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ABSTRACT Genetic diversity is essential for population survival and adaptation to changing environments. Demographic processes
(e.g., bottleneck and expansion) and spatial structure (e.g., migration, number, and size of populations) are known to shape the
patterns of the genetic diversity of populations. However, the impact of temporal changes in migration on genetic diversity has seldom
been considered, although such events might be the norm. Indeed, during the millions of years of a species’ lifetime, repeated isolation
and reconnection of populations occur. Geological and climatic events alternately isolate and reconnect habitats. We analytically
document the dynamics of genetic diversity after an abrupt change in migration given the mutation rate and the number and sizes of
the populations. We demonstrate that during transient dynamics, genetic diversity can reach unexpectedly high values that can be
maintained over thousands of generations. We discuss the consequences of such processes for the evolution of species based on
standing genetic variation and how they can affect the reconstruction of a population’s demographic and evolutionary history from
genetic data. Our results also provide guidelines for the use of genetic data for the conservation of natural populations.

GENETIC diversity in a population of constant size results
from the balance between the occurrence of new muta-

tions and the loss of alleles by genetic drift (Fisher 1922;
Wright 1931; Kimura and Crow 1964). The expected pop-
ulation genetic diversity can thus be estimated from the
effective population size and the mutation rate in the pop-
ulation. In subdivided populations this estimate should fur-
ther account for the strength of migration (Maruyama 1970;
Smith 1970; Nei 1973): limited migration allows for strong
differentiation between populations, while strong migration
tends to homogenize genetic diversity between populations.
Genetic diversity is also known to be affected by population
demographic changes; following bottlenecks and founder
events, a loss of genetic diversity is expected to occur (Nei
et al. 1975). Recently, spatial population expansions were
shown to lead to increased differentiation between popula-
tions and to generate a low level of genetic diversity at the
front of the expansion (Excoffier et al. 2009).

Although theoretical studies on the dynamics of genetic
diversity in subdivided populations started appearing in the

1970s (Nei and Feldman 1972; Latter 1973; Nei 1973;
Nagylaki 1974, 1977), the transient dynamics and nonequi-
librium states of genetic diversity still do not have a good
theoretical basis. Early authors characterized the ultimate
rate of change of genetic diversity after a perturbation (ei-
ther a change in population size or gene flow; Nei and Feld-
man 1972; Latter 1973; Nei 1973; Nagylaki 1974, 1977).
They found that changes in genetic diversity are related to
the total effective population size, which results in a slow
dynamics of genetic diversity change. They thus first high-
lighted that nonequilibrium states and transient dynamics
are expected to act on very large temporal scales. In partic-
ular, they showed that decreases in migration rates (popu-
lation fragmentation or isolation) have long-term effects on
genetic diversity: they reduce the amount of genetic diver-
sity within populations and allow for population differenti-
ation (Latter 1973; Takahata and Nei 1985). Additionally, it
has been shown that short timescale random fluctuations in
migration increase population differentiation (Nagylaki
1979; Whitlock 1992; Rice and Papadopoulos 2009) while
cyclic fluctuations of gene flow (such as seasonal fluctua-
tions) mainly affect genetic diversity within populations
(Karlin 1982; Shpak et al. 2010). Although the genetic con-
sequences of migration events (admixture) have recently
received much attention (e.g., Pritchard et al. 2000; Falush
et al. 2003; Price et al. 2009; Gravel 2012), their impact on
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genetic diversity and more particularly the expected induced
transient dynamics have not received much attention.

Genetic diversity has a crucial importance in estimating
populations at risk of extinction and species’ adaptive poten-
tial. Current genetic diversity characterizes species at risk of
extinction through inbreeding depression, loss of genetic di-
versity, and accumulation of deleterious mutations (Gilpin
and Soule 1986; Jimenez et al. 1994; Frankham 1995;
Hedrick and Kalinowski 2000). The current level of genetic
diversity (or standing genetic variation) is now widely rec-
ognized as a determinant for the adaptation of a population
to a novel environment (Turner et al. 1993; Feder et al.
2003; Pelz et al. 2005; Colosimo et al. 2005; Hermisson
and Pennings 2005; Myles et al. 2005; Hernandez et al.
2011; Jones et al. 2012). First, under new selective pres-
sures, the adaptive value of a preexisting allele can switch
from neutral or deleterious to beneficial (Gibson and Dworkin
2004; Hermisson and Pennings 2005). Second, alleles from
the standing genetic variation are present at higher frequen-
cies in the population than any newly arisen (de novo) muta-
tion are; thus, they have higher fixation probabilities and
lower times to fixation (Barrett and Schluter 2008). Finally,
these alleles have already passed successive selective filters
and are consequently more likely to be compatible with the
background genome (Orr and Betancourt 2001; Schluter
et al. 2004; Barrett and Schluter 2008).

Measures of genetic diversity are widely used to un-
derstand and infer the demographic and evolutionary
history of populations. Indeed, statistical tests using poly-
morphism data can detect departure from neutrality and
infer demographic or selective processes (e.g., Ewens 1972;
Watterson 1978; Tajima 1983; Fu and Li 1993; Fay and Wu
2000; see review in Kreitman 2000). Furthermore, due to
recent modeling advances in coalescent theory and in-
creased genomic data and computational power, it is now
possible to distinguish different demographic scenarios (e.g.,
population bottleneck and subdivision; Peter et al. 2010)
and estimate demographic and selective parameters (e.g.,
populations size and growth rate, proportion of admixture,
selection coefficient) using polymorphism data (Beaumont
et al. 2002; Kim and Stephan 2002; Kim and Nielsen 2004;
Nielsen et al. 2005; Price et al. 2009). Nevertheless, it is
often difficult to distinguish between the transient effects
of demographic changes and the effects of selection on poly-
morphism data (Jensen et al. 2005; Nielsen 2005; Li and
Stephan 2006; Kim and Gulisija 2010; Pavlidis et al. 2010).
It is also difficult to distinguish between the signatures of
different demographic changes such as changes in popula-
tion size, number, or migration rate (Wakeley 1999). A bet-
ter understanding of the impact on genetic data of transient
dynamics during demographic changes is necessary to dis-
entangle these processes.

Interestingly, although the impact of population subdi-
vision and short timescale population demographic changes
on genetic diversity have received a lot of attention, other
processes, such as long-term isolation and subsequent

population reconnection, have received little attention. Such
events have, without a doubt, occurred several times in the
past, at long and short timescales. Repeated environmental
changes have modified habitats and species distribution
and created isolation and reconnection of populations. For
example, during the climatic oscillations of the Quaternary
period, temperate and tropical species were successively
isolated into refugia and experienced habitat and population
expansion, allowing for population reconnection (Hewitt
2000, 2004; Zhang et al. 2008; Young et al. 2009). At the
same time, the reduction of sea levels (120 m lower than
present; Lambeck et al. 2004) allowed the formation of land
bridges that connected isolated lands in several parts of the
world (Hewitt 2000). Repeated changes in water level
resulted in fragmentation and fusion of basins within con-
tinents (as in the Great African Lakes; Galis and Metz 1998;
Sturmbauer et al. 2001). Similarly, geological events such as
volcanic eruptions induced periodic isolation and reconnec-
tion of islands (Cook 2008), while tectonic processes such as
the formation of mountains isolated populations and recon-
nected others (Hughes and Eastwood 2006; Antonelli et al.
2009; Antonelli and Sanmartín 2011). More recently, cli-
matic, environmental, and anthropogenic changes (e.g.,
global warming, urbanization, and agriculture) have also
played important roles in modifying the connectivity pattern
between populations (Miller and Hobbs 2002; Delaney et al.
2010). Consequently, some species are currently subdivided
into poorly connected or completely isolated populations;
for examples, ground beetles (Keller et al. 2004), salamanders
(Noel et al. 2007), and crickets (Vandergast et al. 2009).
In the meantime, other species experience habitat and
population expansion (e.g., sparrows, white-tailed deer,
zebra mussels; Waples 2010). Isolation and reconnection of
populations not only reflect abiotic processes, but they can
also represent spatial and temporal interactions of popula-
tions (e.g., secondary contacts; Green et al. 2010; Domingues
et al. 2012). Consequently, transient states of genetic diver-
sity are expected to be the norm and deserve much more
attention.

In this study, we analytically characterized the dynamics
of genetic diversity following a change in migration rate
between populations, given any migration rate, mutation
rate, population size, and degree of fragmentation. We first
analyzed how genetic diversity is affected by an event of
isolation of populations and by an event of reconnection of
populations. We then generalized our results for situations
where the migration rate between populations displays
strong variation. We demonstrate that temporal changes of
migration generate periods where genetic diversity reaches
unexpectedly high values that can be maintained over
thousands of generations. We also show that migration
changes can produce a signature on summary statistics such
as Tajima’s D and Ewens–Watterson’s statistics that cannot
be differentiated from a signature of population size change
or from the signature of selection. Finally, we discuss how such
processes can affect observed macroevolutionary patterns of
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species diversity and how they can affect the reconstruction
of populations’ demographic and evolutionary history from
genetic data.

Genetic Diversity of Populations

To study the dynamics of genetic diversity after connectivity
changes, we consider diploid individuals in a finite island
model composed of n random mating populations of size N,
so that the total population size is nN. The populations ex-
change migrants at a rate m. The mutations follow the infin-
ite allele model (each mutation produces a new allele;
Kimura and Crow 1964) and occur at a rate m. The gener-
ations are nonoverlapping (Wright–Fisher model; Fisher
1930; Wright 1931).

Genetic diversity, H, is estimated using the identity-by-
descent F between pairs of alleles, through the relationship
provided by Nei and Feldman (1972):

H ¼ 12 F: (1)

Further, we characterize within-population genetic diversity
Hs and between-population genetic diversity Hb, using
within- and between-population genetic identities, respec-
tively. Within-population genetic identity, Fs, corresponds
to the probability that two genes randomly chosen from the
same population are identical by descent. Between-population
genetic identity, Fb, corresponds to the probability that two
genes randomly chosen from different populations are identical
by descent. Considering that within- and between-population
genetic identities Fs and Fb at a given time t are, respectively,
Fs,t and Fb,t, their values at the next generation (forward in
time), respectively, Fs,t+1 and Fb,t+1, will follow (Smith
1970; Maruyama 1970; Latter 1973)

Fs;tþ1 ¼ �a�cþ ð12 cÞ Fs;t
�þ ð12 aÞ Fb;t

�ð12mÞ2
Fb;tþ1 ¼ �b�cþ ð12 cÞ Fs;t

�þ ð12 bÞ Fb;t
�ð12mÞ2; (2a)

where the parameters are

a ¼ ð12mÞ2þ m2

n2 1
(2b)

b ¼ 12 a
ðn2 1Þ (2c)

c ¼ 1
2N

: (2d)

System of Equations 2 can be expressed under matrix
notation as

Ftþ1 ¼ AFt þ B; (3a)

where

A ¼ ð12mÞ2
�
að12 cÞ 12 a
bð12 cÞ 12 b

�
(3b)

B ¼ ð12mÞ2
�
ac
bc

�
(3c)

Ft ¼
�
Fs;t
Fb;t

�
: (3d)

Parameters have the following interpretation: a is the prob-
ability that two genes at the same location before migration
are still at the same location after migration (either both
migrate to the same location or both do not migrate); b is
the probability that two genes that were at the same location
before migration migrated to different locations; c is the
probability that two genes within a population are copies
of the same gene; and (1 2 m)2 is the probability that nei-
ther of the two randomly chosen genes mutated.

Predicting the Dynamics of Genetic Diversity

To characterize the impact of connectivity changes on genetic
diversity, we analyzed the trajectories of within- and between-
population genetic identities from any initial genetic identity
state. Using Equation 2, Smith (1970) and Maruyama (1970)
showed that genetic identities converge toward an equilibrium
value Feq (value given in Supporting Information, File S1).
Extending the results obtained by Nei and Feldman (1972)
for n = 2 populations, we show that the temporal dynamics
of genetic identities follow (see Appendix A for more details)

Ft ¼ C1l
t
1 þ C2l

t
2 þ Feq; (4a)

where

F eq ¼
�
Feqs
Feqb

�
: (4b)

l1 and l2 are respectively the largest and smallest eigenval-
ues of matrix A, and they follow

l1 ¼ ð12mÞ2
2

�
að12 cÞ þ 12 bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12að12cÞ þ bÞ2 24bc

q 


l2 ¼ ð12mÞ2
2

�
að12 cÞ þ 12 b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12að12cÞ þ bÞ2 24bc

q 

:

(5)

C1 and C2 are column vectors of dimension 2 composed of
constant values, which depend on the parameters of the
model (m, m, n, and N) and on the initial genetic identity
F0 (Appendix A).

In the next section, we provide from Equations 4a and 5
the temporal change of genetic diversity and derive the
corresponding time to reach genetic diversity equilibrium
after a connectivity change.

Time to Reach Genetic Diversity Equilibrium

The change of genetic diversity can be decomposed in two
main temporal dynamics: a long-term and a short-term
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dynamics. Indeed, the temporal change of genetic diversity
depends on two components: jC1l

t
1j and jC2l

t
2j (Equation

4a). They both follow an exponential decay and their rate of
change depends on r1 = ln(l1) and r2 = ln(l2), respectively
(Appendix A). As 1 . l1 . l2 . 0, jC2l

t
2j decays more

rapidly than jC1l
t
1j (see Appendix A). Thus r1 determines

the ultimate (or long-term) change of genetic diversity and
r2 determines the transient (or short-term) change of ge-
netic diversity.

When migration and mutation rates are small (i.e.,m� 1
and m � 1) and local population sizes are large (i.e., N �
1), the decay constants r1 and r2 follow

r1 ¼ 2 2m2
1

2Ne

r2 ¼ 2 2m2 2m
n

n21
2

1
2N

þ 1
2Ne

(6a)

with

Ne ¼ nN
�
1þ ðn2 1Þ

nM

�
; (6b)

where M = 4Nm is the scaled migration rate and Ne is the
effective population size of the total population (inbreeding,
eigenvalue, variance, and mutation effective size are equiv-
alent in the finite island model; Whitlock and Barton 1997).
As expected from theory (Whitlock and Barton 1997; Wake-
ley 1999), in the strong migration limit (M � 1), the effec-
tive size is equal to the total population size nN, while in the
weak migration limit (M � 1), the effective size is higher
than the total population size.

We can estimate the durations of the ultimate and
transient changes of genetic diversity, denoted t1 and t2, re-
spectively. Formally, we define t1 and t2 as the times (in
number of generations) needed for lt1 and lt2 to be reduced
to a number a, where a 2 ]0; 1]:

lt11 ¼ a

lt22 ¼ a:
(7)

Assuming that migration and mutation rates are small and
population sizes are large, t1 and t2 simplify to (Appendix
A):

t1 ¼ 2 ln ðaÞ
2mþ 1=2Ne

t2 ¼ 2 ln ðaÞ
2mþ 2mðn=ðn2 1ÞÞ þ 1=2N2 1=2Ne

(8)

The genetic diversity changes as follows (Figure 1): (i)
a convergence of duration t2 from the initial genetic diver-
sity value to a transient genetic diversity value and then (ii)
a convergence of duration t1 to the genetic diversity equilib-
rium Heq. The time to reach genetic diversity equilibrium, t1,
depends only on two terms: the mutation rate (term 2m)

and the genetic drift at the total population level (term
1=2Ne). The duration of the transient dynamics, t2, depends
on four terms: the mutation rate (term 2m), the migration
rate (term 2m), the genetic drift in each population (term
1=2N), and the genetic drift at the total population level
(term 1=2Ne). The convergence to the transient and equilib-
rium values of genetic diversity can occur on separated time-
scales (i.e., t1 � t2) depending on the parameter values. The
timescales t1 and t2 can differ from several orders of magni-
tude. When n . 14, differences are the highest (t1 � t2), in
the domain where m � 1=2N and also when m � 1=2N and
m . m. When n # 14, the same conditions apply for t1 � t2
except in a restricted domain where m ’ 1=2N (see Appen-
dix A). For example, the duration of the transient dynamics
is t2 ’ 134 and the time to reach equilibrium is t1 ’ 1.5 ·
105 generations (with a = 5%), when 10 populations of size
2500 with a mutation rate of 1026 are connected with a mi-
gration rate of 0.01.

Dynamics of Genetic Diversity After
an Isolation Event

We analyzed the dynamics of genetic diversity after an
isolation event, starting with a situation in which popula-
tions are connected and at their equilibrium value; i.e.,
within- and between-population genetic diversity Hs and
Hb are at the expected connection equilibrium values Heq

s;con

and Heq
b;con (see Maruyama 1970; Smith 1970; and File S1).

We observe (Figure 2) that immediately after an isolation
event, within-population genetic diversity decreases due to
genetic drift to the point where it reaches the mutation-drift
equilibrium of an isolated population Heq

s;iso (see File S1 and
Kimura and Crow 1964), at a rate determined by r2 (from

Figure 1 The time (in number of generations) t1 to reach genetic diversity
equilibrium and the length of the transient dynamics period t2 as a func-
tion of the migration rate m. The solid line corresponds to n = 2 popu-
lations, the dashed line to n = 10, and the dotted line to n = 100. t1 is
always at least one order of magnitude higher than t2. This separation of
the two periods becomes even greater when m > 1=4N ¼ 1024. Param-
eter values are N = 2500, m = 1025, a = 5%.
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Equation 6). Meanwhile, between-population genetic diver-
sity slowly increases due to the differentiation of popula-
tions induced by mutations (at a rate determined by r1
from Equation 6). Populations ultimately reach complete
differentiation (equilibrium value of Heq

b;iso ¼ 1). We can
show from Equation 2 that following an isolation event,
within- and between-population diversities change indepen-
dently and reach their equilibrium value in t2 and t1 gener-
ations, respectively (File S2).

The decrease of population genetic diversity (within)
can occur quickly relative to population differentiation
(between-population genetic diversity; see Figure 1). After
an isolation event, within-population genetic diversity (Hs)
remains above its expected equilibrium Heq

s;iso, while be-
tween-population genetic diversity (Hb) remains below its
expected equilibrium Heq

b;iso. However, the timescales of these
nonequilibrium periods differ. When populations are iso-
lated (m = 0), Hs reaches a value close to its equilibrium
value in t2 � 1=ð2mþ ½1=2N�Þ generations, while Hb reaches
a value close to its equilibrium value in t1 � 1=2m genera-
tions (Equation 8). Therefore, when 2m � 1=2N, Hs con-
verges much more quickly than Hb, and when 2m � 1=2N,
both converge in approximately the same amount of time.
For example, assuming m = 1025 and N = 1,000, Hb is
significantly lower than the equilibrium value for approxi-
mately t1 ’ 150,000 generations while Hs is significantly
higher than the equilibrium value for approximately t2 ’
6000 generations (given a = 5%).

Dynamics of Genetic Diversity After
a Connection Event

We analyzed the dynamics of genetic diversity after a con-
nection event, starting with a situation in which populations
are isolated and at their equilibrium value Heq

s;iso and Heq
b;iso

(see Smith 1970; Maruyama 1970 and File S1). After a con-
nection event (Figure 3), the genetic diversity accumulated
in each population during the isolation period is quickly

spread to all populations (Figure 3, fast dynamics in light
shading, at a rate determined by r2 from Equation 6).
Consequently, within-population genetic diversity quickly
increases and reaches a high value that is above its ex-
pected connected equilibrium value (Heq

s;con, Figure 3; see
File S1). This process creates a peak of within-population
genetic diversity DHs and a transient excess of genetic
diversity between populations DHb (see Figure 3). Then,
due to genetic drift, both the within- and the between-
population diversities decrease (slow dynamics in dark
shading in Figure 3, at a rate determined by r1 from
Equation 6), to the point where the diversities reach
the expected value of mutation–migration–drift equili-
brium (Heq

s;con and Heq
b;con from Equation 4b; Kimura and

Crow 1964).
Within- and between-population diversities change suc-

cessively according to two timescales: first, a fast transient
dynamics, followed by a slow asymptotic dynamics (sepa-
ration of timescales is derived in Appendix A and illus-
trated in Figure 3). Because the transient dynamics can be
shorter than the asymptotic dynamics, the excess of ge-
netic diversity (DHs and DHb) can be maintained for a very
long period (from Figure 1, t1 is longer than 10,000
generations).

Peak of Genetic Diversity Generated
by a Connection Event

In this section, we characterize the peak of within-
population genetic diversity, DHs, and the excess of be-
tween-population genetic diversity, DHb, observed after
a connection event as a function of the mutation rate,
the genetic drift, the number of populations, and the mi-
gration rate after connection. The exact value of the
within-population genetic diversity peak is represented
in Figure 4. Assuming that migration and mutation rates
are small, we can show that good approximations of the
values of DHs and DHb are (see derivations in Appendix B)

Figure 2 Dynamics of (A) within-population Hs and (B)
between-population Hb genetic diversity after an isolation
event. Within- and between-population diversity (solid
lines) were previously at their respective connection equi-
librium Heq

s;con and Heq
b;con. After the isolation event, within-

and between-population diversities reach their isolation
equilibrium Heq

s;iso and Heq
b;iso (dashed lines) at rates deter-

mined by r2 and r1 (Equation 6). t2 and t1 estimate the time
to reach the within- and between-population genetic di-
versity equilibrium, respectively (Equation 8). Under the
effect of genetic drift, within-population diversity reaches
its equilibrium value faster than between-population ge-
netic diversity. Parameters are n = 10, N = 2500,m = 1024

before isolation and m = 0 afterward, and m = 1025. t1 ’
149,000 generations and t2 ’ 13,600 generations (for a =
5%).
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DHs ¼
�
12

�
12 F eq

s;iso

� Mðn=½n21�Þ
1þMðn=½n21�Þ

�

· F eq
b;con

M
1þMðn=½n2 1�Þ22N=Ne

0:05t2=t1

DHb ¼
�
12

�
12 F eq

s;iso

� Mðn=½n21�Þ
1þMðn=½n21�Þ

�

· F eq
b;con

1þM2N=Ne

1þMðn=½n21�Þ22N=Ne
0:05t2=t1 ;

(9a)

where

F eq
s;iso ¼ 1

1þ u
(9b)

is the expected equilibrium identity within an isolated
population (Kimura and Crow 1964), and

F eq
b;con ¼ M

M þ ðn2 1Þuð1þ uþ ðn=½n2 1�ÞMÞ (9c)

is the expected equilibrium identity between connected
populations with the scaled migration rate M, the number
of populations n, and the scaled mutation rate u = 4Nm
(Maruyama 1970; Smith 1970). These approximations lead
to the largest absolute error when a small number of pop-
ulations (n = 2) is combined with weak mutation (u , 1)
and intermediate migration (M ’ 5). Nevertheless, this er-
ror is small (error ,0.025 for DHs and ,0.08 for DHb), so
Equation 9 provides a good approximation of DHs and DHb

for all n, M, and u values (see Appendix B for more details
about the validity of approximation 9).

The peak of genetic diversity increases with the differ-
ence between the two timescales (DHs and DHb increase
with t2=t1) as genetic diversity increases during the transient
phase and decreases during the asymptotic phase. Indeed,
when those two phases are separated there is no loss of

genetic diversity caused by the asymptotic decay during
the transient phase (terms 0:05t2=t1 ’ 1 in Equation 9).

In the domain where the peak is the largest (M � 1 and
u � 1), DHs and DHb reach the same value:

DHmax ¼ n21
n

1
1þ nu

: (10)

In this domain, DHmax is maximized when the number of
populations is (dashed line in Figure 4B):

n* ¼ 1þ 1=
ffiffiffi
u

p
(11)

The corresponding peak of genetic diversity, reached at n*, is

DHmaxjn* ¼
1

1þ 2
ffiffiffi
u

p :

Interestingly, the number of populations and the peak of
diversity have a nonmonotonous relationship. The peak of
genetic diversity decreases when the number of populations
approaches 2 and when it tends to infinity, while an in-
termediate number of populations n* maximizes the peak of
genetic diversity. This can be easily explained by the follow-
ing processes. During isolation, a small number of popula-
tions accumulates less between-population genetic diversity;
thus, once reconnected, they share a smaller amount of di-
versity. In contrast, a large number of populations accumu-
lates a higher level of genetic diversity but also has a higher
connection equilibrium value; thus, once reconnected, di-
versity reaches its expected equilibrium and no peak of di-
versity is observed.

In summary, high peaks of genetic diversity (DHs . 0.25
in Figure 4) can occur for a large range of the parameter
space: when mutation is weak (u , 0.05) and migration
is moderate to strong (M . 0.5). Under these conditions,

Figure 3 Dynamics of (A) within-population genetic diversity Hs

and (B) between-population genetic diversityHb after a reconnec-
tion event. Within- and between-population diversities were pre-
viously at their respective isolation equilibriums Heq

s;iso and Heq
b;iso

(Equation 4b). After the reconnection event, within- and be-
tween-population diversities reach their respective connection
equilibriums Heq

s;con and Heq
b;con (dashed lines). As shown in Equa-

tion 8, the time to reach genetic diversity equilibrium t1 and the
length of the transient period t2 are well separated. The two
periods are: (1) fast convergence at a rate determined by r2
(Equation 6) that is driven by the spread of diversity that had
accumulated within populations during isolation, which creates
the peak of within-population diversity (DHs) and the excess of
between-population diversity (DHb) and (2) slow dynamics at
a rate determined by r1 (Equation 6) that is caused by the gradual
loss of genetic diversity. A large number of generations is needed
to reach equilibrium. When n = 10, N = 2500, m = 1024 after
reconnection, and m = 1025, t1 ’ 97,000 generations, t2 ’
6,900 generations (for a = 5%) and DHs ’ DHb ’ 0.11.
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drastic genetic diversity changes can be observed (DHs

values .0.95; Figure 4B for M $ 50 and u , 5 · 1024).
The number of populations that maximize the peak of
diversity, n*, ranges from a few populations when u ’
1, up to a few hundred populations when u = 1026 (val-
ues of u , 1026 are expected to be very rare, and they
would require a mutation rate lower than 2.5 · 10212/bp
for a 1-kb gene and a population size of 100). Interestingly,
a significant peak of genetic diversity is also observed when
only two populations reconnect (DHmax|n=2 = 0.5; Figure
4B).

Peak of Genetic Diversity Resulting from a Migration
Rate Increase

Complete isolation of populations is not required to generate
peaks of genetic diversity. Indeed, an abrupt increase of

migration can generate the peak of genetic diversity charac-
terized in the previous sections. In File S3, we determined
that if migration crosses a threshold value MT, peaks of ge-
netic diversity can occur. The value of the threshold MT, as-
suming that m � 1 and m � 1, is

MT ¼ ðn2 1Þu 1þ u

1þ nu
: (12)

Consequently, an increase of migration from M0 to M cross-
ing the threshold value MT (i.e., M0 � MT) generates a peak
of genetic diversity that can be approximated by Equation 9
(see File S3). For example, in a subdivided population of
n = 10 and u = 0.1, an increase in migration from M0 =
0.01 toM= 10 (which crosses the migration thresholdMT =
0.495; Equation 12), generates a peak of within-population
diversity of 0.350, while a reconnection event in a similar
situation would generate a peak of similar intensity (0.358).

Implications for the Inference of Demography
and Selection

To describe the impact of migration changes on the in-
ference of demography and selection from genetic data, we
described the dynamics of two broadly used summary
statistics: the Ewens–Watterson statistics (Watterson 1978)
and Tajima’s D (Tajima 1989). Both the Ewens–Watterson
statistics and Tajima’s D are known to detect an excess (resp.
deficit) of rare alleles, which induces negative (resp. posi-
tive) values of the statistics, compared with the expected
neutral equilibrium (constant size population without selec-
tion). Usually, an excess of rare alleles is interpreted either
as the signature of balancing selection or population expan-
sion, and a deficit of rare alleles is interpreted as the signa-
ture of directional selection or as a population bottleneck.
We used the Ewens–Watterson statistics, which we denote
HEW and follows (Watterson 1978)

HEW ¼ Hs 2HA; (13)

where Hs is the genetic diversity, and HA is the expected
genetic diversity given the observed number of alleles K.
We also used Tajima’s D, which we denote DT and follows
(Tajima 1989)

DT ¼ p2 S=a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ðp2 S=a1Þ

p ; (14)

where a1 ¼Pm
i¼11=i, l is the sample size, p is the average

number of pairwise nucleotide differences, and S is the num-
ber of segregating sites.

We simulated samples of 50 sequences of 1 kb, with
a per-nucleotide mutation rate of 2 · 1028, in four popula-
tions of size 2500, and ran 5000 replicate simulations. We
simulated an isolation event, where the migration rate
changed from 0.002 to 0 and a reconnection event in which
the migration rate changed from 0 to 0.002. The simulations

Figure 4 Peak of within-population genetic diversity DHs generated by
a reconnection event. (A) Contour plot of DHs as a function of u and M,
for n = 100. We can clearly see the highest peak of diversity in the highM
and low u region. (B) Contour plot of the peak of genetic diversity after
a reconnection event as a function of u and n, for M � 1 (high M region
identified in A). In the highM region, the within-population diversity peak
DHs and the between-population diversity excess DHb are equal. The
dashed line represents the number of populations which maximizes the
peak of diversity n* ¼ 1þ 1=

ffiffiffi
u

p
.
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were performed with the software fastsimcoal (Excoffier and
Foll 2011), and the data analysis was performed with Arle-
quin (Excoffier and Lischer 2010). We simulated samples
from the same population (with the parameter values that
were used, the sampling scheme had a very weak impact;
see Chikhi et al. 2010 for a discussion of how the sampling
scheme affects the values of Tajima’s D). To allow for con-
vergence of the coalescent algorithm, we always assumed
that the populations were connected prior to the isolation
phase. In the reconnection event simulations, we set the
duration of the isolated phase to 10N, which allowed the
genetic diversity values to reach their equilibrium value.

We followed the dynamics of the statistics and estimated
their distribution as a function of time. The results in Figure
5 show that an isolation event produces the same signature
on the Ewens–Watterson statistics (Figure 5A) and Tajima’s
D (Figure 5D), as expected from a bottleneck event and
from directional selection. Indeed, following an isolation
event, genetic drift first causes the elimination of rare
alleles and then eliminates more common alleles. Conse-
quently, the number of alleles K decreases more quickly
than genetic diversity Hs (Figure 5, B and C). Similarly,
the number of segregating sites S decreases faster than
the number of pairwise differencies p (Figure 5, E and F).
Therefore, DT and HEW are skewed toward positive values,
as expected after a bottleneck or under the effect of direc-
tional selection. Moreover, the statistics remain skewed for
a long period of time (,10,000 generations in our simula-
tions, see Figure 5).

Results in Figure 6 show that a reconnection event can
successively produce the same signature as expected from
a population expansion or from a bottleneck event on HEW

(Figure 6A) and DT (Figure 6, B and C). Indeed, following
a reconnection event, migrants first create an excess of rare
variants. The number of alleles K increases more quickly
than the genetic diversity Hs (Figure 6, B and C), and the
number of segregating sites S increases faster than the num-
ber of pairwise differences p (Figure 6, E and F), which
skews HEW and DT toward negative values. Second, new
alleles brought by migrants increase in frequency, creating
an excess of common variants. Consequently Hs increases
more than K, and p increases more than S, which skews DT

and HEW toward positive values.
Interestingly, the observed duration of the periods in

which both statistics are skewed are similar to the expected
duration of the dynamics of genetic diversity (from Equation
8). After an isolation event, we observe, in Figure 5, that all
statistics reach their equilibrium value within �10,000 gen-
erations (4N generations). This duration corresponds to the
value of the time required to reach within-population ge-
netic diversity equilibrium after an isolation event, t2 ’
12,000 generations (4.8N generations, estimated from
Equation 8 with a = 5%). In this example, genetic drift is
stronger than mutation (2m � 1/2N) and thus t2 � 2N. t2
corresponds to the duration of the period in which the def-
icit of rare alleles skews the distribution of HEW and DT.

After a reconnection event, we observe (Figure 6) that
HEW and DT reach a “peak” within �600 generations
(0.24N generations). This duration corresponds to the value
of the duration of the transient dynamics following a recon-
nection event, t2 ’ 540 generations (0.216N generations,
estimated from Equation 8 with a = 5%). In this example,
migration is stronger than genetic drift and mutation (m �
1/2N and m � m), and thus, t2 �1/2m. t2 corresponds to
the period during which the distribution of HEW and DT is
skewed. Subsequently, HEW and DT reach their equilibrium
value in �80,000 generations (32N generations); this dura-
tion corresponds to the time required to reach the genetic
diversity equilibrium value after a reconnection event, t1 ’
75,000 generations (30N generations, estimated from Equa-
tion 8 with a = 5%). t1 corresponds to the period during
which the deficit of rare alleles is eliminated.

In conclusion, both an isolation and a reconnection event
induce changes in the proportion of rare alleles, which
skews the values of HEW and DT, thus producing a signature
that cannot be differentiated from the signature of past de-
mographic events or of selection.

Discussion

We documented a simple neutral mechanism, which creates
long-term peaks of genetic diversity. This peak of genetic
diversity appears shortly after an abrupt increase in migra-
tion and is conserved for a long time. We also demonstrated
that such genetic diversity peaks can occur for a large and
plausible range of population sizes, migration rates, muta-
tion rates, and numbers of populations. Subsequent to the
genetic diversity peak, the rate of decay of genetic diversity
was slow. Consequently, the mechanisms described here
leave a strong and long-term footprint on genetic diversity
that affects the Ewens–Watterson statistics and Tajima’s D
that are commonly used to infer the history of populations
from genetic data.

The peak of genetic diversity is due to the spread of the
genetic diversity accumulated during (partial) isolation.
Therefore, the migration model that is assumed (island
model of migration) is a leading factor in determining the
strength of the observed genetic diversity peak. Assuming
isolation by distance, the within-population genetic diversity
is expected to have locally lower peaks. At the same time,
under this assumption, the between-population genetic
diversity is expected to be higher. Indeed, once populations
are connected, each population shares with its neighboring
populations alleles accumulated during isolation; thus,
differentiation between distant populations will be main-
tained. Additionally, the amount of genetic diversity accu-
mulated during isolation determines the size of the peak of
genetic diversity. The maximum value is reached when
populations are completely differentiated, i.e., when no
alleles are shared between populations. Our results are ro-
bust to the relaxation of the complete isolation and complete
differentiation assumptions: when isolation is not complete
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(because of small migration or nonequilibrium genetic di-
versity), we show that a genetic diversity peak is still ob-
served (see File S3).

A connection event that occurs after an isolation period
might play an important role on species diversification.
Indeed, we have demonstrated that such events create an
excess of genetic diversity. A high level of genetic diversity
has often been hypothesized as being a key factor for species
diversification. First, evolution from standing genetic varia-
tion might be stronger than from de novo mutation (Gibson
and Dworkin 2004; Hermisson and Pennings 2005; Myles
et al. 2005; Barrett and Schluter 2008). Second, both theo-
retical (Gavrilets 2003; Gavrilets and Losos 2009) and em-

pirical work suggest that a high level of preexisting genetic
diversity in a population increases its rate of diversification
(Harmon et al. 2003; Seehausen 2004; Barrett and Schluter
2008). Interestingly, in several cases of adaptive radiation,
a high genetic diversity of founder populations has been
documented (e.g., Barrier et al. 1999; Bezault et al. 2011).
Several authors argued that the connection of populations
after a period of isolation might have played an important
role in many adaptive radiations (Hughes and Eastwood
2006; Antonelli and Sanmartín 2011; Bezault et al. 2011;
Joyce et al. 2011). Therefore, species that experienced pop-
ulation isolation followed by reconnection events could have
benefited from a temporary genetic diversity peak, which

Figure 5 Effect of an isolation event on Ewens–Watterson and Tajima’s D neutrality tests and on related summary statistics. (A) Ewens–Watterson
statistics (HEW), (B) genetic diversity (Hs), (C) number of alleles (K), (D) Tajima’s D (DT), (E) number of pairwise differences (p), and (F) number of
segregating sites (S). For each statistics, the solid line represents the median of the distribution and the light shading represents the 97.5 and 2.5%
quantiles of the distribution as a function of the number of generations t after the isolation event. Dark shading in A and D represent the expected
distribution of the statistics in an isolated population at equilibrium. Values of HEW and D after an isolation event are skewed toward positive values
(signature of a bottleneck or directional selection), while there was no change in the size of the population. K and S decrease more quickly than Hs and
p, because rare alleles are eliminated by genetic drift more quickly than common alleles. Coalescence simulations of a 1-kb locus with a mutation rate of
2 · 1028/bp, where four populations of size 2500 are isolated; 5000 replicates.
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has promoted the diversification of that species. Numerous
species are known to have experienced such connectivity
changes in the past and show remarkable levels of genetic
and species diversity (Arnegard et al. 1999). For example,
cichlid fishes in the great African lakes experienced periods
of habitat fragmentation and reconnection due to lake water
level fluctuations (Arnegard et al. 1999); there is some ev-
idence that these processes might have played a role in the
explosive radiation of the species (Owen et al. 1990; Young
et al. 2009). Additionally, a high rate of speciation is corre-
lated with the timeframe surrounding the uplift of the
Northern Andes (Sedano and Burns 2010). The mechanisms

described here are thus expected to considerably affect the
ability of species to adapt to novel environmental conditions
and to diversify over a very long period of time.

Statistics on allelic frequencies such as the Ewens–Watterson
statistics (Watterson 1978) and Tajima’s D (Tajima 1989)
allow the inference of either selection or population dem-
ographic changes. Here, we demonstrate that migration
changes can lead to signatures that cannot be differentiated
from a selection process or a population size change when
using the Ewens–Watterson test and Tajima’s D. Therefore,
past migration changes must be considered more carefully
and should be viewed as an alternative explanation of bias

Figure 6 Effect of a reconnection event on Ewens–Watterson and Tajima’s D neutrality tests and on related summary statistics. (A) Ewens–Watterson
statistics (HEW), (B) genetic diversity (Hs), (C) number of alleles (K), (D) Tajima’s D (DT), (E) number of pairwise differences (p), and (F) number of
segregating sites (S). For each statistics, the solid line represents the median of the distribution, and the light shading represents the 97.5% and 2.5%
quantiles of the distribution, as a function of the number of generations t after the isolation event. Dark shading in A and D represent the expected
distribution of the statistics in an isolated equilibrium population. Values of HEW and D after a reconnection event are first skewed toward negative
values (signature of a population expansion or balancing selection) and then toward positive values (signature of a bottleneck or directional selection),
while there was no change in the size of the population. K and S first increase more quickly than Hs and p because immigrants bring rare alleles, and
then Hs and p reach a higher value because immigrant alleles increase in frequency. Finally, alleles are eliminated by genetic drift until the statistics reach
their expected equilibrium value when populations are connected. Coalescence simulations of a 1 kb locus with a mutation rate of 2 · 1028 per bp,
where 4 populations of size 2500 isolated during 25,000 generations are reconnected with a migration rate m = 0.002; 5000 replicates.
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in neutrality tests and bottleneck or expansion signals. Re-
cently, authors have shown that population structure can bias
neutrality tests and produce false bottleneck signals (Leblois
et al. 2006; Städler et al. 2009; Chikhi et al. 2010) and that
shortly after an isolation event departure from the neutrality
can be incorrectly inferred (as shown with simulations by
Broquet et al. 2010 and discussed in Waples 2010). The
proper interpretation of genetic signatures is crucial for the
understanding of the evolutionary history of populations. An
interesting extension of this work would be to analyze in more
detail the molecular signature of the mechanisms described
here and to provide methods that allow the differentiation of
such events from selection or demographic changes. More-
over, our results are also relevant for the study of genealogies.
Indeed, genetic identities as considered here are commonly
used to describe coalescence time distributions (Slatkin 1991;
Rousset 1996; Wakeley 1999). Future investigations should
also investigate the consequences of isolation and connection
events on phylogenetic tree reconstruction. Statistical tools
that are available to estimate demographic parameters clas-
sically focus on a priori specific scenarios (e.g., population
bottleneck, expansion, population with constant migration,
population split with subsequent migration; see review in Kuh-
ner 2009). Given the strong impact of migration changes on
genetic diversity, accounting for such scenarios is necessary.
Recent methods allowing a larger range of population demo-
graphic scenarios, such as approximate Bayesian computation
(Beaumont et al. 2002; Beaumont 2010), may be powerful
tools with which to disentangle the signature of demographic
processes from the observed genetic diversity.

One of the major goals of conservation genetics is to
maintain genetic diversity, decrease extinction risks, avoid
inbreeding depression, maintain species evolutionary poten-
tial, and decrease species vulnerability to environmental
change (Gilpin and Soule 1986; Newman and Pilson 1997;
Jump et al. 2009). In this context, conservationists need to
estimate the genetic diversity of a population and its effec-
tive size. Such measures are commonly obtained from ge-
netic data and are estimated with standard statistics (Wright
1950; Jorde and Ryman 2007). Although new approaches
that consider populations at a nonequilibrium state are
emerging, to estimate population size changes and instanta-
neous migration rates (e.g., Hey and Nielsen 2004), the
expected level of genetic diversity is still commonly esti-
mated assuming that populations are at an equilibrium. As
shown here, genetic diversity is more likely to be in a transient
state. We have demonstrated that reconnecting isolated pop-
ulations increases genetic diversity above the expected equi-
librium value, while isolating populations induces a slow
decrease of genetic diversity. Consequently, any estimate
inferred from data collected from a population that under-
went strong migration changes will not reflect the demo-
graphic situation of the population (e.g., census size, genetic
diversity). This can have drastic consequences on the selec-
tion of conservation strategies and for the management of
species (Pearse and Crandall 2004; Caballero et al. 2010).
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Appendix A: Dynamics of Genetic Diversity
In this appendix, we describe the temporal change of genetic diversity (derivation of Equations 4a and 8 and the separation
of the dynamics of genetic diversity into two timescales).

Temporal change of genetic diversity

The solution to Equation 3 is

Ft ¼ AtðF0 2 FeqÞ þ Feq: (A1)

Denoting P the transformation matrix with eigenvector U1 (associated with l1) as first column and eigenvector U2 (asso-
ciated with l2) as second column,

P ¼ ðU1 U2 Þ (A2)

and denoting �
y10
y20

�
¼ P21ðF0 2 F eqÞ; (A3)

Equation A1 becomes

Ft ¼ P
�
l1 0
0 l2

�t

P21ðF0 2 F eqÞ þ F eq

¼ P
�
l1 0
0 l2

�t� y10
y20

�
þ F eq

¼ y10U1l
t
1 þ y20U2l

t
2 þ F eq:

(A4)

Further, denoting C1 = y10U1 and C2 = y20U2 leads to Equation 4a.
Ft changes according to two exponential decay functions, lt1 and lt2. Their rates of change are dl

t
1=dt ¼ lnðl1Þ · elnðl1Þt and

dlt2=dt ¼ lnðl2Þ · elnðl2Þt, respectively. Thus r1 = ln(l1) and r2 = ln(l2) are the decay constants that determine the rate of
change of functions lt1 and lt2.

Therefore, the eigenvalues of matrix A can be used to compute the rates of change of genetic diversity. As l1 . l2 and
both eigenvalues are ,1, we have |r2| . |r1|, and thus C2l

t
2 tends to 0 faster than C1l

t
1. r2 determines the transient rate of

change of genetic diversity, while r1 determines the asymptotic rate of change of genetic diversity.
We now want to simplify the expression of the rates of change of genetic diversity. To do so, we can rewrite Equation 5 as

l1 ¼ ð12mÞ2
2

"
að12 cÞ þ 12 bþ ð12 að12 cÞ þ bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

4bc

ð12að12cÞ þ bÞ2
s #

l2 ¼ ð12mÞ2
2

"
að12 cÞ þ 12 b2 ð12 að12 cÞ þ bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

4bc

ð12að12cÞ þ bÞ2
s #

:

With 4bc� (12 a(12 c) + b)2 (asm� 1 and N� 1), and given that
ffiffiffiffiffiffiffiffiffiffiffi
12 x

p ¼ 12 1
2 x þ oðxÞ, Equation 5 further simplifies

to

l1 ¼ ð12mÞ2
�
12

bc
12 að12 cÞ þ b

�

l2 ¼ ð12mÞ2
�
að12 cÞ2 bþ bc

12 að12 cÞ þ b

�
:

Considering that migration rates and mutation rates are small, we can neglect terms in m2, 1=N2, m2, m/N, mm, and m=N,
which leads to
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l1 ¼ 12 2m2 1=
�
2nN

�
1þ n2 1

nM

�


l2 ¼ 12 2m2 2m
n

n2 1
2

1
2N

þ 1=
�
2nN

�
1þ n2 1

nM

�
 (A5)

and thus

r1 ¼ ln
�
12 2m21=

�
2nN

�
1þ n2 1

nM

�
�

r2 ¼ ln
�
12 2m22m

n
n2 1

2
1
2N

þ 1=
�
2nN

�
1þ n21

nM

�
�
:

(A6)

Assuming that migration and mutation rates are small, and that local population sizes are large (N � 1), Equation A6
simplifies to Equation 6 as ln(1 2 x) = 2x + o(x).

Respective length of the asymptotic and transient dynamics periods

We denote t1 and t2 as the times needed for lt1 and lt2 to be reduced to a value a, where a 2 ]0; 1],

lt11 ¼ a

lt22 ¼ a;
(A7)

which leads to

t1 ¼ lnðaÞ
r1

t2 ¼ lnðaÞ
r2

:

(A8)

Assuming small migration and mutation rates and large local population sizes, we can replace the expressions of r1 and r2
from Equation 6 into Equation A8, and we obtain Equation 8. Ft approximately follows

Ft ’
8<
:

F eq þ C1l
t
1 þ C2l

t
2 for t, t2

F eq þ C1l
t
1 for t2 , t, t1

F eq for t1 , t:
(A9)

Timescales separation

This section presents the conditions for t1 � t2. When t1 � t2, l
t2
2 ’ 0 and lt21 ’ 1; thus, Equation A9 simplifies to

Ft ’
8<
:

F eq þ C1 þ C2l
t
2 for t, t2

F eq þ C1l
t
1 for t2 , t, t1

F eq for t1 , t:
(A10)

Equation A10 decomposes the dynamics of Ft into two timescales: a transient period of length t2 and an asymptotic period
of length t1 2 t2 ’ t1. For t . t1, the genetic identity is close to its equilibrium value Feq, so t1 can be interpreted as the
duration of the disequilibrium period.

Equation A10 is true if a t exists such that lt1 ​ ’ ​ 1 and lt2 ​ ’ ​ 0. For simplicity, we consider that lt1 ​ ’ ​ 1 if lt1 ​ $ ​ 0:95 and
that lt2 ​ ’ ​ 0 if lt2 ​ # ​ 0:05. Thus, Equation A10 is a good approximation if a t exists such that

lt1 $0:95
lt2 #0:05

⇒

8><
>:

t#
lnð0:95Þ
lnðl1Þ

lt2 # 0:05:
(A11)

Thus, showing that
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l
lnð0:95Þ=lnðl1Þ
2 # 0:05 (A12)

demonstrates that for t ¼ lnð0:95Þ=lnðl1Þ, we have lt1 ​ $ ​ 0:95 and lt2 ​ # ​ 0:05. This provides a sufficient proof of proposition
(A11).

We can demonstrate that proposition (A12) depends only on the ratio t1=t2 ¼ lnðl2Þ=lnðl1Þ (see definitions of t1 and t2
Equation 7). Proposition (A12) leads to

l
lnð0:95Þ=lnðl1Þ
2 # 0:05

⇔ elnð0:95Þ½lnðl2Þ=lnðl1Þ� #0:05

⇔ lnð0:95Þ t1
t2
# lnð0:05Þ

⇔
t1
t2
$

lnð0:05Þ
lnð0:95Þ:

Therefore, the condition t1=t2 $ lnð0:05Þ=lnð0:95Þ is necessary and sufficient to prove propositions (A12) and (A11) and the
validity of Equation A10. As lnð0:05Þ=lnð0:95Þ ’ 58:4, Equation A10 is valid when t1=t2 . 58:4. Considering that m and m

are small, and that N is large, this ratio is approximately equal to (from Equation 8)

t1
t2

’ 2mþ 2mðn=½n2 1�Þ þ ð1=2NÞ2 ð1=2NeÞ
2mþ ð1=2NeÞ : (A13)

From Equation A13 we can derive the conditions of the timescales separation of the dynamics of genetic diversity (i.e., the
parameter values for which t1 � t2). When n. 14, differences are the highest (t1 � t2), in the domain where m � 1=2N and
also when m � 1=2N and m . m. When n # 14, the same conditions apply for t1 � t2 except in a restricted domain where
m ’ 1=2N (m � ðn21Þ=2nN or m � ðn2 1Þ=2nN are required for t1 � t2; see Figure A1). Indeed, denoting
A ¼ lnð0:05Þ=lnð0:95Þ, t1=t2 .A implies that

M.
Aþ 12 2nþ ðA2 1Þnuþ ffiffiffiffi

D
p

2ðn2=ðn2 1ÞÞ or M,
Aþ 12 2nþ ðA2 1Þnu2 ffiffiffiffi

D
p

2ðn2=ðn2 1ÞÞ ; (A14a)

where

D ¼ ðAþ 1ÞðAþ 12 4nÞ þ 2nu
�
A22 1

�þ n2ðA21Þ2u2: (A14b)

For u � 1, we can neglect terms that do not contain u, and conditions (A14) simplify to

M. ðA21Þ n21
n

u; (A15)

which simplifies to M � u.
For u � 1, terms that contain u can be neglected in Equation A14, which yields the following conditions:

M.
Aþ 12 2nþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAþ 1ÞðAþ 12 4nÞp

2ðn2=ðn2 1ÞÞ or M,
Aþ 122n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAþ 1ÞðAþ 12 4nÞp
2ðn2=ðn2 1ÞÞ (A16)

Therefore, Equation A10 is not valid when conditions of Equation A16 are not met. This domain is centered around
M ¼ ððn2 1Þ=nÞ, as

Aþ 12 2nþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAþ 1ÞðAþ 12 4nÞp
2ðn2=ðn2 1ÞÞ and

Aþ 12 2nþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAþ 1ÞðAþ 12 4nÞp
2ðn2=ðn2 1ÞÞ

equalize to M ¼ ððn2 1Þ=nÞ, for A = 4n 2 1. The size of this domain decreases when n increases (Figure A1), and Equation
A10 is valid for any value of M in the domain u � 1 when n . 14 (as conditions (A16) are relaxed when 4n . A + 1, with
A ¼ ðlnð0:05Þ=lnð0:95ÞÞÞ.
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Appendix B: Peak of Genetic Diversity Generated by a Reconnection Event

We derive first the value of the peak of within-population genetic diversity, DHs, and the transient excess of between-
population genetic diversity, DHb, generated by a reconnection event. Second, we characterize their dependency on the
migration rate, mutation rate, size, and number of populations.

Derivation of DH

We denote the vector of genetic diversity excess at the end of the transient dynamics phase as DH ¼ ð DHs
DHb
Þ.

The genetic diversity at the end of the transient dynamics phase is approximately Ht2 ¼ 12 ðFeq þ C1l
t2
1 Þ (from Equation A9

when t ’ t2). Thus DH is approximately

DH ¼ Ht2 2Heq

¼ 12
�
Feq þ C1l

t2
1

�
2 ð12 F eqÞ

¼ 2C1l
t2
1 :

(B1)

The peak of genetic diversity depends on C1 = y10U1 (from Equations A2 and A3). To derive the value of C1, we compute U1

and y10. The eigenvector U1 ¼ ð u11
u21 Þ is associated with l1 and follows

AU1 ¼ l1U1: (B2)

Equation B2 leads to the condition that u21 ¼ 2 ððað12 cÞ2 ð12 bÞ2 ffiffiffiffiffiffiffiffiffi
Dred

p Þ=2ð12 aÞÞu11, where Dred = (1 2 a(1 2 c) +
b)2 2 4bc. We set u11 = 2(1 2 a), leading to

U1 ¼
 

2ð12 aÞ
12 að12 cÞ2 bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12að12cÞ þ bÞ2 2 4bc

q !
:

Similarly, we can determine the eigenvector associated with l2:

U2 ¼
 

2ð12 aÞ
12 að12 cÞ2 b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12að12cÞ þ bÞ2 2 4bc

q !
:

Denoting the initial value of genetic identity F0 ¼ ð Fs;0
Fb;0
Þ and replacing the expression of U1 and U2 in Equation A3 leads to

Figure A1 Domain of validity of Equation A10 (white contours), as a function of the strength of migration (M) and mutation (u), (A) n = 2, (B) n = 20.
The dark shading represent the domains where the validity of Equation A10 is poor (i.e., the exact value of llnð0:95Þ=lnðl1Þ2 .0:05; from Equation 5).
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Y0 ¼

0
BBBB@

2

�
12 að12 cÞ2 b2

ffiffiffiffiffiffiffiffiffi
Dred

p �
4ð12 aÞ ffiffiffiffiffiffiffiffiffi

Dred
p 1

2
ffiffiffiffiffiffiffiffiffi
Dred

p
12 að12 cÞ2 bþ ffiffiffiffiffiffiffiffiffi

Dred
p

4ð12 aÞ ffiffiffiffiffiffiffiffiffi
Dred

p 2
1

2
ffiffiffiffiffiffiffiffiffi
Dred

p

1
CCCCA
�
Fs;0 2 Feqs;con
Fb;0 2 Feqb;con

�
:

Assuming isolation equilibrium for the initial identity leads to Fs;0 ¼ Feqs;iso and Fb;0 ¼ 0; thus, DH simplifies to

DH ¼
"�

F eq
s;iso2 F eq

s;con

� 12 að12 cÞ2 b2
ffiffiffiffiffiffiffiffiffi
Dred

p
4ð12 aÞ ffiffiffiffiffiffiffiffiffi

Dred
p þ

F eq
b;con

2
ffiffiffiffiffiffiffiffiffi
Dred

p
#
U1l

t2
1 : (B3)

With 4bc � (1 2 a(1 2 c) + b)2 (as m � 1 and N � 1), and given that
ffiffiffiffiffiffiffiffiffiffiffi
12 x

p ¼ 12 1
2 x þ oðxÞ, DH further becomes

DH ¼ 2
1

2ð12 að12 cÞ þ b2 2bc=ð12 að12 cÞ þ bÞÞ

"�
Feqs;iso2 Feqs;con

�
n2 1

12 að12 cÞ þ b2 c
12 að12 cÞ þ b

2 Feqb;con

#
U1l

t2
1 : (B4)

Assuming that migration and mutation rates are always small, we can neglect terms in m2, m2, 1=N2, mm, m=N, and m=N,
and Equation B4 simplifies to

DH ¼ 2

"�
Feqs;iso2 Feqs;con

�
n2 1

M½n=ðn2 1Þ�
1þM½n=ðn2 1Þ�2 Feqb;con

#0BBB@
M

1þ ½n=ðn21Þ�M2 2N=Ne
1þM2N=Ne

1þ ½n=ðn21Þ�M2 2N=Ne

1
CCCAlt21 : (B5)

By replacing the term lt21 (Equation 8 with a = 0.05) in Equation B5, we obtain Equation 9.
Equation 9 provides a good approximation of the size of the peak of within-population genetic diversity DHs and of the

transient excess of between-population genetic diversity DHb in the entire parameter domain. Figure B1, A and C, and Figure
B2, A and C, represent the exact (solid line) and approximate (dashed line; from Equation 9) values of DHs and DHb,
respectively, as a function of u and M, for n = 2 and n = 20; we can see that the true and approximate values are very close.
Figure B1, B and D, and Figure B2, B and D, represent the absolute error resulting from the use of Equation 9 as an
approximation of DHs and DHb, respectively, instead of its exact value, for n = 2 and n = 20. Discrepancies between
Equation 9 and the true values of DHs and DHb can first come from the assumption that m � 1, m � 1, and N � 1 and
second from the assumption of the existence of t2 such that jC2l

t2
2 j � jC1l

t2
1 j.

Maximum peak of diversity after a connection event

The peak of genetic diversity increases monotonously with M (dðDHÞ=dM. 0 for any value of m, m, n, and N) and decreases
monotonously with u (dðDHÞ=dM, 0 for any value of m, m, n, and N). The peak of diversity is maximized for intermediate
values of n and reached when

dðDHÞ
dn

¼ 0: (B6)

If we neglect terms in m2, m2, 1=N2, mm, m=N, and m=N, and assuming small u and high M, solving Equation B6 using
Equation 10 for the peak of genetic diversity leads to Equation 11. When n = n*, Equation 10 leads to a peak of genetic
diversity of

DHmaxjn* ¼
1

1þ 2
ffiffiffi
u

p :
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Figure B1 (A and C) Exact (solid lines) and approximate
(dashed lines, from Equation 9) values of the peak of
genetic diversity DHs, as a function of the strength of
migration (M) and mutation (u). In both A and C, the exact
and approximate values of DHs are very close. (B and D)
Absolute error when using Equation 9 to approximate
DHs, as a function of M and u. The maximum absolute
error is reached when M ’ 5 and u , 1 in both B and D.
The error decreases when M � 5 or M � 5. The absolute
error increases when n decreases, but remains weak: (B)
the maximum absolute error is 0.025 for n = 2, and (D)
0.018 for n = 20. Consequently, Equation 9 is a good
approximation for the peak of genetic diversity whatever
the parameter values of u, M, and n considered.

Figure B2 (A and C) Exact (solid lines) and approximate
(dashed lines, from Equation 9) values of the transient
excess of between-population genetic diversity DHb, as
a function of the strength of migration (M) and mutation
(u). In both A and C, the exact and approximate values of
DHb are very close. (B and D) Absolute error when using
Equation A9 to approximate DHb, as a function of M and
u. The maximum absolute error is reached when M ’ 1
and u , 1, the absolute error is 0.09 for n = 2 (B), and
0.016 for n = 20 (D). Equation 9 is a good approximation
for DHb whatever the parameter values of u, M, and n
considered.
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FILE S1

GENETIC DIVERSITY EQUILIBRIUM

In this Supporting Information File, we provide for eq. 3 the conditions of existence of a genetic

diversity equilibrium value, we derive its value and finally determine its stability.

Condition of existence of an equilibrium: Eq. 3 is a non-homogeneous linear matrix recurrence

equation, with an additive constant vector B. If I −A is invertible, there is a unique equilibrium

value for eq. 3:

Feq = (I−A)−1B (S1.1)

and from any initial value F0, genetic identities after t generations follow:

Ft = At(F0 − Feq) + Feq (S1.2)

I −A is invertible if and only if the determinant of I −A is not null, which is true whenever

µ 6= 0. This condition is always met in our model.

Equilibrium value: We can express the equilibrium value S1.1 as a function of the migration rate

m, mutation rate µ, population size N and number of populations n:

Feq = (I−A)−1B

=

 1− a(1− c)(1− µ)2 −(1− a)(1− µ)2

−b(1− c)(1− µ)2 1− (1− b)(1− µ)2


−1

(1− µ)2

 ac

bc


=

1

ac( 1
(1−µ)2 − 1) + bc+ ( 1

(1−µ)2 − 1)( 1
(1−µ)2 + b− a)

 ac( 1
(1−µ)2 − 1) + bc

bc
(1−µ)2



=


1

1+
(2−µ)
c(1−µ)2

µ

(2−µ)
(1−µ)2

µ+nb

a
(2−µ)
(1−µ)2

µ+b

b

b(1−µ)2+(2−µ)µ(a+c−1(
(2−µ)
(1−µ)2

µ+nb))


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When mutation rates and migration rates are small, 2−µ is close to 2, (1 − µ)2 is close to 1,

a = (1−m)2+ m2

n−1 is close to 1− 2m, and b = 1−a
n−1 is close to 2m

n−1 . Therefore, taking into account

that c = 1
2N

, the expression above further simplifies to:

Feq =


1

1+4Nµ
2µ+2m n

n−1

2µ+ 2m
n−1

2m
n−1

2m
n−1

+2µ(1−2m+2N(2µ+2m n
n−1

))


Denoting θ = 4Nµ and M = 4Nm, for the scaled mutation and migration rate, respectively,

the above expression can be described as:

Feq =


1

1+θ(1+ M

θ+ M
n−1

)

M
M+(n−1)θ(1+θ+ n

n−1
M)


(S1.3)

which is the equilibrium value that was first derived by MARUYAMA (1970). We can then derive the

genetic diversities Ht =

 Hs,t

Hb,t

 = 1−Ft, and the equilibrium genetic diversities Heq = 1−Feq.

Stability of the equilibrium: Equilibrium S1.1 is stable if and only if lim
t→∞

At = 0, thus if and

only if the absolute value of all eigenvalues of matrix A are below 1.

The eigenvalues of matrix A are the roots of the characteristic equation χA(T ) = T 2 −

tr(A)T + det(A). They are presented in eq. 5. As 4bc ≥ 0 for all values of m, n and N ,√
(1− a(1− c) + b)2 − 4bc ≤ 1 − a(1 − c) + b. Thus from eq. 5, λ1 ≤ (1 − µ)2. λ1 is below 1

for all mutation rates strictly less than 1. As λ1 < 1 and λ2 < λ1, both eigenvalues are below 1. In

addition, λ1 and λ2 are positive for any possible migration rate, mutation rate, size and number of

populations. Therefore 0 < λ1 < 1 and 0 < λ2 < 1, which proves that equilibrium S1.1 is always

stable, and is reached whatever the initial identity F0 considered.
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FILE S2

EFFECT OF AN ISOLATION EVENT ON GENETIC DIVERSITY

We show in this section that following an isolation event, within- and between-population genetic

diversities change independently and that their times to reach equilibrium values are t2 and t1,

respectively. When populations are isolated (m = 0), eq. 2 simplifies to:


Fs,t+1 = (c+ (1− c)Fs,t)(1− µ)2

Fb,t+1 = Fb,t(1− µ)2
(S2.1)

In eq. S2.1, Fs,t+1 depends only on Fs,t but not on Fb,t; similarly, Fb,t+1 depends only on Fb,t but

not on Fs,t. Thus, Fs,t and Fb,t both follow a one dimensional recurrence equation:


Fs,t = F eq

s + (Fs,0 − F eq
s )((1− c)(1− µ)2)t

Fb,t = Fb,0(1− µ)2t
(S2.2)

Therefore, when populations are isolated, within- and between-population genetic diversities change

according to (1−c)(1−µ)2 and (1−µ)2, respectively. As whenm=0, λ1=(1−µ)2 and λ2=(1−c)(1−µ)2

(from eq. 5), we can rewrite S2.2 as:


Fs,t = F eq

s + (Fs,0 − F eq
s )λt2

Fb,t = Fb,0λ
t
1

(S2.3)

We can conclude that when populations are isolated, Fs and Fb change according to λt2 and λt1,

respectively. This demonstrates that after isolation, within- and between-population genetic diver-

sities reach their equilibrium value in t2 and t1 generations, respectively.
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FILE S3

RELAXING THE COMPLETE ISOLATION HYPOTHESIS

Throughout the study, we consider a complete isolation event, where populations that were previ-

ously connected suddenly become completely isolated, and a reconnection event where previously

completely isolated populations suddenly become connected. Nevertheless, we show in this Sup-

porting Information File that the assumption of complete isolation can be relaxed. Indeed, the

results for complete isolation are a very good approximation of results for a strong but incomplete

isolation.

Equilibrium genetic identity under incomplete isolation: Incomplete isolation corresponds to a

state where populations are connected through migration at a rate 0 < m << 1. We characterize

in this section the threshold value of migration rate under which the complete isolation equilibrium

genetic identity is a good approximation of the incomplete isolation equilibrium value.

To do so, we can rewrite eq. S1.3 under the following form (isolating terms in M ):

Feq =

 θ+ M
n−1

θ+ M
n−1

+θ(θ+ M
n−1

+M)

M
M+(n−1)θ(1+θ)+nθM)


=

 1
1+θ

+ ( 1
1+nθ

− 1
1+θ

) M
M+(n−1)θ 1+θ

1+nθ

( 1
1+nθ

) M
M+(n−1)θ 1+θ

1+nθ



We know that an isolated population of size N has a within-population genetic identity equi-

librium value of 1
1+θ

(KIMURA and CROW 1964), and a between-population equilibrium value of

0. Therefore, the genetic identity of isolated populations at equilibrium is Fiso =

 1
1+θ

0

. The

equilibrium within- and between-population genetic identity of a panmictic population of size nN
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is Fpan =

 1
1+nθ

1
1+nθ

 (KIMURA and CROW 1964). Eq. S1.3 can be written:

Feq = Fiso + (Fpan − Fiso)fn;θ(M) (S3.1a)

with

fn;θ(M) =
M

M + (n− 1)θ 1+θ
1+nθ

(S3.1b)

fn;θ(M) is similar to a Michaelis-Menten function (in the form f(M) = vM/(M +MT )), with

a maximum value v=1 and a threshold MT=(n−1)θ 1+θ
1+nθ

(MICHAELIS and MENTEN 1913). We

can predict by analogy to the Michaelis-Menten function that the behavior of the function depends

on the relative value of M and MT , with in our case a threshold value of:

MT = (n− 1)θ
1 + θ

1 + nθ
(S3.2)

If M is much below the threshold, Feq ' Fiso: the genetic identity equilibrium is close to the isola-

tion equilibrium. If M is larger than the threshold, Feq ' Fpan: the genetic identity equilibrium is

close to the panmictic equilibrium. WhenM=MT , Feq=Fiso+Fpan

2
: the genetic identity equilibrium

is the mean of the panmictic and isolation equilibria. Fig. S3 illustrates the variations of Feq
s and

Feq
b as a function of M .

Peak of genetic identity generated by a migration rate increase: We now consider an event of

abrupt migration rate increase (from scaled rate M0 to M > M0). In this case, eq. B.5 becomes:

∆H = −[
(F eq

s,iso − F pan
s )

n− 1

M n
n−1

1 +M n
n−1
− F pan

b ](f(M)−f(M0))

 M
1+ n

n−1
M− 2N

Ne

1+M− N
Ne

1+ n
n−1

M− 2N
Ne

 0.05
t2
t1 (S3.3)

The value of the peak of diversity depends on the relative value of M0 and the threshold MT .
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F eqs

log10(M)
M0.5

1
19
M0.5 19M0.5

F iso
s = 1

1+θ

0.05F iso
s +0.95Fpan

0.95F iso
s +0.05Fpan

F isos +F pan

2

F pan= 1
1+nθ

(A)

F eqb

log10(M)
M0.5

1
19
M0.5 19M0.5

F pan= 1
1+nθ

0.05Fpan

0.95Fpan

F pan

2

F iso
b =0

(B)

Figure S1 (A) Within-population F eqs , and (B) between-population F eqb genetic identity, as a function of
the strength of migration M (scaled migration rate). F iso and F pan are the expected equilibria when all
populations are isolated or panmictic, respectively. The inflexion point (transition between panmictic and
isolation equilibrium) is MT=(n − 1)θ 1+θ

1+nθ for both within- and between-population genetic identity. For
M < M0.05=

0.05
0.95MT (MT is 19 fold M0.05), the genetic identity equilibrium is close to the isolation

equilibrium.

Indeed, from eq. S3.1b and S3.3 we can see that f(M0)'0 and eq. S3.3 and B.5 equalize when

M0<<MT . Thus, an increase in migration rate above the threshold produces the same peak as

a reconnection event. This demonstrates that genetic diversity peaks are generated whenever the

scaled migration rate increases abruptly and crosses the threshold value MT. Thus, an increase in

migration rate from a small M0 to M produces approximately the same peak of genetic diversity

as an increase from 0 to M (M0 <
0.05
0.95

MT ensures that f(M0)<0.05).
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