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Abstract
We propose a metamorphic geodesic regression approach approximating spatial transformations
for image time-series while simultaneously accounting for intensity changes. Such changes occur
for example in magnetic resonance imaging (MRI) studies of the developing brain due to
myelination. To simplify computations we propose an approximate metamorphic geodesic
regression formulation that only requires pairwise computations of image metamorphoses. The
approximated solution is an appropriately weighted average of initial momenta. To obtain initial
momenta reliably, we develop a shooting method for image metamorphosis.

1 Introduction
To study aging, disease progression or brain development over time, longitudinal imaging
studies are frequently used. Image registration is required if local structural changes are to
be assessed. Registration methods that account for temporal dependencies in longitudinal
imaging studies are recent, including generalizations of linear regression or splines for
shapes [1,2] or images [3] and methods with general temporal smoothness penalties [4,5].
Changes in image intensities are generally not explicitly captured and instead accounted for
by using image similarity measures which are insensitive to such changes. However,
approaches accounting for intensity changes after registration exist [6].

We generalize linear regression to image time-series, capturing spatial and intensity changes
simultaneously. This is achieved by a metamorphic regression formulation combining the
dynamical systems formulation for geodesic regression for images [3] with image
metamorphosis [7,8], similar to [9] for the large displacement diffeomorphic metric mapping
(LDDMM) case. While several methods have been proposed to simultaneously capture
image deformations and intensity changes for image registration [10,11,12] the
metamorphosis approach [8] is most suitable here, because spatial deformations and
intensity variations are described by a geodesic. This allows generalizing the concept of a
regression line.

Sec. 2 reviews image metamorphosis and its relation to LDDMM. Sec. 3 derives optimality
conditions to allow for a shooting solution to metamorphosis using an augmented
Lagrangian approach [13]. Sec. 4 discusses first- and second-order adjoint solutions. Sec. 5
introduces metamorphic geodesic regression. Sec. 5 shows how an approximate solution can
be obtained by appropriate averaging of the initial momenta of independent pair-wise
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metamorphosis solutions. We show results on synthetic and real longitudinal image
sequences in Sec. 7. The paper concludes with a summary and an outlook on future work.

2 Metamorphosis
Starting from the dynamical systems formulation for LDDMM image registration

(1)

image metamorphosis allows exact matching of a target image I1 by a warped and intensity-
adjusted source image I(1) by adding a control variable, q, which smoothly adjusts image
intensities along streamlines. Here, σ > 0, v is a spatio-temporal velocity field and

, where L is a differential operator penalizing non-smooth velocities. The
optimization problem changes to [8,7]

(2)

The inexact match of the final image is replaced by an exact matching, hence the energy
value depends on the images to be matched only implicitly through the initial and final
constraints; ρ > 0 controls the balance between intensity blending and spatial deformation.
The solution to both minimization problems (1) and (2) is given by a geodesic, which is
specified by its initial conditions. The initial conditions can be numerically computed
through a shooting method.

3 Optimality Conditions for Shooting Metamorphosis
To derive the second order dynamical system required for a shooting method, we add the
dynamical constraint through the momentum variable, p. Eq. 2 becomes

(3)

To simplify the numerical implementation we use an augmented Lagrangian approach [13]
converting the optimization problem (3) to

(4)

where μ > 0 and r is the Lagrangian multiplier function for the final image-match constraint.
The variation of Eq. 4 results in the optimality conditions

(5)

The optimality conditions do not depend on q, since by optimality . Hence, the
state for metamorphosis is identical to the state for LDDMM registration, (I, p), highlighting
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the tight coupling in metamorphosis between image deformation and intensity changes. The
final state constraint I(1) = I1 has been replaced by an augmented Lagrangian penalty
function.

4 Shooting for Metamorphosis
The metamorphosis problem (2) has so far been addressed as a boundary value problem by
relaxation approaches [14,8]. This approach hinders the formulation of the regression
problem and assures geodesics at convergence only. We propose a shooting method instead.
Since the final constraint has been successfully eliminated through the augmented
Lagrangian approach, ∇p(0)E can be computed using a first- or second-order adjoint method
similarly as for LDDMM registration [15,16]. The numerical solution alternates between a
descent step for p(0) for fixed r, μ and (upon reasonable convergence) an update step

The penalty parameter μ is increased as desired such that μ(k+1) > μ(k). Numerically, we
solve all equations by discretizing time, assuming v and p to be piece-wise constant in a
time-interval. We solve transport equations and scalar conservation laws by propagating
maps [17] to limit numerical dissipation.

4.1 First-Order Adjoint Method
Following [16], we can compute ∇v(0)E by realizing that the Hilbert gradient is

where K = (L†L)−1. Therefore based on the adjoint solution method [17,18]

(6)

where Φ is the map from t = 1 to t = 0 given the current estimate of the velocity field v(x, t)
and p̂(1) = r - μ(I(1) - I1) with I(1) = I0 ∘ Φ−1. Storage of the time-dependent velocity fields
is not required as both Φ and Φ−1 can be computed and stored during a forward (shooting)
sweep. Instead of performing the gradient descent on v(0) it is beneficial to compute it
directly with respect to p(0) since this avoids unnecessary matrix computation. Since at t =
0: -(L†L)δv(0) = δp(0)∇I(0), it follows from Eq. 6 that

4.2 Second-Order Adjoint Method
The energy can be rewritten in initial value form (wrt. (I(0), p(0))) as
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Eq. (5) holds.

At optimality, the state equations (5) and

hold, with final conditions: λp(1) = 0; λI(1) = r - μ(I(1) - I1). The gradient is

The dynamic equations and the gradient are only slightly changed from the LDDMM
registration [15] when following the augmented Lagrangian approach.

5 Metamorphic Geodesic Regression
Our goal is the estimation of a regression geodesic (under the geodesic equations for
metamorphosis) wrt. a set of measurement images {Ii} by minimizing

(7)

such that Eq. (5) holds. Here, σ > 0 balances the influence of the change of the regression
geodesic with respect to the measurements, m(t0) = p(t0)∇I(t0) and Sim denotes an image
similarity measure. A solution scheme with respect to (I(t0), p(t0)) can be obtained following
the derivations for geodesic regression [3]. Such a solution requires the integration of the
state equation as well as the second-order adjoint. Further, for metamorphosis it is sensible
to also define Sim(I(ti), Ii) based on the squared distance induced by the solution of the
metamorphosis problem between I(ti) and Ii. Since no closed-form solutions for these
distances are computable in the image-valued case an iterative solution method is required
which would in turn require the underlying solution of metamorphosis problems for each
measurements at each iteration. This is costly.

6 Approximated Metamorphic Geodesic Regression
To simplify the solution of metamorphic geodesic regression (7), we approximate the
distance between two images I1, I2 wrt. a base image Ib at time t as

(8)

where p1(0) and p2(0) are the initial momenta for I1 and I2 wrt. the base image Ib (i.e., the
initial momenta obtained by solving the metamorphosis problem between Ib and I1 as well
as for Ib and I2 respectively) and m1(0) = p1(0)∇Ib, m2(0) = p2(0)∇Ib. This can be seen as a
tangent space approximation for metamorphosis. The squared time-dependence emerges
because the individual difference terms are linear in time.
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We assume that the initial image I(t0) on the regression geodesic is known. This is a
simplifying assumption, which is meaningful for example for growth modeling wrt. a given
base image1. Substituting into Eq. (7) yields

Here, m(t0) = p(t0) ∇I(t0), Δti = ti - t0, mi = pi∇I(t0) and pi is the initial momentum for the
metamorphosis solution between I(t0) and Ii. For a given I(t0), the pi can be independently
computed. The approximated energy only depends on the initial momentum p(t0). The
energy variation yields the condition

where the operator R is . Since K = (L†L)−1 and ρ >
0 this operator is invertible and therefore

The last approximation is sensible since typically σ ≪ 1. It recovers the metamorphosis
solution if there is only one measurement image and the base image.

7 Experimental Results
7.1 Simulated Examples

In Fig. 1, four images (32 × 32, spacing 0.04) are synthesized to simulate the movement of a
bull’s eye. The outside white loop of the eye shrinks with no intensity changes, while the
inside circle grows at a constant speed and its intensity changes from white to gray. The
images are at time instants 0, 10, 20, 30 and we chose the first one as the base image. Eight
Gaussian kernels [19] are used for K: {K0.5, K0.4, K0.3, K0.25, K0.2, K0.15, K0.1, K0.05}; ρ =
0.75. The result confirms that the spatial transformation and intensity changes are captured
simultaneously. The dark solid circle at the center of the average momentum of Fig. 1
indicates that the intensity of the inside circle will decrease gradually. The white loop
outside of the dark area captures the growth of the inside circle.

Fig. 2 shows a square (64 × 64; spacing 0.02) moving from left to right at a uniform speed
with gradually decreasing intensity. Measurements are at 0, 10, 20, 30, 40. We used a multi-
Gaussian kernel K with {K1.0, K0.75, K0.5, K0.4, K0.3, K0.2, K0.1} and set ρ = 5.0.

1Ideally one would like to construct an image on the geodesic given all the measurement images and then perform all computations
with respect to it. For the linear regression model the point defined by the mean in time and the measurements, (t̄, ȳ), is on the
regression line. If such a relation exists for metamorphic geodesic regression, e.g., some form of unbiased mean with similar
properties, remains to be determined.
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Metamorphic regression successfully captures the spatial transformation and the intensity
changes of the square even when adding vertical oscillations. As expected, metamorphic
regression eliminates the oscillations while capturing the intensity change and the movement
to the right. We see from the time-weighted average of the initial momenta that intensity
changes are controlled by the values inside the square region (dark: decreasing intensity;
bright: increasing intensity). The spatial transformations are mainly controlled by the
momenta on the edges of the square.

7.2 Real Images
Fig. 3 shows two representative longitudinal MRI time-series (300 × 250 with spacing
0.2734) of nine macaque monkeys at age 3, 6, and 12 months. Some subjects have no visible
myelination in the anterior parts of the brain at 3 months (top left), while others show
substantial myelination (bottom left). Here, we use metamorphic geodesic regression not for
an individual longitudinal image set, but for all nine monkeys and all time-points
simultaneously. We use an unbiased atlas for images at 12 months as the base image.
Metamorphic geodesic regression is applied over the remaining 18 images at 3 and 6
months. We use a multi-Gaussian kernel, K, with {K40, K20, K15, K10, K5, K2.5}; ρ = 500.

Fig. 4 shows regression results for the simple metamorphic model and for its LDDMM
version [9] which cannot capture intensity changes. The metamorphic regression geodesic
captures intensity changes of the brain well (increase in white matter intensity with age
caused by myelination) while capturing spatial deformations, most notably a subtle
expansion of the ventricles.

8 Discussion and Conclusions
We proposed metamorphic geodesic regression for image time-series which simultaneously
captures spatial deformations and intensity changes. For efficient computations we use a
tangent space approximation with respect to a chosen base-image. Solutions can be
computed by solving pairwise metamorphosis problems through a shooting approach. Future
work will address the properties of the approximation, alternative models of intensity change
and the trade-off between spatial deformation and change in image intensities.
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Fig 1.
Bull’s eye metamorphic regression experiment. Measurement images (top row).
Metamorphic regression result (middle row) and momenta (bottom row). The first image is
chosen as base image. Momenta images: left: time-weighted average of the initial momenta;
right: momenta of the measurement images with respect to the base image.
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Fig 2.
Square metamorphic regression experiment. (a) moving square with decreasing intensities
and no oscillations during movement; (b) moving and oscillating square with alternating
intensities. For both cases, the base image is the first one. Top row: measurement images,
middle row: metamorphic regression results, bottom row: momenta images (left: time-
weighted average of the initial momenta, to the right: momenta of the measurement images
with respect to the base image).
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Fig 3.
Representative data-sets at 3, 6 and 12 months (left to right)
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Fig 4.
Regression results for monkey data: LDDMM (top) metamorphosis (bottom). (a) Images on
geodesic at 12, 6, 3 months; (b) Zoom in for images on geodesic at 12, 6, 3 months; (c)
Zoom in for images at 3 months to illustrate spatial deformation.
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