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ABSTRACT Widespread sharing of long, identical-by-descent (IBD) genetic segments is a hallmark of populations that have
experienced recent genetic drift. Detection of these IBD segments has recently become feasible, enabling a wide range of applications
from phasing and imputation to demographic inference. Here, we study the distribution of IBD sharing in the Wright–Fisher model.
Specifically, using coalescent theory, we calculate the variance of the total sharing between random pairs of individuals. We then
investigate the cohort-averaged sharing: the average total sharing between one individual and the rest of the cohort. We find that for
large cohorts, the cohort-averaged sharing is distributed approximately normally. Surprisingly, the variance of this distribution does not
vanish even for large cohorts, implying the existence of “hypersharing” individuals. The presence of such individuals has consequences
for the design of sequencing studies, since, if they are selected for whole-genome sequencing, a larger fraction of the cohort can be
subsequently imputed. We calculate the expected gain in power of imputation by IBD and subsequently in power to detect an
association, when individuals are either randomly selected or specifically chosen to be the hypersharing individuals. Using our frame-
work, we also compute the variance of an estimator of the population size that is based on the mean IBD sharing and the variance in
the sharing between inbred siblings. Finally, we study IBD sharing in an admixture pulse model and show that in the Ashkenazi Jewish
population the admixture fraction is correlated with the cohort-averaged sharing.

IN isolated populations, even purported unrelated individ-
uals often share genetic material that is identical-by-descent

(IBD). Traditionally, the term IBD sharing referred to coan-
cestry at a single site (or autozygosity, in the case of a diploid
individual) and was widely investigated as a measure of the
degree of inbreeding in a population (Hartl and Clark
2006). Recent years have brought dramatic increases in
the quantity and density of available genetic data and, to-
gether with new computational tools, these data have en-
abled the detection of IBD sharing of entire genomic
segments (see, e.g., Purcell et al. 2007; Kong et al. 2008;
Albrechtsen et al. 2009; Gusev et al. 2009; Browning and
Browning 2011; Carr et al. 2011; Brown et al. 2012). The
availability of IBD detection tools that are efficient enough

to detect shared segments in large cohorts has resulted in
numerous applications, from demographic inference (Davison
et al. 2009; Palamara et al. 2012) and characterization
of populations (Gusev et al. 2012a) to selection detection
(Albrechtsen et al. 2010), relatedness detection and pedigree
reconstruction (Huff et al. 2011; Kirkpatrick et al. 2011;
Stevens et al. 2011; Henn et al. 2012), prioritization of
individuals for sequencing (Gusev et al. 2012b), inference
of HLA type (Setty et al. 2011), detection of haplotypes as-
sociated with a disease or a trait (Akula et al. 2011; Gusev
et al. 2011; Browning and Thompson 2012), imputation
(Uricchio et al. 2012), and phasing (Palin et al. 2011).

Recently, some of us used coalescent theory to calculate
several theoretical quantities of IBD sharing under a number
of demographic histories. Then, shared segments were
detected in real populations, and their demographic histo-
ries were inferred (Palamara et al. 2012). Here, we expand
upon Palamara et al. (2012) to investigate additional
aspects of the stochastic variation in IBD sharing. Specifi-
cally, we provide a precise calculation for the variance of
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the total sharing in the Wright–Fisher model, either between
a random pair of individuals or between one individual and
all others in the cohort.

Understanding the variation in IBD sharing is an impor-
tant theoretical characterization of the Wright–Fisher
model, and additionally, it has several practical applications.
For example, it can be used to calculate the variance of an
estimator of the population size that is based on the sharing
between random pairs. In a different domain, the variance
in IBD sharing is needed to accurately assess strategies for
sequencing study design, specifically, in prioritization of indi-
viduals to be sequenced. This is because imputation strategies
use IBD sharing between sequenced individuals and geno-
typed, not-sequenced individuals to increase the number of
effective sequences analyzed in the association study (Palin
et al. 2011; Gusev et al. 2012b; Uricchio et al. 2012).

In the remainder of this article, we first review the
derivation of the mean fraction of the genome shared
between two individuals (Palamara et al. 2012). We then
calculate the variance of this quantity, using coalescent the-
ory with recombination. We provide a number of approxi-
mations, one of which results in a surprisingly simple
expression, which is then generalized to a variable popula-
tion size and to the sharing of segments in a length range.
We also numerically investigate the pairwise sharing distri-
bution and provide an approximate fit. We then turn to the
average total sharing between each individual and the entire
cohort. We show that this quantity, which we term the co-
hort-averaged sharing, is approximately normally distrib-
uted, but is much wider than naively expected, implying
the existence of hypersharing individuals. We consider sev-
eral applications: the number of individuals needed to be
sequenced to achieve a certain imputation power and the
implications to disease mapping, inference of the population
size based on the total sharing, and the variance of the
sharing between siblings. We finally calculate the mean
and the variance of the sharing in an admixture pulse model
and show numerically that admixture results in a broader
than expected cohort-averaged sharing. Therefore, large
variance of the cohort-averaged sharing can indicate admix-
ture. In the Ashkenazi Jewish population, we show that the
cohort-averaged sharing is strongly anticorrelated with the
fraction of European ancestry.

Materials and Methods

Coalescent simulations

To simulate IBD sharing in the Wright–Fisher model, we used
the Genome haploid coalescent simulator (Liang et al. 2007).
Recombination in Genome is discretized to short blocks and
mutations (which we ignore in this study) are placed on the
simulated branches. In all simulations, we generated one
chromosome with recombination rate of 1028 per generation
per base pair and block lengths of 104 bp (corresponding to
resolution of 0.01 cM in the lengths of the shared segments).

IBD sharing in simulations

We used an add-on to Genome that returns, for each pair
of chromosomes, the locations of all shared segments
(Palamara et al. 2012). In that add-on, a segment is shared
as long as the two chromosomes share the same ancestor,
even if there was a recombination event within the segment.
We calculated, for each pair, the total length of shared
segments longer than m and divided by the chromosome
size. For Figures 2–6, we simulated Npop $ 100 populations
and n = 100 haploid sequences in each population and
calculated all properties of the total sharing among all
Npopð n2 Þ available pairs. For the cohort-averaged sharing,
we averaged, for each of the n chromosomes, their sharing
to each of the other n 2 1 chromosomes in the cohort and
then used the Npopn calculated values to obtain the vari-
ance and the distribution. Details on the simulation of an
admixture pulse can be found in Supporting Information,
File S1, section S4.

The Ashkenazi Jewish cohort

The cohort we analyzed was previously described in Guha
et al. (2012) and Palamara et al. (2012). Briefly, DNA sam-
ples from � 2600 Ashkenazi Jews (AJ) were genotyped on
the Illumina-1M SNP array. Genotypes (autosomal only)
were subjected to quality control, including removal of close
relatives, and phasing [Beagle (Browning and Browning
2009)], leaving finally �741,000 SNPs for downstream
analysis. IBD sharing was calculated using Germline (Gusev
et al. 2009) with the following parameters: bits, 25;
err_hom, 0; err_het, 2; min_m, 1; h_extend, 1. The results
presented in IBD sharing after an admixture pulse section
remained qualitatively the same even when we used a longer
length cutoff of m = 5 cM.

Admixture analysis

For the admixture analysis, we merged the HapMap3 CEU
population (Utah residents with ancestry from Northern
and Western Europe; International HapMap Consortium
2007; release 2) with the AJ data, removed all SNPs with
potential strand inconsistency, and pruned SNPs that were
in linkage disequilibrium (Purcell et al. 2007). We then ran
Admixture (Alexander et al. 2009) with default parameters
and K = 2. Admixture consistently classified all individuals
according to their population (CEU/AJ). Genome-wide,
the AJ ancestry fraction was �85%, compared to �3%
for the CEU population. Principal components analysis
[SmartPCA (Patterson et al. 2006)] gave qualitatively
similar results.

Simulations of AJ demography

Demographic reconstruction of the AJ population was
performed in Palamara et al. (2012), using chromosome 1
of 500 randomly selected individuals and using a novel IBD-
based method described therein. Simulations presented here
were performed using the final set of inferred demographic
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parameters: ancestral (diploid) population effective size of
�2300 individuals, expansion starting 200 generations ago
reaching �45,000 individuals 33 generations ago, a severe
bottleneck of �270 individuals, and an expansion to the cur-
rent size of �4.3 million individuals. Simulation of 100 pop-
ulations was carried out using Genome (Liang et al. 2007).

Results

Variation in IBD sharing in the Wright–Fisher model

Definitions: The Wright–Fisher model: We consider the
standard Wright–Fisher model for a finite, isolated popula-
tion, described by 2N haploid chromosomes, where each
pair of chromosomes corresponds to one diploid individual.
Each chromosome in the current generation descends, with
equal probability, from one of the chromosomes in the pre-
vious generation, and recombination occurs at rate 0.01/cM
per generation. The Wright–Fisher model has been widely
investigated both in forward dynamics and under the coa-
lescent (Wakeley 2009). For simplicity of notation, we de-
note the number of individuals, or the population size, as N,
even though we really refer to the number of haploids and
not the number of individuals. Throughout most of the anal-
ysis, we assume that each individual carries a single chro-
mosome of length L cM.

IBD sharing: We say that a genomic segment is shared, or
is IBD, between two individuals if it is longer than m(cM)
and it has been inherited without recombination from a sin-
gle common ancestor. We do not require the shared seg-
ments to be completely identical. That is, if any mutation
has occurred since the time of the most recent common
ancestor (MRCA), that would not disqualify the segments
from being shared IBD according to our definition. The rea-
son is that even in the presence of mutations, an order of
magnitude calculation shows that regardless of the segment
length, two individuals sharing a segment are expected to
differ in just �1 site along the segment (see File S1, section
S1.1). Therefore, in a long IBD segment, the number of
differences should be very small compared to the number
of matches. In practice, there are also other sources of error
in IBD detection, most notably phase switch errors. We as-
sume, however, that there always exists a large enough
length threshold above which segments are detectable with-
out errors (Browning and Browning 2011; Brown et al.
2012), which corresponds to the parameter m introduced
above; the precise value of the threshold will depend on
the genotyping/sequencing technology. We assume that in-
formation is available for M markers, uniformly distributed
(in genetic distance) along the chromosome and densely
enough that any effect caused by the discreteness of the
markers is negligible (say, if m � (M/L) � 1). We define the
total sharing between two individuals as the fraction of their
markers that are found in shared segments.

Mean total sharing: In this subsection, we review the
derivation of the mean fraction of the genome found in

segments shared between two individuals (Palamara et al.
2012). We assume that the coalescent process along the chro-
mosome can be approximated by the sequentially Markov
coalescent (McVean and Cardin 2005) and ignore the different
behavior of sites at the ends of the chromosome. Consider first
a single site s and assume that its MRCA dates g generations
ago. The total length ℓ of the segment in which the site is found
is the sum of ℓR and ℓL, where ℓR and ℓL are the segment lengths
to the right and left of s, respectively (all lengths are in centi-
morgans). The distributions of ℓR and ℓL are exponential with
rate g/50, since the two individuals were separated by 2g
meioses, each of which introduces a recombination event with
rate 0.01/cM, and the nearest recombination would terminate
the shared segment. The probability p of the total segment
length, ℓ, to exceed m is, given g,

pjg ¼
Z N

m
ℓ
� g
50

�2
e2ðg=50Þℓdℓ ¼

�
1þmg

50

�
e2ðmg=50Þ: (1)

According to coalescent theory in the Wright–Fisher model,
under the continuous-time scaling g / Nt the times to the
MRCA are exponentially distributed with rate 1: F(t) = e2t.
Therefore,

p ¼
Z N

0
e2t
�
1þmNt

50

�
e2ðmNt=50Þdt

¼ 100ð25þmNÞ
ð50þmNÞ2 :

(2)

The total fraction of the genome found in shared segments is

fT ¼ 1
M

XM
s¼1

IðsÞ; (3)

where I(s) is the indicator that site s is in a shared segment,
and the sum is over all sites. The mean fraction of the ge-
nome shared is

h fTi ¼ 1
M

XM
s¼1

hIðsÞi ¼ p ¼ 100ð25þmNÞ
ð50þmNÞ2 ; (4)

where h�i denotes the average over all ancestral processes.
As expected, for mN / N, hfTi / 0 and for mN / 0, hfTi
/ 1. For large N, we have hfTi � 100/(mN).

The variance of the total sharing: We now turn to cal-
culating the variance of the total sharing. Using Equation 3,

Var½ fT� ¼ Var

"
1
M

XM
s¼1

IðsÞ
#

¼ pð12pÞ
M

þ 1
M2

X
s1

X
s2 6¼s1

Cov½Iðs1Þ; Iðs2Þ�

¼ pð12pÞ
M

þ 1
M2

X
s1

X
s2 6¼s1

�
p2ðs1; s2Þ2p2�;
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where p2(s1, s2) is the probability that both markers s1 and
s2 are on shared segments and p is given by Equation 2. In
the rest of the section, we assume that each individual car-
ries one chromosome only, for if we have c chromosomes,
each of length Li, then (if the two individuals are not close
relatives)

fT ¼
Pc

i¼1Li fT;ðiÞPc
i¼1Li

;

and the variance is

Var½ fT� ¼
Pc

i¼1L
2
i Var

h
fT;ðiÞ

i
�Pc

i¼1Li
	2 ; (5)

where fT,(i) is the total sharing in chromosome i, assumed
independent of the other chromosomes. Rewriting p2(s1, s2)
as p2(k), where k is the number of markers separating s1
and s2, we have

Var½ fT� ¼ pð12pÞ
M

þ 2
M2

XM
k¼1

ðM2 kÞ�p2ðkÞ2p2�: (6)

All that is left is to evaluate p2(k), for which we provide
three approximations. The first is presented below and the
second (which is a variation of the first) is presented in File
S1, section S1.3. The third approximation, which is the
most crude but yields an explicit dependence on the
population parameters, is presented in An approximate
explicit expression.

In the first approach, we assume that once the times t1, t2
to the MRCA at the two sites are known, the sites are (or are
not) in shared segments independently of each other and
with probabilities given by Equation 1. Clearly, this assump-
tion is violated when both sites belong to the same shared
segment, and in File S1, section S1.3, we show how this
assumption can be avoided (but at the cost of significantly
complicating the analysis). Nevertheless, it gives a good ap-
proximation, as we later see (Figure 2). We can therefore
use Equation 1 to write

p2ðkÞ �
Z N

0

Z N

0
dt1dt2Fðt1; t2Þ

·
�
1þmNt1

50

�
e2ðmNt1=50Þ

�
1þmNt2

50

�
e2ðmNt2=50Þ

¼ F̂

�
mN
50

;
mN
50

�
2m

@

@m
F̂

�
mN
50

;
mN
50

�

þm2



@

@m1

@

@m2
F̂

�
m1N
50

;
m2N
50

��
m1 ¼ m
m2 ¼ m

;

ð7Þ

where F(t1, t2) is the joint probability density function (PDF)
of t1 and t2 and

F̂ðq1; q2Þ ¼
Z N

0

Z N

0
e2q1t12q2t2Fðt1; t2Þdt1dt2

is the Laplace transform of F(t1, t2). We therefore reduced
the problem of finding p2(k) into that of finding F̂ðq1; q2Þ.

To find F(t1, t2) (or rather, its Laplace transform), we use
the continuous-time Markov chain representation of the co-
alescent with recombination (Hudson 1983; Simonsen and
Churchill 1997; Wakeley 2009). The chain is illustrated in
Figure 1. Initially (present time), the chain is in state 1,
corresponding to two chromosomes carrying two sites each.
The chain terminates at state 8, when both sites have
reached their MRCA. To construct the chain, coalescence
events were assumed to occur at rate 1 and recombination
events at rate r/2, where r ¼ 2Nðk  =  MÞL=100 is the scaled
recombination rate (Wakeley 2009).

Denote by Pi(t) the probability that the chain is at state i
at time t, given that it started at state 1. The probability that
the two sites have reached their MRCA simultaneously in
the time range [t, t + dt] is P1(t)dt, since this is the product
of the probability that the chain is at state 1 at time t (P1(t))
and the probability of the transition 1 / 8 in the given time
interval (dt). The probability that only the left site has
reached its MRCA (and the right site has not) in [t, t +
dt] is P2(t)dt + P3(t)dt: this corresponds to the transitions
2 / 5 and 3 / 7. This is also the probability that only the
right site has reached its MRCA in [t, t + dt] (transitions
2 / 4, 3 / 6). Finally, the probability that the left site has

Figure 1 An illustration of the continuous-time Markov chain represen-
tation of the coalescent with recombination (Simonsen and Churchill
1997; Wakeley 2009). Large circles correspond to states, with the state
number in a box on top of each circle. Arrows connecting circles repre-
sent transitions (solid lines, coalescence events; dashed lines, recombi-
nation events), with their rates indicated. The lines inside each circle
represent chromosomes with two sites each. Ancestral sites are indicated
as either small circles (as long as there are still two lineages carrying the
ancestral material) or crosses (whenever the two lineages coalesced and
the site has reached its MRCA). Transitions leading to the MRCA in one or
two sites are colored brown. Transitions between states 4 and 6 and
between 5 and 7 are not indicated, as they do not affect the final co-
alescence times. The schematic was adapted from Wakeley (2009).
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reached its MRCA in [t1, t1, + dt1] and that the right site
has reached its MRCA in [t2, t2 + dt2] (t2 . t1) is
½P2ðt1Þ þ P3ðt1Þ�dt1e2ðt22t1Þdt2. This is true, because the exit
rate from states 5 and 7 is 1; therefore, the probability that
the chain will wait at one of those states for time (t2 2 t1)
and then leave to the terminal state is e2ðt22t1Þdt2. Similar
considerations apply for the case t1 . t2 (with the transitions
2 / 4 and 3 / 6). In sum, for t1, t2 . 0,

Fðt1; t2Þ ¼ P1ðt1Þdðt2 2 t1Þ
þ  ½P2ðt1Þ þ P3ðt1Þ�e2ðt22t1ÞQðt2 2 t1Þ
þ  ½P2ðt2Þ þ P3ðt2Þ�e2ðt12t2ÞQðt1 2 t2Þ;

where d(t) is the Dirac delta function and Q(t) = 1 for t .
0 and is otherwise zero. Laplace transforming the last
equation,

F̂ðq1; q2Þ ¼
Z N

0

Z N

0
e2q1t12q2t2P1ðt1Þdðt2 2 t1Þdt1dt2

þ
Z N

0

Z N

t1
e2q1t12q2t2 ½P2ðt1Þ þ P3ðt1Þ�e2ðt22t1Þdt2dt1

þ
Z N

0

Z N

t2
e2q1t12q2t2 ½P2ðt2Þ þ P3ðt2Þ�e2ðt12t2Þdt1dt2

¼ P̂1ðq1 þ q2Þ

þ 
1

q2 þ 1

Z N

0
e2ðq1þq2Þt1 ½P2ðt1Þ þ P3ðt1Þ�dt1

þ 1
q1 þ 1

Z N

0
e2ðq1þq2Þt2 ½P2ðt2Þ þ P3ðt2Þ�dt2

¼ P̂1ðq1 þ q2Þ

þ ½P̂2ðq1 þ q2Þ þ P̂3ðq1 þ q2Þ�



1
q1 þ 1

þ 1
q2 þ 1

�
:

ð8Þ

In the last equation, P̂iðqÞ ¼
RN
0 e2qtPiðtÞdt (i = 1, 2, 3) are

the Laplace transforms of Pi(t). The Laplace transforms can
be calculated using the general relation

P̂iðqÞ ¼ ðqI2QÞ21
1i ; (9)

where Q is the transition rate matrix: Qij is the transition
rate from i to j 6¼ i and Qii ¼ 2

P
j 6¼iQij,

Q ¼

0
BBBBBBBBBB@

2 12 r r 0 0 0 0 0 1
1 232 r=2 r=2 1 1 0 0 0
0 4 26 0 0 1 1 0
0 0 0 2 1 0 0 0 1
0 0 0 0 21 0 0 1
0 0 0 0 0 2 1 0 1
0 0 0 0 0 0 21 1
0 0 0 0 0 0 0 0

1
CCCCCCCCCCA
: (10)

Using Equations 8–10 and Mathematica,

F̂ðq1; q2Þ ¼ 2ABþ CðDþ q1q2Þ þ E
A½2ðA2 q1q2ÞBþ CDþ E�; (11)

where A = (1 + q1)(1 + q2), B = (3 + q1 + q2)(6 + q1 +
q2), C = r(2 + q1 + q2), D = 13 + 3(q1 + q2), and E =

r2(2 + q1 + q2). Equation 11 was also derived in Griffiths
(1991), using the birth-and-death process equivalent of
the coalescent with recombination, and can also be de-
rived using the Feynman–Kac formula (see File S1, section
S1.4). Substituting, using Mathematica, Equation 11 in
Equation 7, and then using Equation 6 gives an expression
for the variance,

Var½ fT� ¼ FðN;m; L;MÞ: (12)

The function F is too long to reproduce here, but can be
found in the Matlab code (File S2). For further discussion on
the approximations made, see File S1, section S1.2. The
standard deviation (SD) of the total sharing is defined as
usual as sfT [

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½ fT�

p
.

To evaluate the accuracy of our expressions for the mean
and SD of the total sharing, we used the Genome coalescent
simulator (Liang et al. 2007), along with an add-on that
returns, for each generated genealogy, the locations of the
segments that are IBD between each pair of individuals (Pal-
amara et al. 2012). The simulation results (see also Meth-
ods) are presented and compared to the theory in Figure 2.
In each panel, we varied one of N, m, and L, keeping the two
others fixed (as long as the marker density is large enough,
the number of markers M has no effect on the variance).
Across most of the parameter space, our expressions agree
well with simulations. Notable deviations, however, arise for
the SD in particularly short or long chromosomes. For these
cases, the second, more complicated approximation, which
we mentioned above and appears in File S1, section S1.3, is
more accurate (Figure 2).

An approximate explicit expression: In this subsection, we
derive another, simpler approximation of the variance, one
that is less accurate but that has an explicit dependence on
the population and genetic parameters. The gist of this
approximation is that the main contribution to the variance
comes from the long-distance probability of pairs of sites to
reside on the same segment. Denote the distance between
two given sites by d, and assume that d.m. For a given pair
of individuals, if there was no recombination event between
the two sites in the history of the two lineages, then both
sites lie on a shared segment of length $d . m. Of course,
even if there was a recombination event, the two sites could
still be each on a different shared segment. However, this
occurs with probability very close to p2, the probability that
the two sites are on shared segments given that they are
independent.

In terms of Equation 6, the above approximation trans-
lates to, for d . m,

p2ðkÞ2p2 � pnr; (13)

where pnr is the probability of no recombination,

pnr ¼ 1
1þ r

¼ 1
1þ Nd=50

� 50
Nd

(14)
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for distant sites where Nd � 50. This is true because in the
ancestral process (Figure 1), no recombination corresponds
to a coalescence event taking place before any recombina-
tion event. Since the coalescence rate is 1 and the recombi-
nation rate is r, Equation 14 follows. We can then further
simplify and neglect the contribution to the variance from
sites separated by short distance d , m. Finally, we can also
neglect the single-site term of the variance, since it scales as
1/M and therefore vanishes when the markers are dense.
Overall, the simplified Equation 6 gives

Var½ fT� � 2
M2

XM
k¼mðM=LÞ

ðM2 kÞ 50
NkðL=MÞ

� 100
MNL

Z M

mðM=LÞ
M2 k

k
dk ¼ 100

NL

Z 1

m=L

12 x
x

dx

¼ 100
NL



ln
�
L
m

�
2 1þm

L

�
� 100

NL
ln
�
L
m

�
(15)

for L � m. Nicely, Equation 15 provides an explicit (and
rather simple) dependence on N, L, and m, and as expected,
the expression does not depend on the marker density. Equa-
tion 15 is also plotted in Figure 2, showing that it fits quite
well to the simulation results, although it is usually less
accurate than Equation 12.

For the entire (autosomal) human genome, we use
Equation 5,

Var½ fT� ¼ 100
N

P22
i¼1   Li   lnðLi=mÞ�P22

i¼1   Li
�2 :

For m � 1(cM), the last equation gives

sfT �
0:382ffiffiffiffi

N
p : (16)

A variable population size: The framework presented
above can be extended to calculate the variance for
a generalization of the Wright–Fisher model in which the
population size is allowed to change in time. Denote the
population size as N(t) = N0l(t), where t is the time
(scaled by N0) before present. The PDF of the (scaled) co-
alescence time for two lineages is (see, e.g., Li and Durbin
2011)

FðtÞ ¼ e2
R t

0
dt9=lðt9Þ
lðtÞ :

As shown in Palamara et al. (2012), the mean of the total
sharing is obtained by substituting the above F(t) in Equa-
tion 2, giving

Figure 2 The mean and standard deviation of the total sharing. For each
parameter set, we used the Genome coalescent simulator to generate
a number of genealogies (from a population of size N and for one chro-
mosome of size L) and then calculated the lengths of IBD shared seg-
ments between random individuals. Each panel presents the results for
the mean and standard deviation (SD) of the total sharing, that is, for
each pair, the total fraction (in percentages) of the genome that is found
in shared segments of length $m. Simulation results are represented by
symbols and theoretical results by lines (Equation 4 for the mean and
Equation 12 for the SD are plotted in solid lines; the approximate form
for the SD, Equation 15, is shown in dashed lines). (A) We fixed m = 1 cM
and L = 278 cM [the size of the human chromosome 1 (International HapMap
Consortium 2007)] and varied N. (B) Same as A, but with fixed N = 10,000
and varyingm. (C) Fixed N andm and varying chromosome length L. In C, we

also plotted the result of an alternative, more elaborate calculation of the
variance (dotted line; see File S1, section S1.3).
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hfTi ¼
Z N

0
FðtÞ

�
1þmN0t

50

�
e2ðmN0t=50Þdt: (17)

For the variance, following Equation 13, we need to
calculate the probability of no recombination, pnr. For sites
distance d apart,

pnr ¼
Z N

0
FðtÞe2ðtN0d=50Þdt; (18)

since for coalescence time t the sites are separated by 2N0t
meioses, in each of which the probability of no recombi-
nation is e2d/100. Equation 18 reduces to Equation 14 for
l(t) = 1 [where F(t) = e2t]. Equation 18 can then be
substituted into Equation 15, giving

Var½fT� � 2
M2

XM
k¼mðM=LÞ

ðM2 kÞ
Z N

0
FðtÞe2tN0kðL=MÞ=50dt

� 2
Z 1

m=L
ð12 xÞ


 Z N

0
FðtÞe2txN0L=50dt

�
dx: (19)

In File S1, section S1.5 (Figure S1), we work out an example
of a linearly expanding population, where Equation 18 was
solvable and the integral of Equation 19 was evaluated
numerically.

The total sharing in a length range: Consider the quantity
fT;ℓ1;ℓ2 , defined as the total fraction of the genome found in
shared segments of length in the range [ℓ1, ℓ2]. Clearly,
fT;ℓ1;ℓ2 ¼ fT;m¼ℓ1 2 fT;m¼ℓ2 , that is, the difference between
the usual total sharing when m = ℓ1 and when m = ℓ2.
The average is simply



fT;ℓ1 ;ℓ2

� ¼ hfT;m¼ℓ1i2 hfT;m¼ℓ2i
¼ 100N2ðℓ2 2 ℓ1Þ½25ðℓ1 þ ℓ2Þ þ ℓ1ℓ2N�=ð50þ ℓ1NÞ2ð50þ ℓ2NÞ2;

an equation that was derived in Palamara et al. (2012) and
then used for demographic inference. Here, we calculate the
variance, Var½fT;ℓ1;ℓ2 �, as follows:

Var
h
fT;ℓ1;ℓ2

i
¼ Var

h
fT;m¼ℓ1 2 fT;m¼ℓ2

i
¼ Var

h
fT;m¼ℓ1

i
þ Var

h
fT;m¼ℓ2

i
2 2  Cov

h
fT;m¼ℓ1 ; fT;m¼ℓ2

i
:

(20)

The covariance term can be expanded as

Cov

"
1
M

XM
s1¼1

Iðs1;m ¼ ℓ1Þ; 1M
XM
s2¼1

Iðs2;m ¼ ℓ2Þ
#

¼ 1
M2

X
s1

X
s2

Cov½Iðs1;m ¼ ℓ1Þ; Iðs2;m ¼ ℓ2Þ�

¼ 1
M2

X
s1

X
s2

½p2ðs1; ℓ1; s2; ℓ2Þ2pm¼ℓ1pm¼ℓ2 � ;

where I(s; m = ℓ) is the indicator that site s is in a shared
segment of length at least ℓ, pm=ℓ is the probability asso-
ciated with the indicator, and p2(s1, ℓ1; s2, ℓ2) is the probability

that site s1 is in a shared segment of length at least ℓ1 and site
s2 is in a shared segment of length at least ℓ2. The key approx-
imation, similar to the one made in An approximate explicit
expression section (Equation 15), is that p2ðs1; ℓ1; s2; ℓ2Þ2
pm¼ℓ1pm¼ℓ2 is nonzero only when the two sites lie on the same
segment and the segment is longer than ℓ2. Defining pnr, as
before, as the probability of no recombination between s1
and s2 in the history of the two individuals, we have

Cov
h
fT;m¼ℓ1 ; fT;m¼ℓ2

i
� 2

M2

XM
k¼ℓ2ðM=LÞ

ðM2 kÞpnrðkÞ

� Var
h
fT;m¼ℓ2

i
;

(21)

where the last step follows from Equation 15. Substituting
Equation 21 into Equation 20, we obtain

Var
h
fT;ℓ1;ℓ2

i
� Var

h
fT;m¼ℓ1

i
2Var

h
fT;m¼ℓ2

i
:

For a constant population size, using Equation 15 (taking all
terms in that equation) gives

Var
h
fT;ℓ1;ℓ2

i
� 100

NL



ln
�
ℓ2
ℓ1

�
2
ℓ2 2 ℓ1

L

�
: (22)

Equation 22 is compared to simulations in Figure 3, showing
good agreement. Note that as long as ℓ1, ℓ2 � L, the variance
depends only on the ratio ℓ2/ℓ1.

The total sharing distribution and an error model: Having
the first two moments of the total sharing, we sought to find
its distribution, P(fT). While we could not find an exact
expression, we could find, inspired by the numerical results
of Huff et al. (2011), a reasonable fit. Huff et al. (2011)
showed empirically that for HapMap’s Europeans (Interna-
tional HapMap Consortium 2007), the number of segments
shared between random individuals was distributed as
a Poisson and that the length of each segment was distrib-
uted exponentially with a lower cutoff at m, independently
of the number of segments. If this is true also for the Wright–
Fisher model, then the total length of the shared segments,
defined as LT = LfT, is distributed as a sum of a Poisson-
distributed number of these exponentials. In equations,

PðLTÞ ¼
XN
n¼0

e2n0
nn0
n!

� Probfℓ1 þ ℓ2 þ . . .þ ℓn ¼ LTg; (23)

where n0 is the mean number of segments, the density of
the ℓi’s is exp[2(ℓi 2 m)/ℓ0]/ℓ0 (ℓ0 + m is the mean segment
length), and ℓi $ m. Such an expression is easier to handle in
Laplace space, where the Laplace transform of P(LT), ~PðsÞ, is

~PðsÞ ¼
XN
n¼0

e2n0
nn0
n!

e2mns

½sℓ0 þ 1�n ¼ exp


2n0

�
12

e2ms

sℓ0 þ 1

��
;

(24)
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and we used the convolution theorem. For given n0 and ℓ0,
P(LT) [and then P(fT)] was uniquely determined from ~PðsÞ
by numerical inversion (de Hoog et al. 1982; Hollenbeck
1998). For specific values of (N, L, m), we fitted the param-
eters n0 and ℓ0 by minimizing the squared error between the
simulated distribution and P(fT) (from Equation 24) in a grid
search. The results are plotted in Figure 4, with the fitted n0
and ℓ0 plotted in Figure S2. It can be seen that Equation 24
captures quite well the unique features of P(fT) (except in
the tail; see Figure S2).

Inspection of the distributions (Figure 4) for several val-
ues of N leads to some interesting observations. For small N
(e.g., N � 1000 and for m = 1 cM and L = 278 cM), where
the typical amount of sharing is large (hfTi � 5210%, n0 �
10, ℓ0 � 1 cM), the distribution is unimodal (but not nor-
mal), centered around hfTi. As N increases (e.g., N � 3000),
a discontinuous peak appears at fT = 0, with P(fT) = 0 for
0 , fT , m/L (�0.4%). This is of course due to the restric-
tion on the minimal segment length: a pair of individuals
can share either nothing or at least one segment of lengthm.
For fT . m/L the distribution is continuous, still centered
around hfTi, but with small, yet notable peaks at fT = m/L,
2m/L, 3m/L, . . . corresponding to pairs of individuals shar-
ing a small number of minimal length segments. For even
larger N (e.g., N � 10,000 and beyond), hfTi drops below
1%, n0 � 1 (ℓ0 still �1 cM), and the peaks at fT = 0 and fT =
m/L increase such that the distribution decreases almost
monotonically beyond m/L. An analytical bound on the frac-
tion of pairs not sharing any segment is given in File S1,
section S2.1 (Figure S3).

An error model: To model errors during IBD detection, sup-
pose that we set m large enough to avoid any false positives

(i.e., detected segments that are not truly IBD). We model false
negatives as true IBD segments being missed with probability e
(independent of the segment length). It is possible to extend
the above formulation (Equation 23) to the case with errors, as
follows. Summing over the true number of segments, n9, the
distribution of the number of detected segments, n, is

PðnÞ ¼
XN
n9¼n

e2n0
nn90
n9!

 
n9

n

!
ð12eÞnen92n

¼ e2n0ð12eÞ½n0ð12eÞ�n
n!

;

that is, a Poisson with parameter n0(1 2 e). Then, as a sum
of a random number of independent variables, the mean and
variance of LT are hLTi = hnihℓi and Var[LT] = hni Var[ℓ] +
hℓi2 Var[n], where n is the number of segments and ℓ is the
segment length. In our case,

Figure 3 The standard deviation (SD) of the total sharing in a length range.
Simulation results (symbols) are shown for the SD of the fraction of the
genome found in shared segments of specific length ranges. The total shar-
ing for each range was calculated for random pairs of individuals in Wright–
Fisher populations of the sizes indicated in the inset. The SD is plotted vs. the
starting point of each length range, ℓ1 (where for each ℓ1, the successive data
point is ℓ2). Note the logarithmic scale in the x-axis and hence that ℓ2/ℓ1 is
fixed (equal to 1.5). Theory (lines) corresponds to Equation 22.

Figure 4 The distribution of the total sharing. Simulation results (sym-
bols) are shown for the distribution of the total sharing between random
pairs of individuals in the Wright–Fisher model. Details of the simulation
method are as in Figure 2A. (A) The distribution of the total sharing for
N = 1000, 3000, and 5000. For better readability, the x-axis (the total
sharing fT) is given in percentages and scaled by N/1000, shifting the
distributions for N = 3000 and N = 5000 to the right. (B) The distribution
of the total sharing for N = 8000 and 16,000. Here the x-axis is not
scaled. In A and B, lines represent the fit to a sum of a Poisson number
of shifted exponentials, Equation 24.
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LT ¼ ð12 eÞn0ðℓ0 þmÞ;
Var½LT� ¼ ð12 eÞn0

h
ℓ20 þ ðℓ0 þmÞ2

i
;

(25)

demonstrating that in the presence of detection errors, both
the mean and the variance of the total sharing are (1 2 e)
times their noise-free values. This is confirmed by simula-
tions in Figure 5.

Other approaches: We note that a similar approach dates
back to R. A. Fisher (Fisher 1954) and others (Bennet 1954;
Stam 1980; Chapman and Thompson 2003) in their work on
IBD sharing in a model where the population has been re-
cently founded by a number of unrelated individuals. Briefly,
those authors also assumed a Poisson number of IBD seg-
ments, each of which is exponentially distributed. They
then matched the Poisson and exponential parameters to
the average IBD sharing and the average number of seg-
ments, which they calculated using their population
model. Here, we used a different population model (the
coalescent; see also File S1, section S2.2) and assumed
the exponentials have a cutoff at m. In principle, the
parameters n0 and ℓ0 can also be directly calculated, by
matching the mean and variance of the total sharing; see
File S1, section S2.3. In practice, however, this does not
give a good fit. In Palamara et al. (2012), a similar com-
pound Poisson approach was developed but with a dif-
ferent, coalescent theory-based approximation of the
segment length PDF, leading to an improved fit of the
remaining parameter n0.

The cohort-averaged sharing

We have so far considered the total sharing between any
two random individuals in a population. In practice, we
usually collect genetic information on a cohort of n individ-
uals. In this context, we can attribute each individual with
the amount of genetic material it shares with the rest of the
cohort. Define, for each individual, the cohort-averaged shar-
ing fT as the average total sharing between the given indi-
vidual and the other n2 1 individuals in the cohort. Naively,
one may anticipate that the width of the distribution of fT
will approach zero for large n, because the averaging will
tend to eliminate any randomly arising differences between
the individuals. We show that in fact, the width of the dis-
tribution approaches a nonzero limit. The individuals at the
right tail of the cohort-averaged sharing distribution can be
seen as “hypersharing”, meaning they are, on average, more
genetically similar to members of the cohort than are others.
Similarly, individuals at the left tail are “hyposharing”. The
existence of hypersharing individuals is important for prior-
itizing individuals for sequencing, as we show in Implica-
tions to sequencing study design section.

Define the fraction of the genome shared by individuals i
and j as f ði;jÞT . The cohort-averaged sharing of i, fTðiÞ, is

fTðiÞ [
1

n2 1

Xn
j¼1;j6¼i

f ði;jÞT :

The variance of fT
ðiÞ

is

Var½ fTðiÞ� ¼ 1

ðn21Þ2
Xn

j¼1;j 6¼i

Var
h
f ði;jÞT

i

þ 1

ðn21Þ2
X
j1 6¼i

X
j2 6¼i;j1

Cov
h
f ði;j1ÞT ; f ði;j2ÞT

i

¼
s2
fT

n2 1
þ n2 2
n2 1

Cov
h
f ð1;2ÞT ; f ð1;3ÞT

i

�
s2
fT
n

þ Cov
h
f ð1;2ÞT ; f ð1;3ÞT

i
;

(26)

where we assumed n � 1 and used the fact that the co-
variance term is identical for all (i, j1, j2) combinations and
therefore, for simplicity of notation, we set i = 1, j1 = 2, and
j2 = 3. Recall that f ði;jÞT ¼ ð1  =  MÞPM

s¼1IðsÞ (Equation 3),
where I(s) is the indicator that site s is on a shared segment.
Thus, the covariance can be written as

Cov
h
f ð1;2ÞT ; f ð1;3ÞT

i
¼ 1

M2

XM
s1¼1

XM
s2¼1

hD
Ið1;2Þðs1ÞIð1;3Þðs2Þ

E
2p2

i

� 2
M2

XM
k¼1

ðM2 kÞ
h
p
ð1;2;1;3Þ
2 ðkÞ2p2

i
;

where I(i,j)(s) is the indicator that site s is on a segment
shared between individuals i and j, and p

ð1;2;1;3Þ
2 ðkÞ is the

probability that a given site is on a segment shared between
1 and 2 and that another site, k markers away from the first,
is on a segment shared between 1 and 3. As in An approx-
imate explicit expression section (e.g., Equation 15), we will

Figure 5 The mean and standard deviation (SD) of the total sharing in
the presence of detection errors. Simulation results (symbols) are plotted
for mean and SD of the total sharing in the Wright–Fisher model. Simu-
lation details are as in Figure 2, except that each segment was dropped
with probability e. Theory (lines) is from Equation 4 for the mean and
Equation 12 for the SD, but where the mean is multiplied by (1 2 e) and
the SD by

ffiffiffiffiffiffiffiffiffiffiffi
12 e

p
, as in Equation 25.
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keep only the most dominant term in the sum. Consider the
coalescent tree relating the three individuals 1, 2, and 3 and
assume that the distance between the sites is d . m. If there
was no recombination event in the entire tree between the
two sites, then immediately p

ð1;2;1;3Þ
2 ðkÞ ¼ 1. Otherwise, we

assume that each of the two sites belongs to a shared seg-
ment (or not) independently of the other; that is,
p
ð1;2;1;3Þ
2 ðkÞ � p2. The probability of no recombination, pnr,

depends on T3, the total size of the tree of three lineages.
Since the PDF of T3 is PðT3Þ ¼ e2T3=2 2 e2T3 (Wiuf and Hein
1999; Wakeley 2009),

pnr ¼
Z N

0
PðT3Þe2dNT3=100dT3 ¼ 5000

ð50þ dNÞð100þ dNÞ

or, for dN � 100,

pnr � 5000

ðdNÞ2:

The covariance becomes

Cov
h
f ð1;2ÞT ; f ð1;3ÞT

i

� 2
M2

XM
k¼mðM=LÞ

ðM2 kÞ 5000

½kðL=MÞN�2

� 10; 000
N2L2

Z 1

m=L

12 x
x2

dk ¼ 10; 000
N2L2



L
m
2 12 ln

�
L
m

��

� 10; 000
N2mL

: ð27Þ

Substituting Equations 15 and 27 in Equation 26, the
standard deviation of the cohort-averaged sharing is

s fT
� sfTffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n

s2
fT

10; 000
N2mL

s

� 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðL=mÞ
nNL



1þ 100n

Nm  lnðL=mÞ
�s
:

(28)

For ð2# Þn � Nm  lnðL=mÞ=100, s fT
� sfT=

ffiffiffi
n

p
, while for

n � Nm  lnðL=mÞ=100 (but ,N, as the cohort size cannot
exceed the population size), s fT

� 100=N
ffiffiffiffiffiffiffi
mL

p
, which is in-

dependent of n. This implies that even for very large cohorts,
the distribution of the cohort-averaged sharing retains
a minimal width. Equation 28 is in good agreement with
simulations, as shown in Figure 6A (although some devia-
tions are seen for larger n). We note that the variance was
computed for a given individual over all ancestral processes
of a cohort of size n. Therefore, the variance within the co-
hort, for a given ancestral process might actually be smaller.
Simulations results (Figure S4), however, show that unless n
is very small, Equation (28) is a good approximation also for
the variance within the cohort.

For a genome with c chromosomes,

Var
�
fT
� ¼

Pc
i¼1L

2
i Var

h
fT;ðiÞ

i
�Pc

i¼1Li
	2 ;

where fT;ðiÞ is the cohort-averaged sharing of chromosome i.
For the human genome and for small n and m � 1 cM,
Equation 16 gives

sfT
� 0:382ffiffiffiffiffiffiffi

nN
p ; (29)

whereas for large n, Equation 27 gives

sfT
� 1:68

N
ffiffiffiffi
m

p ; (30)

which is, as explained above, independent of n.
The fact that the width of the cohort-averaged sharing

distribution does not approach zero for large n results from
the “long-range” correlations between the averaged (n 2 1)
variables or, in other words, the fact that Cov½f ði;j1ÞT ; f ði;j2ÞT �. 0
for all i, j1, j2. In Hilhorst and Schehr (2007), it was found
that when all pairs of random variables are weakly corre-
lated, the PDF of their average converges to a normal dis-
tribution. In our case, the covariance is � 10; 000  =  N2mL
(Equation 27), much smaller, for typical values of N, L, and
m, than s2

fT � ð100=NLÞlnðL=mÞ (Equation 15). The varia-
bles we average are therefore weakly dependent, as we also
observe in simulations (Figure S5). We thus conjectured
that the distribution of the cohort-averaged sharing is nor-
mal or is close to one. This is confirmed by simulation
results, as shown in Figure 6B. We note, however, that
a small but systematic deviation from a normal distribution
exists in all parameter configurations we tested, in the form
of a broader right tail and a narrower left tail than expected
(Figure S5). This seems to be due to the small probability
(�1/N) of random pairs of individuals to be close relatives.

Implications to sequencing study design

Suppose we have sparse genotype information for a large
cohort, as well as whole-genome sequences for a subset of it.
If the genotype data allow detection of IBD shared seg-
ments, then alleles not typed can be directly imputed if they
lie on haplotypes shared with sequenced individuals (see,
e.g., Uricchio et al. 2012). In fact, such a strategy is expected
to be quite successful; as we mentioned in the Definitions
section, only about one recent mutation is expected on each
shared segment. Since some individuals share more than
others, their sequencing should be prioritized if imputation
power is to be maximized. Recently, Gusev et al. (2012b)
developed an algorithm (Infostip) for sample selection
based on the observed IBD sharing. Here, using our results
in The cohort-averaged sharing section, we calculate the the-
oretical maximal imputation power.

Assume first that individuals are haploids; the case of
diploids is treated later. Assume a cohort of size n, a budget
that enables the sequencing of ns individuals, and two
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selection strategies: either of random ns individuals or of the
ns individuals with the largest cohort-averaged sharing. De-
fine an imputation metric, pðiÞc , as the average fraction of the
genome of i, an individual not sequenced, that is shared IBD
with at least one sequenced individual. Let the selected indi-
viduals be m1;m2; . . . ;mns , and denote the fraction of the
genome that i shares with mj as f

ði;mjÞ
T . To calculate pðiÞc , we

assume that for all j1, j2, = 1, . . . , ns (j1 6¼ j2), f
ði;mj1 Þ
T is in-

dependent of f
ði;mj2 Þ
T (which is justified, as we showed in The

cohort-averaged sharing section). We also assume that the
locations of the shared segments are independent and uni-
formly distributed along the genome. Under these assump-
tions, the probability of a locus to be covered by at least one
sequenced individual is

pðiÞc ¼ 12
Yns

j¼1

�
12 f ði;mjÞ

T

�
; (31)

and this is also the average covered fraction of the genome.
We note, however, that assuming that the locations of
shared segments are independent and uniformly distributed
is mostly for mathematical convenience. Simulation results
(Figure S6) show that sharing tends to concentrate at spe-
cific loci, implying that Equation 31 can be thought of as an
upper bound (see Figure 7). When fT � 1,

pðiÞc � 12 exp

2
42

Xns

j¼1

f ði;mjÞ
T

3
5;

and for random selection of individuals for sequencing,

pðrandÞc � 12 expð2 nshfTiÞ; (32)

where hfTi is given by Equation 4. When selecting the high-
est-sharing individuals, values of f ði;mjÞ

T come from the right
tail of the cohort-averaged sharing distribution, PðfTÞ,

Xns

j¼1

fði;mjÞ
T � ns

RN
fc

fTP
�
fT
	
d fTRN

fc
P
�
fT
	
d fT

[ ns
D
f ðhighÞT

E
;

where fc and hf ðhighÞT i are the minimum and average, respec-
tively, of the cohort-averaged sharing among the sequenced
individuals ðRNfc Pð fTÞd fT ¼ ns=nÞ. Since we argued in The
cohort-averaged sharing section that Pð fTÞ is approximately
normal with parameters hfTi and sfT

(Equation 28), fc
satisfies

erfc

"
fc 2 hfTiffiffiffi

2
p

sfT

#
¼ 2ns

n
: (33)

We can thus finally write

pðhighÞc � 12 exp
�
2ns

D
f ðhighÞT

E�
: (34)

Before getting to simulations, we note that in practice,
selection of exactly those individuals with the largest cohort-
averaged sharing will not achieve the imputation power of
Equation 34. This is because the top sharing individuals
usually share many segments with each other and thus se-
quencing of all of them will be redundant (e.g., in the ex-
treme case of siblings, both will appear as top sharing, but
sequencing of both will add little power beyond sequencing
just one). To avoid such redundancies, we selected the high-
sharing (simulated) individuals using Infostip (Gusev et al.
2012b), which proceeds in a greedy manner, each time
selecting the individual who shares the most with the rest
of the cohort in regions that are not yet covered by the
already selected individuals. We then compared the impu-
tation power when individuals were selected either ran-
domly or using Infostip. The results, shown in Figure 7,
suggest good agreement between the theoretical Equations
32 and 34 and the simulations, at least as long as ns is not
large (relative to n). For large ns, the coverage is lower than

Figure 6 The cohort-averaged sharing. (A) Simulation results (symbols)
for s fT

, that is, the standard deviation (SD) of the cohort-averaged shar-
ing (in percentage of the chromosome) vs. the cohort size n. The different
curves correspond to different values of N (top to bottom: N = 1000,
2000, 4000, 8000, 16,000). The lines correspond to Equation 28. Details
of the simulations are as in Figure 2A. (B) The distribution of the cohort-
averaged sharing. The fit is to a normal distribution having the same
mean and SD as the real data. Also plotted is a normal distribution with
mean given by Equation 4 and SD given by Equation 28.
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predicted, likely due to the nonuniform concentration of the
shared segments.

For a cohort of n diploid individuals (assuming phase can
be resolved) we redefine the cohort-averaged sharing as

fT;dip
ðiÞ [

1
2

�
fT ði;1Þ þ fc ði;2Þ

	
(where, e.g., fT

ði;1Þ
is the cohort-averaged sharing of the first

chromosome of individual i) and assume that the individuals
selected for sequencing have the largest diploid cohort-
averaged sharing. Since the two terms in fT;dipðiÞ are weakly
dependent,

sfT;dip
ðnÞ � 1ffiffiffi

2
p sfT

ð2nÞ;

where sfT
is given by Equation 28. The coverage metric pc is

interpreted, as before, as the probability of a locus on a given
chromosome to be in a segment shared with at least one
sequenced chromosome. The theory developed above is still
valid, provided that in Equations 32 and 34 ns is replaced by
2ns and that in Equation 33 sfT

is replaced by sfT;dip
.

Increase in association power: Using our results for the
power of imputation by IBD, we calculate below the expected
subsequent increase in power to detect rare variant associa-
tion. We use the simple model of Shen et al. (2011), in which
we consider rare variants that appear in cases but not in any
control, and assume that the causal variant is dominant.

Assume that we have genotyped and detected IBD
segments in a cohort of nc (diploid) cases and nt controls
and that we sequenced a subset of ns individuals, of which

nc,s are cases and nt,s are controls (ns = nc,s + nt,s). After
imputation by IBD, a locus in a (diploid) individual not
sequenced has probability p2c to be successfully imputed,
where pc is given by Equation 32 or Equation 34. For a given
locus, we define the effective number of cases (controls), as
the number of cases (controls) for which genotypes are
known either directly from sequencing or from imputation.
Since there are nc 2 nc,s cases not sequenced and nt 2 nt,s
controls not sequenced,

nðeffÞc � nc;s þ
�
nc 2 nc;s

	
p2c
�
nc; nc;s

	
;

nðeffÞt � nt;s þ
�
nt 2nt;s

	
p2c
�
nt; nt;s

	
:

(35)

In the last equation we assumed, without loss of generality, that
cases can only be imputed using other cases and vice versa. The
probability of a variant to appear in exactly b cases but in no
controls, under the null hypothesis that the variant assorts in-
dependently of the disease, is given by Fisher’s exact test,

Pðcases onlyÞ ¼
�
nðeffÞc
b

���
nðeffÞc þ nðeffÞt

b

�
:

Define Q as the threshold P-value and denote by b* the smallest
integer above which P(cases only) , Q. When the causal var-
iant carrier frequency in cases is b, the probability of the variant
to appear in b cases is binomial, and the power is, for a given Q,

P ¼
XnðeffÞ
c

b¼b*

�
nðeffÞc
b

�
bbð12bÞnðeffÞ

c 2b: (36)

In Figure S7, we plot the power vs. nc,s, when the sequencing
budget ns = nc,s + nt,s is fixed and for representative param-
eter values. In Figure 8, we plot the power vs. the carrier
frequency for the optimal value of nc,s. Figure 8 demon-
strates that the power increases by severalfold when impu-
tation by IBD is used. This is, however, an expected
consequence of increasing the effective sample size and
would likely be achieved with any imputation algorithm
(e.g., Howie et al. 2012). Figure 8 also shows an additional,
slight increase when the highest-sharing individuals are
selected for sequencing. Thus, while it should be easy to
identify the highest-sharing individuals given a genotyped
cohort [e.g., using Infostip (Gusev et al. 2012b)], and doing
so will increase the association power, our results sug-
gest that the gain in power over a random selection will
be minor.

Other applications of the variance of IBD sharing

An estimator of the population size: Assume that we have
genotyped or sequenced a diploid chromosome of one
individual and calculated fT, the fraction of the chromosome
shared between the individual’s paternal and maternal chro-
mosomes. Can we estimate the effective population size?

According to Equation 4, hfTi ¼ 100ð25þ NmÞ=
ð50þ NmÞ2. Solving for N gives (see also Palamara
et al. 2012)

Figure 7 Coverage of genomes not selected for sequencing by IBD
shared segments. We simulated 500 Wright–Fisher populations with
N = 10,000, n = 100, and L = 278 cM and searched for IBD segments
with length $m = 1 cM. For each plotted data point, we selected ns
individuals either randomly or using Infostip. Then, for each of the n 2 ns
individuals not selected, we calculated the fraction of their genomes shared
with at least one selected individual. We plotted (symbols) the average
coverage over all individuals in all populations. Lines correspond to theory:
Equation 32 for random selection and Equation 34 for Infostip selection.
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N ¼ 50
mhfTi

h
ð12 hfTiÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 hfTi

p i
� 100

mhfTi2
75
m
;

for hfTi � 1. This suggests the following estimator,

N̂ ¼ 100
mfT

2
75
m
: (37)

Below, we investigate the properties of the simple estimator
of Equation 37. Using Jensen’s inequality, it is easy to see
that the estimator is biased,

D
N̂
E
¼ 100

m

�
1
fT

�
2

75
m

$
100
mhfTi2

75
m

¼ N:

The variance of N̂ is proportional to Var[1/fT], which we
could not calculate, but could approximate as follows. Let
us write N̂ as

N̂ ¼ 100
m½ðfT 2 hfTiÞ þ hfTi�2

75
m

� 100
mhfTi

�
12

fT 2 hfTi
hfTi

�
2

75
m
;

where we applied the Taylor expansion 1=ð1þ xÞ � 12 x,
assuming |fT 2 hfTi| � hfTi (in which regime clearly

hN̂i ¼ N). Since additive constants do not contribute to
the variance, the standard deviation is

sN̂ � 100sfT

mhfTi2
� mN3=2

10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðL=mÞ

L

r
;

where we used hfTi � 100/(mN) (Equation 4) and Equation 15
for sfT. The effective population size can also be inferred using
Watterson’s estimator, which is N̂W ¼ S2=ð2mÞ, where S2 is the
number of heterozygous sites and m is the mutation rate (per
chromosome per generation). Watterson’s estimator is unbi-
ased, hN̂Wi ¼ N, and has variance (assuming no recombina-
tion) Var½N̂W� ¼ ½2mN þ ð2mNÞ2�=4m2 � N2. Therefore, sN̂W

=

N � 1, compared to sN̂=N � N1=2 for the IBD estimator.
Note that in practice, the proposed estimator is not

very useful, as it diverges whenever fT = 0 (which is
common for large N). Suppose, however, that we have
sequences for n (haploid) chromosomes and that we have
computed the total sharing between all pairs. Define
fT ¼Pi

P
j. i f

ði;jÞ
T =ð n2 Þ. The estimator now takes the form

N̂ ¼ 100

m fT
2

75
m
: (38)

This is again an overestimate, hN̂i$N. In File S1, section S3,
we show that sN̂ is approximately

sN̂ � mN3=2

5
ffiffiffiffiffiffi
nL

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðL=mÞ

2n
þ 100

Nm

r
: (39)

For comparison, in Watterson’s estimator for n (haploid)
chromosomes, sN̂W

=N � 1=ln n (for large N and n), which
decays to zero with increasing n slower than the IBD esti-
mator. Simulation results, shown in Figure S8 and Figure S9,
confirm the accuracy of Equation 39 and show that the bias
is limited to very small values of n.

In the context of the error model in The total sharing
distribution and an error model section, introducing a proba-
bility e to miss a true IBD segment will decrease the average
total sharing by (1 2 e) (Equation 25). Consequently, Equa-
tion 38 will estimate a population size �1/(1 2 e) [� (1 +
e) for small e] larger than the true one.

IBD sharing between siblings: The total IBD sharing
between relatives can usually be decomposed into sharing
due to the recent coancestry and “background” sharing due to
population inbreeding (Huff et al. 2011; Henn et al. 2012).
While much is known about the distribution of sharing in ped-
igrees (e.g., Hill and Weir 2011), less is known about the pop-
ulation-level sharing, and relatedness detection algorithms
(e.g., Huff et al. 2011; Henn et al. 2012) estimate it empirically.
In a different domain, the variance in sharing between relatives
appears in theoretical calculations of the variance of heritability
estimators (Visscher et al. 2006). Our results for the variance of
the total sharing in the Wright–Fisher model (Variation in IBD
sharing in the Wright–Fisher model section) can thus have prac-
tical applications if modified to account for recent coancestry.

Figure 8 Power to detect an association after imputation by IBD. The max-
imal power to detect an association is shown, with and without imputation
by IBD and with sequenced individuals selected either randomly or according
to their total sharing. The parameters we used were N = 10,000, L = 278 cM
(one chromosome), m = 1 cM, cohort size of 500 cases and 500 controls,
a total sequencing budget of ns = 100 individuals, and a threshold P-value of
Q = 0.01. For each carrier frequency b, we computed the power for each pair
of nc,s and nt,s (number of sequenced cases and controls, respectively), such
that nc,s + nt,s = ns, and recorded and plotted the maximal power. The power
was calculated using Equations 35 and 36, where in Equation 35, pc was set
to zero for the case of no imputation, or calculated using Equations 32 and
34 (random selection and selection by total sharing, respectively, and adjusted
for diploid individuals). For the studied parameter set, imputation by IBD leads
to a major increase in power. Proper selection of individuals for sequencing
also contributes to the power but only slightly.
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Here, we calculate the variance of the sharing between
siblings by combining the approach of Visscher et al. (2006)
with that of our An approximate explicit expression section.
Assume that two individuals are siblings, either half or full:
we calculate, without loss of generality, only the sharing
between the two chromosomes that descended from the
same parent and denote the fraction of sharing as fS. Assume
as before a population of size N and one chromosome of
length L. For a given marker to be on a shared segment, it
can either be on a segment directly coinherited from the
same grandparent (probability 1/2) or otherwise be on
a segment shared between the grandparents (probability
p/2, Equation 2). We ignore boundary effects near the sites
of recombination at the parent. The mean fraction of the
genome shared is therefore just hfSi = (1 + p)/2. The var-
iance can be written as in Equation 6,

Var½ fS� � 2
M2

XM
k¼1

ðM2 kÞ


p2;SðkÞ2 1

4
ð1þ pÞ2

�
;

where p2,S(k) is the probability of two sites separated by k
markers [or genetic distance d ¼ kðL=MÞ] to be on segments
shared between the siblings. The probability that the two
sites are both coinherited from the same grandparent is

psame ¼ 1
2

h
ð12rÞ2 þ r2

i
¼ 1

4

�
1þ e2d=25

�
;

where r is the recombination fraction and we used Haldane’s
map function (Visscher et al. 2006). Also with probability
psame, the sites are both inherited from different grandpar-
ents, and we use the expressions developed in An approxi-
mate explicit expression section for the probability of the sites
to be in shared segments: p2,S(k) = p2 + Q(d 2 m)pnr
[where pnr � 50/(Nd) and Q(x) = 1 for x . 0 and is zero
otherwise]. With probability (1 2 2psame), one site is coin-
herited and the other is not; in that case p2,S(k) = p. Ap-
proximating the sum as an integral and simplifying, we
finally have

Var½ fS� � 2
Z 1

0
dxð12 xÞ ·

(
p
�
12 e2xL=25	

2
þ  

1þ e2xL=25

4

·  


1þ p2 þQ

�
x2

m
L

� 50
NxL

�
2

ð1þ pÞ2
4

)
:

(40)

We solved Equation 40 using Mathematica and summed
over all chromosomes as in Equation 5. The results for the
mean and SD of the total sharing between siblings are
plotted in Figure 9 and compared to an outbred popula-
tion where the grandparents are unrelated. The SD in the
outbred population overestimates the Wright–Fisher SD, up
to �18% for N as small as 500.

IBD sharing after an admixture pulse: In this final sub-
section, we study the IBD sharing in a simple admixture

model. In our model, a single population A of constant size N
has received gene flow from population B, Ga generations
ago. We assume that gene flow took place for one genera-
tion only (hence, an admixture pulse) and, further, that
population B is sufficiently large that the chromosomes it
donated to A share no detectable IBD segments. Denote the
fraction of the lineages coming from population A at the ad-
mixture event as a (fraction 12 a coming from B), and let Ta
= Ga/N be the scaled admixture time. We are interested in
IBD sharing between extant chromosomes in population A.

To approximate the mean IBD sharing in the sample, note
that if admixture was very recent, then two chromosomes
will be potentially shared only if both descend from
population A, which occurs with probability a2. Therefore,
the mean sharing is a2 times its value without admixture.
While this is a good approximation (Figure S10), it does not
account for two chromosomes, one or two of which are from
the external population B, having their common ancestor
more recently than the admixture event. We therefore cal-
culate the mean IBD sharing using Equation 17, using the
following (nonnormalized) PDF for the coalescence times,

FðtÞ ¼
�
e2t t,Ta;
a2e2t t.Ta;

(41)

which gives

fT ¼
Z N

0
FðtÞ

�
1þmNt

50

�
e2mNt=50dt

¼ a2100ð25þmNÞ
ð50þmNÞ2 þ Ta

�
12a2	þO�T2

a
	
:

(42)

Figure 9 IBD sharing between siblings in the Wright–Fisher model. We plot
the theoretical mean and standard deviation (SD) of the IBD sharing between
the (maternal only or paternal only haploid) genomes of siblings. Lines corre-
spond to an outbred population (unrelated grandparents): the mean sharing is
50% and the SD is taken from Visscher et al. (2006). Symbols correspond to
the theory for the Wright–Fisher model: the mean sharing is (1 + p)/2 (where
p is given by Equation 2), and the SD is given by Equation 40. We usedm = 1
cM and the chromosome lengths of the autosomal human genome. Note that
the y-axis is on the left side for the mean and on the right side for the SD.
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Note that this is just hfTiadmix � a2hfTino admix + (1 2 a2)Ta.
The first term corresponds to lineages descending from pop-
ulation A; the second term corresponds to at least one of the
lineages descending from population B but where the line-
ages have coalesced already in the hybrid population. The
variance can be similarly calculated, by substituting Equa-
tion 41 into Equation 19,

Var½ fT� � 2
Z 1

m=L
ð12 xÞ


 Z Ta

0
e2t2txNL=50dt

�
dx

þ  2a2
Z 1

m=L
ð12 xÞ


 Z N

Ta

e2t2txNL=50dt
�
dx

� 100
NL

�
ln
�
L
m

�
21þ �12a2	
g2 ����ln

�
mNTa
50

�����
��

;

(43)

where g is the Euler–Mascheroni constant, and we solved
the integrals in Mathematica and later simplified under spe-
cific assumptions (see File S1, section S4). Equation 43 usu-
ally predicts a variance slightly smaller than the case of no
admixture. Simulation results are shown in Figure S10 for
the mean and variance. While agreement is not perfect (as
Equation 19 is itself approximate), Equations 42 and 43
capture the main effects of changing a and Ta. Note that
the result of Equation 42 implies that, for small Ta and large
N, the observed mean IBD sharing is as if the population is of
size �N/a2.

A test for admixture: For recent admixture (small Ta), the
fractions of ancestry vary among individuals (Verdu and
Rosenberg 2011; Gravel 2012). In our model, since a pair
of segments is shared mostly when both descend from pop-
ulation A, some individuals will share more than others
merely due to having a larger fraction of A ancestry. In turn,
this will increase the variance of the cohort-averaged shar-
ing. This observation suggests the following test for a recent
gene flow into a population: (i) extract IBD segments
and calculate the mean fraction of total sharing over all
pairs, fT, as well as the SD of the cohort-averaged sharing,
sfT

; (ii) use Equation 38 to infer the population size,
N̂ ¼ 100=ðm �

fTÞ275=m; (iii) simulate Npop populations of
size N̂, extract IBD sharing, and calculate the SD of the co-
hort-averaged sharing in each population; and (iv) the P-
value for rejecting the null hypothesis of no admixture is the
fraction of the Npop populations where the SD of the cohort-
averaged sharing was larger than the observed one. Note
that the identity of the external population need not be
known, nor are the admixture fraction and time; the test
relies on admixture creating a gradient of ancestry fractions
and hence an increased variability in the similarity between
individuals. Simulation results are plotted in Figure S10,
showing that for a P-value of 0.05 and Ga = 5, gene flow
with a � 0.9 or lower can be detected (a � 0.8 or lower for
Ga = 10). We stress that a broader than expected distribu-
tion of cohort-averaged sharing does not necessarily indicate
admixture, and there might be other factors responsible for
the effect (see also the Discussion). We validated, however,
that IBD detection errors alone (as in the model in The

total sharing distribution and an error model section) as
well as variable population size (in a simple two-size model)
do not lead to significant P-values in the admixture test
(Figure S11).

IBD sharing and admixture in the Ashkenazi Jewish
population: As our final result, we apply the admixture
test to the real population of Ashkenazi Jews (AJ).
Historical records, and recently also genetic studies,
suggest that AJ form a genetically distinct group of likely
Middle-Eastern origin. However, the AJ population was
also shown to receive a significant amount of gene flow
from neighboring European populations (Ostrer 2001;
Atzmon et al. 2010; Behar et al. 2010; Bray et al. 2010;
Guha et al. 2012). We analyzed a data set of � 2600 AJ,
details of which have been published elsewhere (Guha
et al. 2012; Palamara et al. 2012) and are summarized
in the Methods section. To detect IBD shared segments
in the AJ population, we used Germline (Gusev et al.
2009). For 500 individuals on chromosome 1, and with
m = 1 cM, the average fraction of sharing over all pairs is
�4.4%, leading to an estimated population size of
N̂ � 2200. The SD of the cohort-averaged sharing is
0.52%, higher than the SD in all 500 populations we sim-
ulated with a constant size N̂ (typically 0.34%, maximum
0.41%). The recent history of Ashkenazi Jews, however,
has likely involved bottlenecks and expansions, different
from the constant size assumption. In Palamara et al.
(2012), a population model was inferred based on the
fraction of the genome shared at different segment
lengths. The model’s best estimate of AJ history is a slow
expansion until �35 generations ago and then a severe
bottleneck (effective population size of just 270) followed
a by rapid expansion to a current size of a few millions. As
can be seen in Figure 10, A and B, the model agrees well
with the distribution of the fraction of total sharing over
all pairs, but predicts a much narrower distribution of
cohort-averaged sharing than the true one. Here too, in
none of 100 simulated populations with the inferred de-
mography was the SD of the cohort-averaged sharing as
large as in the real data. These results, therefore, suggest
(based on the AJ population alone) that the AJ population
was the target of a recent gene flow. To confirm that the
increase in the variance of the cohort-averaged sharing is
due (at least partly) to admixture, we ran an admixture
analysis [Admixture (Alexander et al. 2009)] comparing
AJ to HapMap’s CEU (International HapMap Consortium
2007). As can be seen in Figure 10C, the fraction of
“AJ ancestry” is indeed highly correlated with the cohort-
averaged sharing (Pearson’s r = 0.59).

Discussion

The recent availability of dense genotypes, together with
sophisticated detection tools, has transformed IBD sharing
into an increasingly important tool in population genetics.
Here, we used coalescent theory to compute the variance
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and other properties of the total sharing in the Wright–
Fisher model. For the variance, we suggested three deriva-
tions, one of which was more coarse but had a simple closed
form that was later extended to populations of variable size.
Investigating the cohort-averaged sharing, we discovered
the curious phenomenon of hypersharing. We showed how
this can be exploited to improve power in imputation and
association studies. We also calculated the variance of the
total sharing between siblings and briefly considered some
implications to the accuracy of demographic inference. We
finally investigated IBD sharing in a hybrid population and
suggested a test for admixture based on the cohort-averaged
sharing, which we then applied to the Ashkenazi Jewish
population. We provide Matlab routines for the main results
(File S2).

Most of our analytical results depend on certain assump-
tions and simplifications, as specified in the individual
sections and in File S1, section S1.2. Additionally, in reality,
the Wright–Fisher model and the coalescent are only
approximations of the true ancestral process, and proce-
dures such as phasing, IBD inference, and imputation are
also prone to error. IBD detection errors will particularly
affect our results for imputation and association studies
(Implications to sequencing study design section), and these
results should therefore be considered as idealized upper
bounds. The error model we introduced, where each IBD
segment is missed with a certain probability, gives a sense
of the effect of errors. Investigation of more detailed models,
e.g., length-dependent error rate for segment misdetection
or more realistic models for imputation and association stud-
ies, is challenging and left for future work.

Prospects of our work are in a few fields. First, as shown
in Palamara et al. (2012), theoretical characterization of IBD
sharing can lead to new methods for demographic inference,
which are expected to perform particularly well when in-
vestigating the recent history of genetic isolates. Here, we
expanded the theory of IBD sharing to compute the variance
of the total sharing and the cohort-average sharing. This
turned useful, for example, when we provided in An estima-
tor of the population size section expressions for the variance
of an estimator of the population size based on the average
sharing over all pairs of chromosomes and in IBD sharing
after an admixture pulse section a test for recent admixture.
In another domain, understanding the distribution of shar-
ing between relatives can improve the accuracy of related-
ness detection (IBD sharing between siblings section). Other
potential applications are in the detection of regions either
positively selected or associated with a disease based on
excess sharing, although more work is needed for these.
Finally, our results provide the first estimate for the potential
success of imputation by IBD strategies (Implications to se-
quencing study design section). We note that of course, once
a given cohort has been genotyped, IBD can be calculated
directly to estimate the expected success of imputation.
However, in many cases, study design takes place before
the actual recruiting and genotyping, and then, if a rough

Figure 10 IBD sharing and admixture in the Ashkenazi Jewish (AJ) pop-
ulation. We detected IBD shared segments using Germline in chromo-
some 1 of n = 500 AJ individuals and compared them to simulations of
the demographic history inferred in Palamara et al. (2012). (A) The distri-
bution of the total sharing over all pairs. (B) The distribution of the cohort-
averaged sharing. While the demographic model fits well the sharing
distribution over all pairs, the distribution of the real cohort-averaged
sharing is broader than in the model. (C) We used Admixture to calculate
the admixture fraction of AJ individuals compared to the CEU population.
The “AJ ancestry fraction” of each individual is plotted against its cohort-
averaged sharing. C shows results for the full data set (�2600 individu-
als).
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estimate of the population size is available, our results can
be invoked to estimate the amount of resources needed.

One of our interesting findings was the presence of
hypersharing individuals. While we did not define the term
precisely, we referred to the fact that even for large cohorts,
the variance of the cohort-averaged sharing does not
decrease below a certain value. This result, while somewhat
counterintuitive, follows naturally from the population
model. In the real population of AJ, we showed that the
distribution of the cohort-averaged sharing is even broader,
indicating possible admixture, and indeed, we found that
the cohort-averaged sharing is highly correlated with the
Ashkenazi ancestry fraction. This is not to say that admix-
ture was the only factor shaping the distribution of IBD
sharing; other factors such as selection or population sub-
structure could have been playing a role as well. Our results,
however, emphasize the importance of reconstructing the AJ
demography simultaneously with that of their neighboring
populations.
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