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Abstract

Over the past years, we synthesized a series of new molecules that are hybrids of spirocyclic ketones as complexity-bearing
cores with bi- and ter-phenyls as privileged fragments. Some of these newly-shaped small molecules showed
antiproliferative, pro-apoptotic and differentiating activity in leukemia cell lines. In the present study, to investigate more
in depth the mechanisms of action of these molecules, the protein expression profiles of K562 cells treated with or without
the compounds IND_S1, MEL_T1, IND_S7 and MEL_S3 were analyzed using two-dimensional gel electrophoresis coupled
with mass spectrometry. Proteome comparisons revealed several differentially expressed proteins, mainly related to cellular
metabolism, chaperone activity, cytoskeletal organization and RNA biogenesis. The major results were validated by Western
blot and qPCR. To attempt integrating findings into a cellular signaling context, proteomic data were explored using
MetaCore. Network analysis highlighted relevant relationships between the identified proteins and additional potential
effectors. Notably, qPCR validation of central hubs showed that the compound MEL_S3 induced high mRNA levels of the
transcriptional factors EGR1 and HNF4-alpha; the latter to our knowledge is reported here for the first time to be present in
K562 cells. Consistently with the known EGR1 involvement in the regulation of differentiation along megakaryocyte lineage,
MEL_S3-treated leukemia cells showed a marked expression of glycoprotein IIb/IIIa (CD41) and glycoprotein Ib (CD42), two
important cell markers in megakaryocytic differentiation, together with morphological aspects of megakaryoblasts and
megakaryocytes.
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Introduction

Chronic myeloid leukemia (CML) is a myeloproliferative

disorder characterized by increased proliferation of the granulo-

cytic cell line. The annual incidence is one or two cases per

100,000 adults with a slight male predominance. Up to 95% of

CML patients harbour the t(9;22)(q34;q11) chromosomal translo-

cation, cytogenetically visible as the Philadelphia (Ph) chromo-

some, which directs the expression of the constitutively active

tyrosine kinase BCR-ABL. The chimeric BCR-ABL protein

activates a variety of downstream effectors and signaling pathways,

leading to growth factor-independent cell cycle progression, failure

to differentiate, inhibition of apoptosis, alterations in cell-cell and

cell-matrix interactions, and leukemogenesis [1].

The management of CML has been revolutionized in 2001 by

the introduction of imatinib mesylate (GleevecH), a potent tyrosine

kinase inhibitor (TKI) rationally and specifically designed using the

structure of the ATP-binding pocket of the ABL protein kinase [2].

Imatinib binds to and stabilizes the inactive form of BCR-ABL,

blocking its autophosphorylation and downstream kinase activity.

This induces hematologic, cytogenetic and molecular response in

the majority of CML patients, through inhibition of proliferation

and triggering of apoptosis of BCR-ABL-expressing cells. Howev-

er, clinical resistance develops frequently, particularly in acceler-

ated phase and blastic crisis of CML. This has led to the

development of second-generation BCR-ABL-targeting molecules,

that have been proved to be effective in nearly all imatinib-

resistant BCR-ABL-positive leukemias [3,4,5]. Nevertheless, most

of these new drugs do not work against leukemia cells bearing

specific mutations [6,7]. Moreover, TKIs are ineffective in patients

who undergo blastic transformation, and unable to eradicate CML

at the stem cell level, underscoring the need to pursue novel

therapeutic strategies [6,8]. In this regard, differentiation induc-

tion therapy has attracted universal attention as a promising

approach to treat leukemia by turning abnormal cells back to

differentiate and cease proliferation. The best proof of principle for

such an approach has been the treatment of acute promyelocytic

leukemia with all-trans retinoic acid [9]. Several attempts to
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emulate this success with other nuclear hormone ligands or

different classes of substances, such as hematopoietic cytokines or

compounds affecting the epigenetic landscape, have followed over

the years but remained rather modest and disappointing [10].

Currently, research efforts are geared towards targeting signaling

pathways that are chronically activated and critical for transfor-

mation of leukemia cells, for example by manipulating the

transcription factors that govern the differentiation and lineage

commitment of hematopoietic progenitors [8,10,11].

In this context, over the past years through an integrated

chemical biological strategy, we obtained four natural-like

synthetic biphenyl and terphenyl compounds, IND_S1,

MEL_T1, IND_S7 and MEL_S3 (Figure 1), able to interfere

with the signaling cascades conferring apoptosis resistance and

uncontrolled proliferation to BCR-ABL-expressing leukemia cells

[12,13]. To investigate more in depth the mechanisms of action of

these molecules we believed that a proteomic approach could be a

suitable strategy. Proteomics is an evolving technology platform

that is gaining widespread use in drug discovery [14,15]. Common

applications include target identification and validation, identifi-

cation of molecular biomarkers and investigation into mechanisms

of drug action or toxicity. In the present study, a comparative

proteomic approach based on two-dimensional gel electrophoresis

(2-DE) and MALDI-TOF mass spectrometry was carried out to

define the protein expression profiles of IND_S1-, MEL_T1-,

IND_S7- and MEL_S3-treated and -untreated K562 cells. The

major results were validated by Western blot and quantitative

PCR (qPCR) analysis. Differentially expressed proteins were

further investigated using MetaCore pathway analysis program

to attempt integrating the findings into a cellular signaling context.

The central hubs of significant subnetworks were verified by

qPCR. With this strategy we identified several transcription factors

dysregulated at the mRNA level in K562 cells treated with the four

compounds. Since most of them are known to be essential for

hematopoiesis, the differentiation potential of the molecules was

explored by immunofluorescence flow cytometry. Noteworthy, the

molecule MEL_S3 was able to induce megakaryocytic differen-

tiation in K562 cells at a rate correlated to its ability to modulate

the expression of EGR1 gene, which is known to be involved in

this kind of differentiation [16].

Results

Proteome Profiling of K562 Cells Treated with Four
Synthetic Small Molecules

To identify the proteins whose expression was responsive to the

synthetic small molecules IND_S1, MEL_T1, IND_S7 and

MEL_S3, protein extracts from K562 cells grown for 24 h in the

presence or absence of 30 mM of each compound were subjected

to a 2-DE-based analysis. Representative silver-stained 2-DE gels

of control and treated K562 cells are shown in Figure S1. On

average, around 900 spots were detected on each analytical gel

and analyzed by PDQuest software. PCA was applied to the entire

2-DE dataset to disclose differences in the protein patterns of

K562 cells exposed to the four synthetic small molecules. As shown

in the PCA plane of Figure 2A, the four compounds originated

four fairly distinct groupings. PCA accounted for about 85% of the

total variance (80 and 5% for PC1 and PC4 axes, respectively).

Replicate 2-DE gels were closely grouped, indicating similarity in

the spot maps. In particular, samples from K562 cells treated with

MEL_T1 were found closer together, suggesting less inter-gel

variation respect to the other samples. K562 cells incubated with

IND_S1 and MEL_T1 showed no clear separation with each

other whereas, according to PC1, the largest difference existed

between IND_S7- and MEL_S3-treated K562 cells and all the

other samples. Analogously, the unsupervised SOM cluster

analysis offered a global view of the protein expression profiles.

SOM is a specific architecture of artificial neural networks,

consisting of a low-dimensional interconnected grid of neurons,

which allow to partition input data into related subsets. As shown

by the SOM component planes of Figure 2B, the treatment with

IND_S1 and MEL_T1 resulted in quite distinct connection

patterns whereas the SOM outputs from IND_S7- and MEL_S3-

treated K562 cells resembled each other, suggesting similar trends

in protein expression profiles. Interestingly, the main differences

among the four compounds were visualized in the bottom left and

right corners of the connection patterns, which may account for

molecule-specific mechanisms of protein regulation.

Multivariate analysis was complemented with the analysis of

individual protein spots using Student’s t-test and the non-

parametric Mann-Whitney test. Following these combined

approaches, 74 spots were found to be significantly altered in

their protein abundance by at least two-fold between control and

treated K562 cells (P,0.05). The largest number of differentially

expressed spots was achieved for K562 cells exposed to IND_S7
and MEL_S3, with approximately the same number of up- and

down-regulated protein spots. Out of these differential spots, 49

were in common and exhibited the same trend of expression.

Interestingly, 27/74 (36.5%) spots increased (16 spots) or

decreased (11 spots) after treatment in all the 2-DE gels included

in the analysis set, suggesting the existence of non-specific

mechanisms of action, common to the four synthetic small

molecules. Conversely, contrasting variations in protein abun-

dance among treated K562 cells were found for 19 spots, probably

representing compound-specific proteomic signatures, which may

account for different biological effects. Differential spots were

clustered employing Ward’s minimum variance method over a

Pearson distance-based dissimilarity matrix (Figure 3). Replicate

gels were mostly grouped in separate subclusters or separated by a

short distance. As PCA and SOM analysis showed before, a clear

difference was observed between IND_S7- and MEL_S3-treated

K562 cells and all the other samples, suggesting that the major

changes in protein expression took place after exposure to these

compounds. Looking at the row clustering of the heat map,

different expression dynamics of protein spots among the samples

could be distinguished. In particular, three main trends of

expression were identified, the first related to proteins whose

levels were up-regulated in K562 cells incubated with IND_S1
and MEL_T1, the second including protein spots that tended to

decline in IND_S7- and MEL_S3-treated K562 cells and the last

describing those increasing after exposure to IND_S7 and

MEL_S3.

Interesting spots were excised from preparative gels for protein

identification by MALDI-TOF MS analysis. Following a Mascot

database search using the acquired MS data, 34/74 (46%) protein

spots were identified, corresponding to 32 unique proteins

(Table 1). Each identified protein was assigned to a cellular

localization based on information from the Swiss-Prot and GO

databases. As shown in Figure 4A, the majority were cytoplasmic

and mitochondrion proteins. With the exception of enolase, which

is known to be localized also at the cell membrane level, no

membrane proteins were identified, possibly as a consequence of

their general poor solubilization. The identified proteins were

further grouped into different classes based on biological function

using COG database (Figure 4B). Most of significantly modulated

proteins were related to cellular metabolism (41%). Chaperone

activity accounted for 31% whereas 12% were categorized as

having a major role in transcriptional regulation and signal
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transduction. Cytoskeletal proteins occupied 13% of the identified

protein set.

Confirmation of Selected Differentially Expressed
Proteins

To independently evaluate the reliability of the proteomic

results, semi-quantitative Western blots were performed for three

proteins that exhibited moderate abundance changes in the 2-DE

maps. As shown in Figure 5, expression changes of HSP70 (spot

no. 2) and Sti1 (spot no. 8) were generally consistent with 2-DE

results. For hnRNP L (spots no. 4, 5), even if the direction of the

observed variations using both methods was the same, the

magnitude of the change was substantially different. In particular,

analysis of densitometric values of the Western blot bands

associated to hnRNP L from K562 cells exposed to IND_S7
and MEL_S3 revealed a down-regulation ranging from two- to

three-fold, in sharp contrast with the .14-fold decrease found for

spot no. 5. Considering that hnRNP L was detected on 2-DE gels

as two distinct spots along the horizontal axis, which may reflect

post-translational modification-induced charge alterations, such

discrepancies could suggest the modulation of a specific hnRNP L

variant rather than the total protein level in IND_S7- and

MEL_S3-treated K562 cells.

To determine whether these proteins were also dysregulated at

the transcriptional level, their mRNA transcripts were quantified

by qPCR. PCR efficiency was close to 2 (within 75–107%) for all

housekeeping and target gene primers (Table S1). Correlation

coefficients were .0.99. Assay reproducibility and reliability were

evaluated by repeating cDNA synthesis and qPCR two times

under identical conditions. The intra-assay CVs were about 5%

and 2% for cDNA synthesis and qPCR, respectively. The inter-

replicate CVs were lower than 10%. Reference gene stability was

assessed using geNorm and NormFinder. Both algorithms

identified TBP, GAPDH and BCR as the most stably expressed

control genes, whereas ABL was found to be the worst-scoring one

(Table S2). Since the pairwise variation between two sequential

NFs containing an increasing number of genes was below the

cutoff value of 0.15 [17], the three best-performing housekeeping

genes were used as internal controls for geometric averaging. The

relative abundances of target gene transcripts were thus deter-

mined following the normalization strategy outlined by Vande-

sompele et al. (2002). For each selected protein the fold ratio of

mRNA expression in treated K562 cells compared to control

samples, which were arbitrarily set to 1, was estimated. For

HSP70, the mRNA regulation profiles were generally coinciding

with the protein patterns. In particular, transcript levels were

significantly reduced after 24-h treatment with all compounds

except for IND_S1 (Figure 5A). Interestingly, such reduction was

measured already 6 h after exposure (data not shown). Conversely,

the abundance of the transcript encoding Sti1 was constant

throughout the entire dataset but reached a three-fold lower level

after 24-h exposure to MEL_T1 compared to control (Figure 5B).

hnRNP L mRNA expression was consistent with proteomic data,

with a significant decrease only in IND_S7- and MEL_S3-treated

K562 cells (Figure 5C). Differently from HSP70, the transcrip-

tional levels of hnRNP L gradually decreased over time (data not

shown). Since a major role of hnRNP L in modulating the

alternative splicing of caspase-9 has been recently demonstrated

[18], caspase-9 mRNA expression was also measured. As shown in

Figure S2, caspase-9 transcript levels were highly dysregulated,

with a .8-fold increase after IND_S1 and MEL_S3 exposure.

To further verify proteomic results at the mRNA level, other

five proteins were arbitrarily selected and subjected to qPCR

(Figure S2). As expected, different correlation patterns between

mRNA and protein abundance were identified. Similar trends of

variation were observed for HCOP9 (spot no. 30), whose

transcript levels significantly increased after 24-h treatment with

all four synthetic small molecules. On the contrary, despite the

wide variations at the protein level, HSPC117 (spot no. 9) and

GLOD4 (spot no. 21) were found to be transcriptionally unaltered,

suggesting that post-translational events contributed to the protein

changes. An inverse correlation, with up-regulation of mRNA

Figure 1. Synthetic natural-like biphenyl and terphenyl compounds.
doi:10.1371/journal.pone.0057650.g001
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concurrent with down-regulation of protein expression was

observed for vimentin (spot no. 14), probably reflecting degrada-

tion events. Inconsistent results between 2-DE and qPCR analysis

were obtained for HAUS7 (spot no. 15).

Network Analysis of Identified Proteins and Evaluation of
Critical Protein Changes Using qPCR

Pathways and networks that involved differentially expressed

proteins from 2-DE gels were analyzed using MetaCore. Pathway

Figure 2. Multivariate analysis of proteomic data. (A) PCA plot of the expression profiles from K562 cells untreated (circles) and after 24-h
exposure to IND_S1 (triangles), MEL_T1 (squares), IND_S7 (diamonds), MEL_S3 (crosses). Log-transformed data were used. Each symbol
represents a 2-DE gel from each treatment group. First and fourth ordination axes are plotted explaining 80 and 5% of the overall variance in the
dataset, respectively. (B) Visualization of the SOM component planes of proteome data for all treatment series. Ratios between expression levels in
K562 cells treated with the four synthetic small molecules and control cells were calculated and log2-transformed. Each presentation illustrates the
weights that connect each input to each of the artificial neurons, resulting in a sample-specific proteome-wide map (darker colors represent larger
weights). All figures are linked by position: in each display, the hexagon in a certain position corresponds to the same map unit.
doi:10.1371/journal.pone.0057650.g002
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Figure 3. Two-way hierarchical clustering of the 74 differentially expressed protein spots between K562 cells treated with the four
synthetic small molecules and control cells. Pearson’s dissimilarity as distance measure and Ward’s method for linkage analysis were used. Log2

ratios are color coded as indicated. Names of the identified protein spots are shown on the right (see Table 1).
doi:10.1371/journal.pone.0057650.g003
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Table 1. List of differentially expressed protein spots identified by MALDI-TOF MS.

Spot
ID

Gene
name Protein name

Swiss-
Prot
Acc. No. Theoretical

Sequence
coverage
(%)

MASCOT
score

Matching
peptides Fold change COG

Subcellular
location

MW pI
IND_S1/
MEL_T1

IND_S7/
MEL_S3

1 KHSRP Far upstream element-
binding protein 2

Q92945 73.12 6.85 50 268 42 NS 224.0/215.5 K Nucleus
Cytoplasm

2 HSPA1 Heat shock 70 kDa
protein
1A/1B

P08107 70.05 5.48 50 95 24 22.1/24.2 22.1/22.4 O Cytoplasm

3 PCK2 Phosphoenolpyruvate
carboxykinase [GTP],
mitochondrial

Q16822 70.73 7.57 39 169 21 NS 226.8/211.2 C Mitochondrion

4 HNRNPL Heterogeneous nuclear
ribonucleoprotein L

P14866 64.13 8.46 32 107 18 NS 25.8/22.5 A Nucleus
Cytoplasm

5 HNRNPL Heterogeneous nuclear
ribonucleoprotein L

P14866 64.13 8.46 39 129 23 NS 214.3/223.8 A Nucleus
Cytoplasm

6 HSPD1 Mitochondrial heat
shock
60kDa protein 1 variant 1

B3GQS7 60.68 5.83 38 105 9 NS/2.4 NS O Cytoplasm

7 PDIA3 Protein disulfide-
isomerase A3

P30101 56.78 5.98 55 233 31 22.2/NS 24.4/NS O ER

8 STIP1 Stress-induced-
phosphoprotein
1

P31948 62.64 6.40 33 129 15 24.6/NS 22.3/22.4 O Nucleus
Cytoplasm

9 C22orf28 tRNA-splicing ligase
RtcB homolog

Q9Y3I0 55.21 6.77 47 161 20 NS 26.3/25.3 A Cytoplasm

10 GLUD1 Glutamate
dehydrogenase 1,
mitochondrial

P00367 61.40 7.66 33 154 13 NS 2.6/222.7 E Mitochondrion

11 TUBB Tubulin beta chain P07437 49.67 4.78 70 199 30 22.6/NS 24.0/24.6 Z Cytoplasm

12 ATP5B ATP synthase subunit
beta, mitochondrial

P06576 56.56 5.26 41 197 13 4.4/5.4 4.4/3.3 C Mitochondrion

13 CALU Calumenin O43852 37.11 4.47 50 89 9 NS 2.1/226.6 TU ER

14 VIM Vimentin P08670 53.65 5.06 65 218 NS 29.5/23.6 Z Cytoplasm

15 HAUS7 HAUS augmin-like
complex subunit 7

Q99871 40.78 4.73 39 130 12 NS 24.6/24.8 O Cytoplasm

16 ENO1 Alpha-enolase P06733 47.17 7.01 30 102 11 NS 218.5/NS G Cytoplasm Cell
membrane

17 ENO1 Alpha-enolase P06733 47.17 7.01 32 127 14 28.2/25.4 227.6/224.7 G Cytoplasm Cell
membrane

18 FH Fumarate hydratase,
mitochondrial

P07954 54.64 8.85 48 139 22 23.6/22.4 210.0/29.4 C Mitochondrion

19 PGK1 Phosphoglycerate
kinase 1

P00558 44.61 8.30 39 146 13 23.2/25.6 27.2/22.6 G Cytoplasm

20 HIBCH 3-hydroxyisobutyryl-CoA
hydrolase, mitochondrial

Q6NVY1 43.48 8.38 37 100 10 2.2/2.6 NS E Mitochondrion

21 GLOD4 Glyoxalase domain-
containing protein 4

Q9HC38 34.79 5.4 27 86 7 16.9/6.3 8.7/12.1 G Mitochondrion

22 ETFA Electron transfer
flavoprotein subunit
alpha, mitochondrial

P13804 35.08 8.62 49 10 12 24.0/NS 23.0/24.4 C Mitochondrion

23 VDAC2 Voltage-dependent
anion-selective channel
protein 2

P45880 31.57 7.50 44 99 8 22.0/NS 26.3/22.7 P Mitochondrion

24 C1QBP Complement
component 1 Q
subcomponent-binding
protein, mitochondrial

Q07021 31.36 4.74 42 83 11 23.6/23.7 25.2/23.3 V Mitochondrion

25 PSMA1 Proteasome subunit
alpha type-1

P25786 29.56 6.15 32 98 8 26.6/22.5 210.0/210.0 O Nucleus
Cytoplasm
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enrichment analysis revealed that the majority of identified

pathway maps were related to glycolysis and gluconeogenesis, as

well as cytoskeleton remodeling (Figure S3A). Additionally,

enrichment in the ontology of functional processes, as defined by

‘‘GeneGo process networks’’, was calculated. As it would be

expected, the top-scoring process was ‘‘regulation of cytoskeleton

rearrangement’’ (Figure S3B). To map interaction between

proteins, the shortest direct paths were analyzed using the

‘‘analyze network’’ algorithm. Based on the functional subnet-

works built, the differentially expressed proteins after K562 cell

treatment with the four synthetic small molecules were primarily

involved in regulation of apoptosis (P = 4.16610221), as well as

regulation of cellular biosynthetic process and RNA metabolic

process (P = 8.49610211) (Table S3). Four protein objects

[calumenin (spot no. 13), GLOD4, HIBCH (spot no. 20) and

HSPC117] were not connected to any of the network hubs. To

determine specific transcription factors that could drive the

proteome changes in K562 cells exposed to the different

compounds, a variant of the ‘‘shortest paths’’ algorithm was used

to generate transcriptional regulation networks (Table S4). SP1

was ranked #1, with 15 targets among the 32 identified proteins

from 2-DE gels (Figure 6A). Other top-scoring transcriptional

regulators were c-Myc (Figure 6B) and HNF4-alpha (Figure 6C).

Interestingly, the regulation mechanisms of almost all the HNF4-

alpha targets were unknown. EGR1, a crucial gene in megakar-

yocyte differentiation of K562 cell line [19,20,21], was shown to

transcriptionally regulate 5 differentially expressed proteins,

HSP70, hnRNP L, ENO1 (spots no. 16, 17), tubulin beta (spot

no. 11) and KHSRP (spot no. 1) (Figure 6D).

To validate the transcription regulation networks, the mRNA

levels of the most interesting central hubs were measured by

qPCR. Results confirmed a significant dysregulation for SP1, c-

Myc, HNF4-alpha, EGR1 (Figure 6), HSF1, androgen receptor,

C/EBPbeta and NF-YB (Figure S4), though different patterns of

mRNA abundance were identified. In particular, transcripts

encoding SP1 and C/EBPbeta increased after 24-h treatment

with all compounds, even if C/EBPbeta increase was measurable

already 6 h after exposure and reached a peak value after 15 h

(fold ratio, IND_S1, 8.6; MEL_T1, 2.5; IND_S7, 8.0; MEL_S3,

6.8). Androgen receptor and NF-YB were moderately but

significantly modulated in response to a single compound, whilst

no significant changes in the transcriptional levels were detected

for the other NF-Y subunits A and C (data not shown).

Significantly higher levels compared to control K562 cells were

measured for c-Myc and HNF4-alpha in IND_S1-, IND_S7- and

MEL_S3-treated cells. Interestingly, both transcripts gradually

increased over time, reaching the highest levels in K562 cells

exposed to MEL_S3 (fold ratio, c-Myc, 11.4; HNF4-alpha, 37.2).

MEL_S3-treated K562 cells also showed a dramatic increase of

mRNA amount of both EGR1 (fold ratio 29.3) and HSF1 (fold

ratio 23.1). Notably, different change directions were found for

EGR1 in response to the four small synthetic molecules.

Differentiation Marker Analysis of K562 Cells Treated with
the Four Synthetic Small Molecules

Since K562 cells are capable of multilineage differentiation [16]

and EGR1 is implicated in megakaryocyte differentiation [21,22]

we investigated the ability of IND_S1, MEL_T1, IND_S7 and

MEL_S3 to induce differentiation of K562 cells along the

megakaryocyte lineage; erythroid differentiation was also investi-

gated. Cells were exposed for 72 h to 15 mM of each compound.

Megakaryocyte differentiation was determined evaluating the

expression of glycoprotein IIb/IIIa (CD41), which is normally

present on platelets and early promegakaryoblasts. Erythroid

differentiation was estimated by evaluating the cell surface

expression of glycophorin A (CD235a), a major transmembrane

Table 1. Cont.

Spot
ID

Gene
name Protein name

Swiss-
Prot
Acc. No. Theoretical

Sequence
coverage
(%)

MASCOT
score

Matching
peptides Fold change COG

Subcellular
location

MW pI
IND_S1/
MEL_T1

IND_S7/
MEL_S3

26 ACTB Actin, cytoplasmic 1 P60709 41.74 5.29 33 115 7 28.6/NS 20.1/22.2 Z Cytoplasm

27 ERP29 Endoplasmic reticulum
resident protein 29

P30040 28.99 6.77 39 93 16 NS 23.7/25.0 O ER

28 PGAM1 Phosphoglycerate
mutase 1

P18669 28.80 6.67 53 123 11 2.6/2.4 2.4/3.3 G Cytoplasm

29 PRDX2 Peroxiredoxin-2 P32119 21.89 5.66 40 107 9 2.7/NS 2.9/3.8 O Cytoplasm

30 COPS8 COP9 signalosome
complex subunit 8

Q99627 23.23 5.25 38 114 7 8.4/17.1 10.3/12.0 OT Nucleus
Cytoplasm

31 PRDX1 Peroxiredoxin-1 Q06830 22.11 8.27 47 173 10 3.3/3.6 NS O Cytoplasm

32 CFL1 Cofilin-1 P23528 18.50 8.22 66 114 9 3.7/3.2 NS DZ Nucleus
Cytoplasm

33 ATP5D ATP synthase subunit
delta, mitochondrial

P30049 17.49 5.38 43 108 8 2.2/2.2 2.1/2.1 C Mitochondrion

34 COX5A Cytochrome c oxidase
subunit 5A,
mitochondrial

P20674 16.76 6.30 51 89 6 22.3/22.2 24.0/24.3 C Mitochondrion

NS, not statistically significant. ER, endoplasmic reticulum. A, RNA processing and modification; C, Energy production and conversion; D, Cell cycle control, cell division,
chromosome partitioning; E, Amino acid transport and metabolism; G, Carbohydrate transport and metabolism; K, Transcription; O, Post-translational modification,
protein turnover, chaperones; P, Inorganic ion transport and metabolism; T, Signal transduction mechanisms; U, Intracellular trafficking, secretion, and vesicular
transport; V, Defense mechanisms; Z, Cytoskeleton.
doi:10.1371/journal.pone.0057650.t001
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sialoglycoprotein expressed on red blood cells and erythroid

precursors. As shown in Figure S5A (panel a), MEL_S3 induced a

marked megakaryocyte differentiation based on induction of

glycoprotein IIb/IIIa. Of interest, the expression of CD235a was

slightly decreased in K562 cells treated with MEL_S3 (Figure

S5B, panel a). Also IND_S1 was able to differentiate K562 cells in

megakaryocytes (Figure S5A, panel c) but the expression of

glycoprotein IIb/IIIa was lower than that observed in MEL_S3-

treated K562 cells. In contrast, MEL_T1 and IND_S7 did not

induce any modulation of either glycoprotein IIb/IIIa or

glycophorin A on the cell surface membrane. These data are

consistent with the ability of MEL_S3 and IND_S1 to increase

the expression of the EGR1 gene. Megakaryocyte differentiation

in K562 cells treated with MEL_S3 was also investigated by

morphological examination and expression evaluation of glyco-

protein Ib (GPIb), also known as CD42. As shown in Figure 7,

microscope examination of MEL_S3-treated K562 cells showed

many large cells with morphological characteristics of megakar-

yocyte. Moreover, treated cells showed an increased expression of

CD42 (Figure S6 panel b). Finally, the differentiation effects of

MEL_S3 were tested in HEL cells that, like to K562, are endowed

with erythroid and megakaryocytic properties. As shown in Figure

S6 (panel c, d), an increased expression of both CD41 and CD42

was observed after exposure to MEL_S3 in HEL cells.

Discussion

Chronic myeloid leukemia (CML) is a disease driven by a single

molecular defect, the BCR-ABL translocation, which results in the

activation and dysregulation of a large number of signaling

pathways, speeding up cell division and incorporation of genetic

abnormalities [23]. The introduction of the BCR-ABL TKIs in

CML therapy has been a major advance in leukemia treatment.

However, TKIs are ineffective in patients who undergo blastic

transformation, and unable to eradicate CML at the stem cell

level. Moreover, often clinical drug resistance can develop through

the acquisition of BCR-ABL gene mutations [6,7]. Given the

promising in vitro results recently obtained with newly-shaped

small molecules [12], in this study a systems biology approach was

applied to assess global protein expression changes and targeted

protein pathways upon treatment of K562 cells with the

compounds IND_S1, MEL_T1, IND_S7 and MEL_S3.

By 2-DE-based proteomic analysis, we identified several

proteins that were differentially expressed in leukemia K562 cells

incubated in the presence or absence of these new molecules. In

Figure 4. Pie chart distribution of the identified proteins according to cellular location (A) and biological function (B). Proteins were
categorized using information from the Swiss-Prot, GO and COG databases. When proteins were associated with more than one function, one
category was chosen arbitrarily. ER, endoplasmic reticulum.
doi:10.1371/journal.pone.0057650.g004
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particular, functional classification of the identified proteins

revealed that they were mainly related to cellular metabolism,

chaperone activity, cytoskeleton organization and RNA biogene-

sis. Interestingly, most of the proteins belonging to the first

category were located in mitochondria and strongly down-

regulated in IND_S7- and MEL_S3-treated K562 cells, suggest-

ing an overall bioenergetics deficit that may contribute to

counteract the well-known Warburg effect [24], triggering growth

arrest and potentially apoptosis [25]. These data are in accordance

with a previous study showing that all the four small molecules

induced cell cycle arrest in K562 cells, whereas only IND_S7 and

MEL_S3 exhibited pro-apoptotic ability [12]. Further, in all

treatment groups of our study we found increased levels of two

subunits of ATP synthase, whose activation may be a prerequisite

for the energy-reliant apoptotic process to proceed [26]. On the

other hand, we identified reduced levels of phosphoglycerate

kinase 1 (after treatment with all the compounds), voltage-

dependent anion-selective protein channel 2 (in K562 cells

exposed to IND_S1, IND_S7 and MEL_S3) and glutamate

dehydrogenase 1 (in MEL_S3-treated K562 cells), which have

been proposed to act as suppressors of apoptotic phenotypes

[27,28,29].

In addition to the well documented chaperoning properties, a

role as regulators of apoptosis has recently been attributed to heat

shock proteins (HSP) [30]. Among the four major families of HSPs

(HSP90, HSP70, HSP60 and the small HSPs, such as HSP27 and

HSP10), proteins with anti-apoptotic (HSP27 and HSP70) and

pro-apoptotic (HSP10 and HSP60) functions have been distin-

guished [31]. A large number of malignancies have been linked to

the over-expression of HSPs, making them attractive targets for

treatment strategies [32]. In particular, high endogenous levels of

both constitutive and inducible HSP70 have been found in CML

cells and associated with resistance to apoptosis by the chemo-

therapeutic drugs imatinib mesylate and nilotinib [33]. Intrigu-

ingly, all the compounds evaluated in our study induced a

reduction of HSP70 expression at the transcript and protein level

to a similar extent. This down-regulation was not associated to

under-expression of the transcription factor HSF1, known to be

the main regulator of the short-term induction of HSP [34], or

rather, the mRNA abundances of HSF1 were found to be

significantly up-regulated in MEL_T1-, IND_S7- and MEL_S3-

treated K562 cells.

Both IND_S7 and MEL_S3 compounds were also able to

reduce the levels of the alternative splicing regulator hnRNP L in

K562 cells. Although aberrant expression and activity of certain

hnRNPs have been already described [35,36], suggesting that they

may act as oncogenic factors [37,38], the role of hnRNP L in

CML is still largely unexplored. However, our findings are in

agreement with a recent study that showed a significant decrease

of hnRNP L expression in imatinib-resistant BCR-ABL-positive

human cells after treatment with imatinib plus valproic acid [39].

Interestingly, Buchi et al. (2011) also reported profound post-

translational modifications following combined treatment, with a

significant induction of acetylation of hnRNP L.

To probe protein-protein interaction networks, which could

predict the signaling pathways activated/deactivated under K562

cell treatment, and also to identify transcriptional factors and other

low-abundance proteins classically not detectable in 2-DE gels,

proteomic data were explored using MetaCore pathway analytical

tools. Network analysis revealed a high number of interactions

between differentially expressed proteins and various signaling

factors. In particular, the top 3 transcriptional regulation networks

showed SP1, c-Myc and HNF4-alpha as central hubs, suggesting

that they might play a role in the pathophysiology of BCR-ABL-

Figure 5. Western blot validation and qPCR determination of
mRNA levels of HSP70 (A), Sti1 (B) and hnRNP L (C). Top,
Representative immunoblots of each protein and GAPDH, as a loading
control. Bottom, Bar graphs showing the densitometric analysis of
Western blots. For each treatment series, protein values were
normalized to GAPDH and expressed as a ratio relative to control
K562 cells. Data are presented as mean 6 SD from at least 3 separate
experiments. *, P,0.05 vs control. Dash-dotted line represents
transcription levels of genes encoding HSP70, Sti1 and hnRNP L, as
determined by qPCR. The transcript amounts were normalized against 3
housekeeping genes (TBP, GAPDH and BCR) following the normaliza-
tion strategy proposed by Vandesompele et al. [17]. Data are presented
as mean 6 SD of the fold ratio between treated and control K562 cells,
derived from at least 2 separate experiments. #, P,0.05 vs control.
doi:10.1371/journal.pone.0057650.g005
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positive leukemias and/or represent therapeutic targets. Through

qPCR validation of the resulting networks, the most interesting

data on gene expression were obtained for MEL_S3, which was

found to strongly induce mRNA levels of EGR1 and HNF4-alpha.

Given the involvement of EGR1 in differentiation and due to

the relevance of differentiation as a possible therapeutic alternative

in blastic crisis of CML, we were prompted to investigate the

ability of the four synthetic small molecules to induce differenti-

ation in K562 cells. Noteworthy, K562 cells treated with MEL_S3
showed a marked expression of glycoprotein IIb/IIIa (CD41), an

important cell marker in megakaryocytic differentiation. Several

studies have demonstrated the involvement of EGR1 in regulating

differentiation along a megakaryocyte lineage. For instance, both

EGR1 and megakaryocytic differentiation have been shown to be

rapidly induced in K562 and other leukemic cells treated with

phorbol 12-myristate 13-acetate, with up-regulation of the

megakaryocyte-specific gene CD41 and down-regulation of

erythroid markers, such as glycophorin [19,20,21]. Analogously,

in our study we observed a decreased expression of CD235a after

K562 cell exposure to MEL_S3. The rate of megakaryocytic

differentiation induced by the four synthetic small molecules was

correlated to their ability to modulate EGR1 gene expression. In

Figure 6. Network analysis of differentially expressed proteins and validation of central hubs at the mRNA level. The transcription
regulation networks initiated through activation of SP1 (A), c-Myc (B), HNF4-alpha (C) and EGR1 (D) are shown together with the mRNA abundances
of these transcription factors in K562 cells treated with the four synthetic small molecules. Network proteins are visualized by proper symbols, which
specify the functional nature of the protein (network caption). Red, green and gray arrows indicate negative, positive and unspecified effects,
respectively. Red and blue circles indicate up- and down-regulated proteins in the treatment series, respectively. Relative transcription levels were
quantified by qPCR according to Vandesompele et al. [17] (see text for details). The bar graph plots mean 6 SD of the fold ratio between treated and
control K562 cells, derived from at least 2 separate experiments. *, P,0.05.
doi:10.1371/journal.pone.0057650.g006

Figure 7. Morphological changes observed in K562 cells after 72-h exposure to 15 mM of MEL_S3. (A) Control; (B, C and D) MEL_S3-
treated K562 cells with the presence of large cells with megakaryocytic morphological aspects.
doi:10.1371/journal.pone.0057650.g007
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fact, IND_S1 treatment, which resulted in a weaker increase of

EGR1 transcript levels, determined a rate of megakaryocyte

differentiation lower than that observed for MEL_S3. MEL_T1-

and IND_S7-treated K562 cells, which showed a down-regulation

of EGR1 mRNA abundances, were unable to differentiate along

the megakaryocyte lineage.

K562 cells treated with MEL-S3 also showed an increased

expression of glycoprotein Ib (CD42), a component of the GPIb-

V-IX complex on platelets, together with morphological charac-

teristics of megakaryoblasts and megakaryocytes. Moreover,

MEL_S3 was able to induce megakaryocytic differentiation in

HEL cells that, like to K562, are endowed with erythroid and

megakaryocytic properties.

Finally, for the first time, our study demonstrated the presence

of HNF4-alpha mRNA in K562 cells and a marked over-

expression after exposure to MEL_S3. According to a model for

its transcriptional transactivation ability, HNF4-alpha could

activate p21 expression, mediating cell cycle arrest and apoptotic

response, primarily by competing with c-Myc for interaction with

promoter-bound SP1 [40]. On the other hand, c-Myc may not

only repress p21 transcription by inhibiting the transcriptional

activity and/or sequestering HNF4-alpha away from the promot-

er, but also indirectly activate p53 expression, leading to a p53-

dependent induction of p21 [40,41,42]. These opposite effects

reflect the dual role of c-Myc, whose over-activation is known to

bring about continued cell-cycle progression and cellular immor-

talization, as well as to block differentiation and induce apoptosis

[43]. In some systems, depending on the cell context and other

activated molecular pathways, p21 and c-Myc have also been

shown to synergize for driving post-mitotic megakaryocytic

differentiation and polyploidy [44]. Interestingly, the highest

mRNA abundances of c-Myc were observed in K562 cells exposed

to MEL_S3, which could support the ability of this molecule to

induce differentiation along the megakaryocyte lineage.

In conclusion, through a combination of proteomics and

bioinformatics techniques, we were able to discover the pro-

differentiation properties of a synthetic small molecule. The

megakaryocyte differentiation induced by MEL_S3 was correlat-

ed to its ability to up-regulate the EGR1 and HNF4-alpha

transcript levels, the latter reported here for the first time to be

present in K562 cells. Further studies are warranted to confirm

MEL_S3 contribution to CML management as well as to define

its potential application in other malignancies characterized by

similar pathway alterations.

Materials and Methods

Cell Culture
Continuous neoplastic K562 and HEL cells purchased from

ATCC were kindly gifted by the Department of Biomedicines,

University of Catania.

Cells were grown in RPMI 1640 (Gibco Grand Island, NY)

containing 10% FCS (Gibco), 100 U/ml penicillin (Gibco),

100 mg/ml streptomycin (Gibco), and 2 mM L-glutamine (Sig-

ma-Aldrich, St. Louis, MO) in a 5% CO2 atmosphere at 37uC.

Sample Preparation
Each compound was dissolved in dimethyl sulfoxide (DMSO) in

a stock solution at a concentration of 20 mM, stored at –20uC and

protected from light. In each experiment DMSO never exceeded

0.2% and this percentage did not interfere with cell growth.

Flow Cytometry
Flow cytometry was carried out to examine for the presence of

erythroid and megakaryocyte cell surface markers on treated K562

and HEL cells. All monoclonal antibodies (mAbs) used were

mouse IgG1 isotypes obtained from Becton Dickinson (San Jose,

CA). The CD235a fluorescein isothiocyanate (FITC)-conjugated

mAb was specific for glycophorin A, a major transmembrane

sialoglycoprotein expressed on red blood cells and erythroid

precursors. The CD41 mAb conjugated to phycoerythrin (PE) was

specific for the GPIIb component of the GPIIb/IIIa complex

present on platelets and early promegakaryoblasts [45], and CD42

FITC-conjugated mAb was specific for glycoprotein Ib, a

component of the GPIb-V-IX complex on platelets. Each mAb

was added in turn to approximately 56105 cells in 150 ml of

RPMI/fetal bovine serum, lightly vortexed, and then incubated on

ice for 45 min. After dilution with 2 ml of cold buffered RPMI/

fetal bovine serum, cells were pelletted, resuspended in 400 ml of

PBS and examined by a FACScan flow cytometer (Becton

Dickinson).

Morphological Evaluation of the Cells
Cells were spotted on cytospin slides by using a cytocentrifuge

(Cytospin Heraeus Minifuge, Thermo Scientific, Waltham, MA),

stained with May-Grunwald Giemsa and observed by using a

Nikon Eclipse E200 microscope.

Protein Extraction, Two-dimensional Gel Electrophoresis
(2-DE) and Image Analysis

K562 cells incubated for 24 h in the presence or absence of

30 mM of each compound were rinsed in ice-cold washing buffer

(3 mM KCl, 1.5 mM KH2PO4, 68 mM NaCl, 9 mM NaH2PO4)

and lysed in lysis solution [0.11 M DTT, 0.11 M CHAPS, 8 M

urea, 2 M thiourea, 35 mM Tris, supplemented with complete

protease inhibitor cocktail (Roche, Mannheim, Germany)] for

15 min with constant vortexing. Whole-cell lysates were cleared by

centrifugation at 9500 rpm for 1 h at 15uC, and the supernatants

were reduced with tributylphosphine (Sigma-Aldrich) to a final

concentration of 5 mM for 1 h, and then alkylated by 15 mM

iodoacetamide (Sigma-Aldrich) for 1.5 h. Protein extracts were

acetone precipitated and solubilized in IEF solution (7 M urea,

2 M thiourea, 4% CHAPS and 0.005% b-mercaptoethanol).

Total protein concentration of the cell extracts was determined

using the Bradford protein assay (Bio-Rad, Hercules, CA).

First-dimension isoelectric focusing was performed with IPG-

phor apparatus (GE Healthcare, Milan, Italy) as previously

described [46]. Briefly, aliquots of samples containing equal

quantities of protein (200 mg) were diluted to 250 ml with

rehydration buffer [8 M urea, 2% CHAPS, 10 mM DTT, 1%

(v/v) Pharmalyte (pH 3–10; GE Healthcare) and trace bromo-

phenol blue] and applied onto 13-cm IPG strips (pH 3–10; GE

Healthcare) for 12-h rehydration at 50 V. Running conditions

were as follows: 1 h at 500 V, 1 h at 1000 V, 30-min ramp up to

8000 V, and 2 h at 8000 V for a total of 19 kVh. IPG strips were

then reduced and alkylated [47] prior to loading onto 15%

acrylamide gels. SDS-PAGE was carried out at 30 mA/gel using

Protean II xi Cell (Bio-Rad). 2-DE gels were visualized with a MS-

compatible silver-staining procedure [48] and scanned with a GS-

800 imaging densitometer (Bio-Rad). Two biological replicates,

each consisting of technical duplicates, were run.

Protein maps were analyzed by PDQuest v 8.0.1 software (Bio-

Rad). Authenticity and outline of each spot were validated by eye

and edited manually when necessary. Normalized spot volumes
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based on total quantity in valid spots were calculated for each 2-

DE gel and used for statistical calculations of protein abundance.

In-gel Digestion and MS
Spots of interest were excised and in-gel digested as previously

described [49]. Crude digests were desalted and concentrated

using a Poros Oligo R2 [PerSeptive Biosystems (Framingham,

MA)] - GELoader microcolumn (Eppendorf, Hamburg, Ger-

many), as reported by Gobom et al. [50]. The extracted peptides

were dissolved in 0.1% trifluoroacetic acid (TFA) and 1/3 of the

volume was applied to the R2 microcolumn, previously equili-

brated with 10 ml of 0.1% TFA. The column was washed with

20 ml of 0.1% TFA, and retained peptides were eluted using 1 ml

of a-cyano-4-hydroxycinnamic acid matrix solution (10 mg/ml) in

50% ACN with 0.1% TFA directly onto the MALDI plate and

dried under ambient conditions.

All mass spectra were generated on a MALDI-TOF mass

spectrometer Voyager DE PRO (Applied Biosystems), operating in

positive ion reflectron (20 kV accelerating voltage) within the mass

range 600–4000 Da. External mass calibration was performed

with the signal of standard peptides (Sigma-Aldrich), achieving an

accuracy in the measurement of peptide mass better than 60 ppm.

Peak lists were processed with GP-MAW software (http://

welcome.to/gpmaw) and internally calibrated using keratin

contaminant peptides and trypsin autolysis peptides. Re-calibrated

peak lists were then submitted to the Mascot search engine (Matrix

Science Ltd., London, UK) using the following criteria: database,

NCBI (January 2012) or Swiss-Prot (release 2011_12); taxonomy,

Homo sapiens; enzyme, Trypsin; fixed modifications, carbamido-

methyl; variable modifications, oxidation on methionine and the

N-terminal loss of ammonia at Gln; mass values, monoisotopic;

parent tolerance, 0.2 Da; number of maximum missed cleavages,

1.

Proteins were considered as identified only when they had a

significant Mowse Score and MW/pI similar to the experimental

values found from the 2-DE gels. The candidates were further

inspected for number and mass accuracy of matching peptides,

sequence coverage and distribution of matching peptides in the

obtained sequences.

Bioinformatic Analysis of the Proteomic Data
The structure of raw proteomic data is known to be very

disturbing for multivariate statistics and clustering algorithms,

especially for the high rate of missing spot values [51]. To deal

with this problem, only ‘‘reliable’’ protein spots were considered

[i.e. given n experimental replications per condition, a protein spot

was kept if at least (n21) volume values were available for all

samples] and missing values were imputed using the k-nearest

neighbor (KNN) method (Matlab v 7.12.0, MathWorks, Torino,

Italy).

To define differential spots, the dataset was subjected to uni-

and multi-variate statistical analysis. Pairwise comparisons were

performed using the classical statistical tests, Student’s t-test and

the Mann-Whitney rank sum test (SigmaStat v 3.5 software, Systat

Software, Point Richmond, CA). A P value,0.05 was considered

as statistically significant. Multivariate data analysis methods were

used for selecting significant spots and classifying the different

group samples. Principal Component Analysis (PCA) was carried

out using Canoco for Windows v 4.5 [52]. All variables were

centered and weighted by (standard deviation)21. Self-Organizing

Map (SOM) clustering was performed by using the Neural

Network toolbox for Matlab (MathWorks). The SOM algorithm is

another way to reduce the dimensionality of the data, grouping

those spots that change in the same way into an arbitrarily selected

number of expression patterns. For SOM training, hexangular

map lattice with unconnected edges and batch training mode were

used as default parameters. A map size of 10610 was chosen

automatically by SOM based on the dimensions of the input data.

The training length was set to 200 epochs (iterations).

Significant differences were analyzed through the two-way

hierarchical clustering methodology using PermutMatrix v 1.9.3

software (http://www.lirmm.fr/˜caraux/PermutMatrix/) [53].

Samples were clustered employing Ward’s minimum variance

method over a Pearson distance-based dissimilarity matrix.

Protein accession numbers identified by MS analysis and their

corresponding fold changes were imported into the web-based

integrative software MetaCoreTM (v 6.8 build 30387; Thomson

Reuters, St. Joseph, MI) for network analysis. Networks were

ranked by a P value and interpreted in terms of Gene Ontology

(GO). Major hubs were identified based on the connections and

edges within the networks.

Western Blot Analysis
Primary antibodies used were: rabbit polyclonal anti-HSP70

(Cell Signaling Technology, Danvers, MA), rabbit monoclonal

anti-GAPDH (Cell Signaling Technology), rabbit polyclonal anti-

hnRNP L (Sigma-Aldrich) and mouse monoclonal anti-Sti1

(Sigma-Aldrich). Protein extracts (20 mg) were separated by

conventional SDS-PAGE and transferred onto PVDF membranes.

After electroblotting, membranes were blocked in a solution of 5%

nonfat dry milk in TBS-T (PBS-T for anti-Sti1) for 1 h at RT,

followed by incubation with primary antibody (1:1000) o/n at

4uC. Excess antibodies were removed by three washings with T/

PBS-T. Incubation with the appropriate secondary antibody

conjugated to horseradish peroxidase (GE Healthcare) was

performed at 1:10000 dilution for 1 h at RT. After three washings,

immunoreactive proteins were visualized using the ECL Plus

detection system (GE Healthcare) on PhosphorImager Storm 840

(GE Healthcare). Chemiluminescence was quantified using ImageJ

v 1.46 software (http://rsbweb.nih.gov/ij/) and Student’s t-test

was applied to determine significance (P,0.05). GAPDH was used

as an internal loading control.

RNA Isolation, cDNA Synthesis and Quantitative Real-
time PCR (qPCR)

Total RNA (2 mg), extracted according to standard procedures,

was used as a template for reverse transcription reactions to

synthesize single-stranded cDNA, using an oligo (dT) primer and

MMLV-RT reverse transcriptase (Promega, Milan, Italy), follow-

ing the manufacturer’s instructions.

qPCR was carried out with a LightCycler system (Roche) using

SYBR Green to monitor cDNA amplification. One ml of cDNA

template, equivalent to 50 ng RNA starting material, was used in

each reaction along with 4 ml of SYBR Green PCR master mix

(Roche) and 10 pmol of the appropriate gene-specific primers in a

total volume of 20 ml. The following thermal profile was used:

10 min at 95uC, 40 repeats of 15 s at 95uC, 25 s at different

annealing temperatures, 72uC for different elongation times and

an additional 5-s incubation step at 80uC (92uC for HSF1) for

fluorescence acquisition. Detailed primer-specific conditions and

oligonucleotide sequence information are given in Table S1. Two

technical replicates were done for each combination of cDNA and

primer pair. Standard curves of the same RNA sample were

registered for each gene, by analyzing two-fold serial dilutions of

the cDNA. The amplification efficiency (E) was calculated for each

primer pair using the equation E = [10(21/slope)21]6100. Product

detection and PCR specificity were checked post-amplification by

examining the temperature-dependent melting curves. The PCR
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products were resolved by 2% agarose gel electrophoresis to

confirm the expected size of the cDNA fragments.

qPCR Data Processing
Eight candidate reference genes were included: GAPDH, beta-2

microglobulin (B2M), mitochondrial ribosomal protein L19

(MRPL19), hypoxanthine phosphoribosyltransferase 1 (HPRT1),

glucuronidase beta (GUSB), TATA-box-binding protein (TBP),

BCR, ABL. Care was taken not to include genes of the same

functional pathway to avoid problems of co-regulation and false

positive reference gene selection. Gene expression stability was

evaluated with two Microsoft Excel-based applications, the

NormFinder MS Excel Add-in (http://www.mdl.dk/

publicationsnormfinder.htm) [54] and the geNorm VBA applet

for MS Excel (http://medgen.ugent.be/˜jvdesomp/genorm) [17],

following instructions included with the software downloads. The

former application independently estimates the inter- and intra-

group variance and combines both results in a stability value for

each investigated gene. Genes with the lowest stability value have

the most stable expression and will be top ranked. The other

model-based approach, geNorm, tests for overall stability using a

pairwise comparison method and uses the average pairwise

variations to calculate the gene expression stability measure M.

The higher the value of M, the higher the expression variability of

the corresponding reference gene. According to M values, geNorm

determines the optimal number of reference genes and computes a

normalization factor (NF), based on the geometric mean of the

expression levels of the best-performing reference genes, to be

applied for subsequent quantifications. The relative expression

levels of target genes were then reported as relative quantity of

each gene against NF. Differences in gene expression levels

between control and treated K562 cells were analyzed by

Student’s t-test. P,0.05 was considered statistically significant.

Supporting Information

Figure S1 2-DE protein profiles of K562 cells untreated (A) and

after 24-h exposure to IND_S1 (B), MEL_T1 (C), IND_S7 (D)

and MEL_S3 (E). IEF performed on IPG strips (13 cm, 3–10

linear pH gradient) was followed by second dimension separation

on a 15% polyacrylamide gel. 2-DE gels were silver-stained.

Identified spots, showing a significant difference between treated

and control K562 cells with a ratio above 2 (circles) or under 0.5

(squares), are numbered (Table 1). Diamonds indicate protein

spots with opposite trends of expression among treated K562 cells.

(TIF)

Figure S2 Relative gene expression of selected proteins
analyzed by qPCR. Transcription levels were quantified

according to Vandesompele et al. [17] (see text for details). Each

bar represents mean 6 SD of the fold ratio between treated and

control K562 cells, derived from at least 2 separate experiments. *,

P,0.05.

(TIF)

Figure S3 Functional analysis of differentially ex-
pressed proteins from K562 cells exposed to IND_S1

(orange), MEL_T1 (blue), IND_S7 (red) and MEL_S3
(green). (A) Enrichment of GeneGo pathway maps. (B)

Enrichment of GeneGo process networks.

(TIF)

Figure S4 Expression of selected transcription factors
from network analysis at the mRNA level. Transcription

levels were quantified by qPCR according to Vandesompeleet al.

[17] (see text for details). Each bar represents mean 6 SD of the

fold ratio between treated and control K562 cells, derived from at

least 2 separate experiments. *, P,0.05.

(TIF)

Figure S5 Expression of glycoprotein IIb/IIIa (A) andglyco-

phorin A (B) in K562 cells cultured with or without 15 mM of

MEL_S3 (panel a), MEL_T1 (panel b), IND_S1 (panel c) and

IND_S7 (panel d). The expression of glycoprotein IIb/IIIa

andglycophorin A was evaluated after 72 h of treatment by flow

cytometry after staining cells with the monoclonal antibodies

CD41 and CD235a. Thick line: untreated cells; thin line: treated

cells.

(TIF)

Figure S6 Expression of glycoprotein IIb/IIIa and
glycoprotein Ib in K562 and HEL erythroleukemia cell
lines. Cells were cultured without (control) or with 15 mM of

MEL_S3; the expression of glycoprotein IIb/IIIa and glycopro-

tein Ib was evaluated after 72 h of treatment by flow cytometry

after staining cells with the monoclonal antibodies CD41 and

CD42 respectively. a) expression of CD41 on K562 cells; b)

expression of CD42 on K562 cells; c) expression of CD41 on HEL

cells; d) expression of CD42 on HEL cells. Thick line: untreated

cells; thin line: treated cells.

(TIF)

Table S1 qPCR primer sequences and amplification settings.

(DOC)

Table S2 Candidate housekeeping genes ranked by geNorm and

NormFinder software according to their expression stability

values. The lower the value, the greater the stability.

(DOC)

Table S3 Statistics of MetaCore network analysis of proteomic
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