.352 0.246

Allele (A/a) frequencies at the founder generation: 3/1 for F26 vs. 1/3 for F34. Estimated from 1200 simulations at genome-wide significance level a =
0.10, 0.05 or 0.01. *, **, and *** indicate that the estimated type I error rate is significantly different from the expected significance levels 0.10, 0.05,
and 0.01, respectively.
a Residual distribution: exponential (Exp), normal (Norm), or uniform (Unif).
b Permuting marker data (Permut), bootstrapping phenotypic data (Bootstr), or gene dropping (GeneDr).
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controlling the false-positive rate regardless of the inclusion
of polygenic variation. The permutation (or bootstrap) test
largely dissolves the confounding and therefore provides
similar thresholds regardless of whether or not the poly-
genic variation is accounted for in the model, and it cannot
control the false-positive rate if the polygenic variation is
ignored.

Our observations were mainly based on AIL data. It is
worth pointing out that the permutation test, as well as the
bootstrap test, should be used with caution. Model appro-
priateness such as independency, normality, and constancy
of residuals is a general concern in statistical modeling. We
showed that the permutation test was not robust to mis-
specification of the residual distribution when the population
was structured with different allele frequencies (Table 1). In
addition, a major QTL (or a polygene with relatively large
effects) may result in false positives due to uncontrolled
confounding between the QTL (or polygene) and a scanning
locus. In such a case, incorporating major QTL and possibly
a few loci with relatively large effects as covariates in the
model may address this concern (Valdar et al. 2009; Segura
et al. 2012).
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File S1

Supplemental Material: A Simula on Study of Permuta on, Bootstrap and Gene Dropping for Assessing Sta s cal Significance

in the Case of Unequal Relatedness

This supplement contains a number of sec ons that aremeant as referencematerial that extends on the level of detail provided

in themain text. It is not designed to be read from beginning to end and does not conform to a narra ve format in the way a journal

ar cle might.

Sta s cal Model

A typical gene c model for mapping a diploid popula on with alleles A and a at a locus is as follows

yi = xxxi
′βββ + x∗

i a
∗ + z∗i d

∗ + ui + εi, i = 1, 2, · · · , n (1)

where yi is the trait value for the i-th individual,xxxi represents covariates (e.g. sex) andβββ are the corresponding effects, x∗
i is 1, 0 or

−1 if the genotype at the puta ve QTL isAA,Aa or aa and a∗ is the addi ve effect of the puta ve QTL, z∗i is 1 if the genotype at the

puta ve QTL is heterozygous or 0 if the genotype is homozygous and d∗ is the dominance effect, ui represents polygenic varia on,

and εi denotes the residual effect. Assume that εi ∼ N(0, σ2), i = 1, 2, · · · , n are independent, and uuu = (u1, u2, · · · , un)
′ ∼

Nn(000,GGG) withGGG = (gij) and is independent of εεε = (ε1, ε2, · · · , εn)′. It is known (Jackquard, 1974; Abney et al., 2000) that in

general

gij = 2Φijσ
2
a +∆ij,7σ

2
d + (4∆ij,1 +∆ij,3 +∆ij,5)Cov(a, d)

+∆ij,1σ
2
h + (∆ij,1 +∆ij,2 − fifj)µ

2
h

def
= g

(a)
ij σ2

a + g
(d)
ij σ2

d + g
(ad)
ij Cov(a, d)

+g
(h)
ij σ2

h + g
(m)
ij µ2

h (2)

where Φij is the kinship coefficient between the i-th and j-th individuals, fi is the inbreeding coefficient for the i-th individual,

∆ij 's are iden ty coefficients as defined in Lynch andWalsh (1998, pp.133) and can be calculated from the pedigree data, and g(a)ij

denotes 2Φij etc. Abney et al. (2000) suggested that the last three polygenic variance components, σ2
h, Cov(a, d) and µ2

h, in gij

are negligible, andwe ignored these three variance components for ease of computa on. Though it is common to only consider the

addi ve polygenic variance component (e.g. Yu et al., 2006; Kang et al., 2008), we prefer to keep both the addi ve and dominance

polygenic variance components.

R. Cheng and A. A. Palmer 1 SI



Permuta on, Bootstrap, Gene Dropping and Genome Reshuffling for Advanced

Intercross Permuta on

The following four simula on-based methods for es ma ng significance thresholds were used:

Permuta on tests A permuta on test is a randomiza on test. It is a re-sampling procedure. Typically, the data points are

randomly reassigned to subjects and then the permuted data is reanalyzed to obtain the test sta s c. The process is repeated

many mes. The values of the test sta s c obtained from the permuted data are treated as a sample from the distribu on of

the test sta s c of the original data under the null hypothesis, and the threshold at significance level α is then es mated by the

100(1− α)th percen le of this set of values.

A fundamental requirement for valid permuta on is exchangeability, which should be ensured by the design of an experiment

or be assumed under the null hypothesis (Anderson, 2001; Nichols and Holmes, 2001). A permuta on test is exact when permu-

ta on is performed within exchangeable units. Exact permuta on tests do not exist when data points are not exchangeable, for

instance, in a linkage analysis where a con nuous variable is used as a covariate. In this case, one may consider approximate per-

muta on tests. Different strategies have been proposed to perform approximate permuta on tests, including permuta on of the

raw data or residuals under null hypothesis (see e.g. Anderson, 2001), restricted permuta on (Zou et al., 2005), and permuta on

of transformed residuals (Abney et al., 2002). The performance of approximate permuta on tests varies in different experimental

designs (Anderson and Braak, 2003).

Permu ng the phenotypic data and permu ng the genotypic data are two different ways to perform permuta on in QTL map-

ping. We permuted genotypic data, which would retain the rela onship between the trait and other predictors (e.g. sex) and could

result in be er es ma on (O'Gorman, 2005).

Bootstrap tests Bootstrap is another popular re-sampling procedure. Bootstrap has a wide range of sta s cal applica ons

including hypothesis tes ng (e.g. Efron and Tibishirani, 1993). There are two versions of bootstrap: non-parametric bootstrap

and parametric bootstrap. While non-parametric bootstrap draws samples from the original data with replacement, parametric

bootstrap generates data from a fi ed model. We now briefly discuss how to use parametric bootstrap in our situa on. Under the

hypothesis of no QTL, model (1) reduces to yi = xxxi
′βββ+ui+εi, i = 1, 2, · · · , n andyyy = (y1, y2, · · · , yn)′ ∼ Nn(xxxβββ,GGG+IIIσ2)

with xxx = (xxx1,xxx2, · · · ,xxxn)
′ andGGG = (g

(a)
ij σ2

a + g
(d)
ij σ2

d). We can fit the model and obtain parameter es mates β̂ββ, σ̂2
a, σ̂

2
d and σ̂2,

and then generate a sample yyy(b) = (y
(b)
1 , y

(b)
2 , · · · , y(b)

n )′ fromNn(xxxβ̂ββ, ĜGG+ IIIσ̂2) with ĜGG = (g
(a)
ij σ̂2

a + g
(d)
ij σ̂2

d). When polygenic

varia on is ignored, yyy(b) is generated from Nn(xxxβ̂ββ,IIIσ̂
2) instead. We then analyze yyy(b) the same way as we analyze the original

datayyy. The values of the test sta s c calculated from a number (say 1000) of bootstrap samples are pooled to es mate significance

thresholds in the samewaywe described for permuta on tests. Our approach should be similar towhat is described in ``Alterna ve

mapping methods 2'' in Valdar et al. (2009).

Gene dropping testsGene dropping is yet another re-sampling procedure. Instead of re-sampling phenotypes, it uses pedigree

informa on and Mendelian segrega on principles to generate genotypic data. The idea is straigh orward. If we know the haplo-

types in a pair of parents and recombina on rates between loci, we can simulate haplotypes (and thus genotypes) in an offspring

by simula ng meiosis. If we know the haplotypes in the founders, a full pedigree and a gene c map, we can simulate genotypes
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for any individuals in the pedigree (see Cheng et al., 2010, for more details). Gene dropping has been used to assess significance

in a wide range of applica ons such as gene c variability (MacCluer et al., 1986; Pardo et al., 2005; Thomas, 1990), inbreeding and

allele sharing (Suwanlee et al., 2007; Jung et al., 2006), and genome-wide associa on studies (Cheng et al., 2010). A limita on of

gene dropping is the need for a pedigree.

GRAIP Genome reshuffling for advanced intercross permuta on, or GRAIP, was proposed by Peirce et al. (2008) for situa ons

where relatedness is a concern but a complete pedigree is not available. The haplotype pairs in the parents of the last genera on

are permuted across the parents within each sex and then genotypic data for the individuals in the last genera on are generated

from the permuted haplotypes by gene dropping, using the pedigree informa on about nuclear families only. As the haplotypes in

the parents are unknown in prac ce, one needs to derive phase data for the parents. This was not an issue in our studies because

the haplotype (and thus genotype) data were generated using the gene dropping procedure so phase was known.

Simula on Details

Addi onal details of our simula on studies are provided here:

Generate a pedigreeWe used advanced intercross lines (AIL) as our mapping popula on. We created a pedigree of twenty-six

genera ons from two inbred founder strains. In Fn (2 ≤ n < 25), there were 144 breeding pairs and each pair produced one

female and one male progeny. The 144 female progeny randomly paired with the 144 male progeny to breed the next genera on.

Each breeding pair in F25 had four progeny, which created our sample of size 576. This pedigree resulted in varying relatedness

among F26 individuals (supplemental table S1 ).

Simulate genotypic and phenotypic data It was assumed that there were twenty chromosomes and 101 markers were evenly

distributed every 1 cM on each chromosome. One of every fivemarkers on the second ten chromosomes were chosen as polygenic

QTL to generate polygenic varia on. The addi ve and dominance effects of the polygenic QTL were randomly uniformly distributed

in (−0.2, 0.2) and (−0.04, 0.04) respec vely.

Phenotypic data were generated from equa on (1), with an overall mean 0 and polygenic effects as stated above. The related-

ness measurements were calculated from the pedigree as described in Cheng et al. (2010). The standard devia on σ of the residual

εi was 0.7, 1 or 1.5, and the corresponding polygenic effects on average approximately accounted for 56%, 46%, or 32% of the total

varia on in the phenotype. Genotypic data were generated by gene dropping using the pedigree.

To inves gate robustness of a test to misspecifica on of the residual's distribu on, we generated data from exponen al and

uniform distribu ons in addi on to normal distribu ons.

Obtaining significance thresholds We used four methods to test for QTL: permuta on, parametric bootstrap (e.g. Efron and

Tibishirani, 1993), gene dropping and genome reshuffling for advanced intercross permuta on (GRAIP) Peirce et al. (2008). In

the permuta on test, we permuted genotypic data without restric on unless specified otherwise. We were especially interested

to inves gate the performance of the permuta on test in the context of sta s cal modeling. In applica ons, one may choose

restricted permuta on if appropriate.

Type I error The genome scan for QTL under the null hypothesis of no QTL was performed on the first ten chromosomes, where

there were no QTL. For each set of parameter values, 1200 datasets were generated and each dataset was analyzed using the
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likelihood ra o test (LRT). The type I error rate was es mated by the propor on of the 1200 datasets for which one or more of

the scanned markers were iden fied as QTL, meaning that the test sta s c exceeded the genome-wide significance threshold at

a given significance level. We generated 6000 datasets to es mate significance thresholds for each of the four methods and each

set of parameter values.

The datawere analyzedwith polygenic varia on either being ignored or being accounted for. If polygenic varia onwas ignored,

the model to analyze the data was yi = µ+ x∗
i a

∗ + z∗i d
∗ + εi, i = 1, 2, · · · , n; this was model (1) without the random polygenic

effect.

Sta s cal power In new sets of simula ons, a QTL was placed in the middle of the first chromosome. The QTL had an addi ve

effect 0.4 and a dominance effect 0.1. The QTL accounted for approximately 2.8%, 2.3%, or 1.6% of the total variance, correspond-

ing to σ = 0.7, 1 or 1.5. Again, the genome scan for QTL under the null hypothesis of no QTL was performed on the first ten

chromosomes. A QTL was iden fied if the test sta s c at any of the scanning loci exceeded the genome-wide threshold at a given

significance level. For each of the four methods and each set of parameter values, the power was es mated by the propor on of

1200 simula ons where a QTL was iden fied. The threshold was es mated in the same way as for type I error rates.

Pooling Procedure

In prac ce when we have one dataset, we can permute the data N mes to es mate a threshold for the test sta s c. When we

replicate a simula on K mes, the test sta s c in all the replicates follows the same distribu on. Therefore, we only need one

threshold for all the replicates. Suppose we permute the data Ni mes in the i-th replicate simula on and get Si = {xij , j =

1, 2, · · · , Ni}, i = 1, 2, · · · ,K. Then

E{
∑K

i=1

∑Ni
j=1 Ixij>x∑K

i=1 Ni

} =

∑K
i=1 αNi∑K
i=1 Ni

= α

where x is the 100(1 − α)th percen le of Si and Ixij>x = 1 if xij > x or 0 otherwise. This means that we can pool Si (i =

1, 2, · · · ,K) to es mate the threshold for the test sta s c in all the replicate simula ons.

Computa onal Approxima on

In general there is no analy cal solu on to maximum likelihood es mates (MLE) for model (1). Genome scans are extremely

computa onally intensive and some mes imprac cal without computa onal simplifica on. Note that the randomeffectu inmodel

(1) is only used to control background gene c varia on. A reasonable approxima on will be good enough. Assume in equa on

(2) g(a)ij σ2
a + g

(d)
ij σ2

d + g
(ad)
ij Cov(a, d) + g

(h)
ij σ2

h + g
(m)
ij µ2

h = (g
(a)
ij c1 + g

(d)
ij c2 + g

(ad)
ij c3 + g

(h)
ij c4 + g

(m)
ij c5)σ

2. Then the

variance-covariance matrix of yyy isΣΣΣ = (GGG(a)c1 +GGG(d)c2 +GGG(ad)c3 +GGG(h)c4 +GGG(m)c5 + III)σ2 whereGGG(a) = (g
(a)
ij ) etc. If c's

are known, then 1
σ2ΣΣΣ is a known matrix and an analy cal MLE solu on exists. In applica ons, c's are unknown; however, we can

es mate them under the null hypothesis and use the es mates as known values. Approxima ng random effects by their es mates

is a known strategy in mixed-effect model models (Pinheiro and Bates, 2000) and works well in our situa on.
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Computa onal Efficiency

The permuta on test as well as the other three methods is computa onally intensive, which is a trade-off between reliability and

computa on. However, the computa on is s ll manageable with the previous computa onal approxima on even if there are

thousands of markers. In our simula ons, there were 1010 SNP markers and the sample size was 576; one genome scan took only

a few seconds on a conven onal desktop computer. Parallel compu ng can make it realis c to perform permuta on tests even

when there are hundreds of thousands of SNP markers.
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Table S1 Summary of Relatednessa

Min. 1st Qu. Median 3rd Qu. Max.

g
(a)
ij 0.76810 0.77070 0.77180 0.77480 1.42500

g
(d)
ij 0.13590 0.15480 0.15540 0.15590 0.61600

g
(ad)
ij 0.66420 0.66930 0.67160 0.67640 1.69800

g
(h)
ij 0.07814 0.07917 0.07964 0.08059 0.42460

g
(m)
ij 0.00714 0.00816 0.00821 0.00830 0.24430

a Defined in equa on (2) among the simulated F26 individuals. The different levels of relatedness means that the
assump on of exchangeability is incorrect.
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Table S2 Type I Error Ratesa

Distrb Methodc σ = 0.7 σ = 1 σ = 1.5
α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

Exp

Permut 0.0933 0.0375∗∗ 0.0050∗∗ 0.0925 0.0475 0.0075 0.1108 0.0583 0.0133
Bootstr 0.0925 0.0408 0.0050∗∗ 0.0817∗∗ 0.0375∗∗ 0.0075 0.1092 0.0508 0.0117
GeneDr 0.1017 0.0442 0.0050∗∗ 0.0883 0.0475 0.0075 0.1083 0.0558 0.0125
GRAIP 0.0925 0.0442 0.0075 0.0875 0.0425 0.0075 0.1125 0.0583 0.0158∗

Norm

Permut 0.1100 0.0525 0.0108 0.1058 0.0475 0.0100 0.0958 0.0475 0.0083
Bootstr 0.1067 0.0517 0.0108 0.0958 0.0408 0.0100 0.0958 0.0442 0.0058∗

GeneDr 0.1000 0.0525 0.0133 0.0958 0.0417 0.0100 0.0958 0.0467 0.0075
GRAIP 0.0967 0.0525 0.0117 0.0958 0.0450 0.0100 0.1058 0.0450 0.0058

Unif

Permut 0.0908 0.0408 0.0092 0.0942 0.0483 0.0125 0.0917 0.0517 0.0108
Bootstr 0.0892 0.0400∗ 0.0083 0.0950 0.0467 0.0117 0.0992 0.0558 0.0125
GeneDr 0.0908 0.0400∗ 0.0083 0.0925 0.0467 0.0117 0.0883 0.0517 0.0125
GRAIP 0.0908 0.0467 0.0092 0.0950 0.0467 0.0125 0.0958 0.0525 0.0125

a Es mated from 1200 simula ons at genome-wide significance levels α = 0.10, 0.05 and 0.01. Symbol ∗, ∗∗ or ∗∗∗ indicates the
es mated type I error rate is significantly different from the expected level at significance level 0.10, 0.05 or 0.01.
b Permu ng genotypic data (Permut), bootstrapping phenotypic data (Bootstr), gene dropping (GeneDr) or GRAIP.
c The distribu on of the residual was exponen al (Exp), normal (Norm) or uniform (Unif), each with a standard devia on 0.7, 1 or
1.5.
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Table S3 Es mated Genome-wide Thresholds for the Body Weight Data

Relatedness Ignored Relatedness Not Ignored
α level 0.1 0.05 0.01 0.1 0.05 0.01
Permut 19.45 21.09 24.52 18.70 20.23 23.56
Bootstr 19.49 21.01 24.25 19.49 21.00 24.20
GeneDr 65.17 70.46 84.48 19.53 21.08 24.45
GRAIP 57.69 62.20 72.67 19.72 21.26 24.50

Es mated from 5000 simula ons at genome-wide significance levelsα = 0.1, 0.05 and 0.01 by the followingmethods:
permu ng genotypic data (Permut), bootstrapping phenotypic data (Bootstr), gene dropping (GeneDr) and GRAIP,
using the likelihood ra o test (LRT).
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Table S4 P-values by the Kolmogorov-Smirnov Test

Permut Bootstr GeneDr GRAIP
σ = 0.7 0.60200 0.32428 0.00000 0.00000
σ = 1 0.44558 0.44988 0.00000 0.00000
σ = 1.5 0.43282 0.10871 0.00000 0.00000

Based on 6000 simula ons under the null hypothesis that when no QTL effects existed, the distribu on es mated
by a tes ng method when relatedness was ignored was iden cal to the distribu on es mated by the same method
when relatedness was taken into account. Data was generated by each of the tes ng methods: permu ng genotypic
data (Permut), bootstrapping phenotypic data (Bootstr), gene dropping (GeneDr) and GRAIP. The distribu on of the
residual was normal with a standard devia on 0.7, 1 or 1.5.
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