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Abstract
The thick ascending limb of Henle's loop is a nephron segment that is vital to the formation of
dilute and concentrated urine. This ability is accomplished by a consortium of functionally
coupled proteins consisting of the apical Na+:K+:2Cl– co-transporter, the K+ channel, and
basolateral Cl– channel that mediate electroneutral salt absorption. In thick ascending limbs, salt
absorption is importantly regulated by the calcium-sensing receptor. Genetic or pharmacological
disruption impairing the function of any of these proteins results in Bartter syndrome. The thick
ascending limb is also an important site of Ca2+ and Mg2+ absorption. Calcium-sensing receptor
activation inhibits cellular Ca2+ absorption induced by parathyroid hormone, as well as passive
paracellular Ca2+ transport. The present review discusses these functions and their genetic and
molecular regulation.
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The function of the thick ascending limb of Henle's loop (TAL) is critical for salt absorption,
for the regulation of divalent mineral cation, and acid–base metabolism. The TAL is also
essential for the generation and maintenance of the countercurrent multiplication mechanism
that allows the kidney to produce urine that can be more diluted or concentrated than
plasma, a functional capacity that is essential for the survival of mammals that live on land,
including human beings. Pioneering studies by Burg and Green [22] and Rocha and Kokko
[128] were the first to suggest that chloride was absorbed by the TAL and that this process
was inhibited by loop diuretics such as furosemide or bumetanide. Then, in the early 1980s,
studies by Greger and co-workers [64, 65] and Hebert et al. [76, 77] established that the
major salt transport pathway in apical membranes of TAL is an electroneutral Na+:K+:2Cl–

co-transporter that is specifically inhibited by loop diuretics and activated by hormones
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acting through Gαs-coupled receptors such as vasopressin. Ten years later, work by Hebert
and collaborators was crucial to define the molecular nature of ion transport mechanisms in
TAL by isolating the complementary DNA (cDNA) encoding the renal-specific, apically
expressed, bumetanide-sensitive Na+:K+:2Cl– co-transporter, NKCC2 [30]; the inward-
rectifier potassium channel, ROMK [5]; and the basolateral calcium-sensing receptor, CaSR
[18, 123]. In the present work, we review some of the knowledge that has become available
during the last 15 years as a consequence of cloning NKCC2, ROMK, and CaSR.

The molecular mechanisms of salt absorption by TAL are depicted in Fig. 1. As in many
epithelia, the Na+:K+--ATPase, polarized to basolateral membranes, generates the gradient
for sodium entry across apical membranes [66] in which most of the sodium movement
occurs though NKCC2 [64, 65, 67, 68, 76]. Salt absorption by TAL, however, requires the
simultaneous operation of several transport proteins (Fig. 1). Sodium and chloride ions
traversing at the apical cell surface by way of NKCC2 leave the cell at the basolateral
membrane through the Na+:K+-ATPase and Cl– channels (CLC-KB). These membrane
proteins are composed of two subunits, one that mediate the transport function and another
that is necessary to chaperon the protein to the plasma membrane [56, 88, 96, 122, 134, 135,
151]. The chaperon subunits are known as β-subunit for the Na+:K+-ATPase and Barttin for
CLC-KB. Potassium ions entering across apical plasma membranes are returned to the
tubular lumen via ROMK. The potassium concentration of glomerular ultrafiltrate (4 mEq/
L) is much lower than that of sodium (145 mEq/L) or chloride (110 mEq/L). Without
recirculation, the K+ concentration in the TAL lumen would be rapidly reduced, stopping the
function of NKCC2. Thus, K+ recycling ensures that its concentration within the TAL lumen
remains constant in order to allow proper function of NKCC2. Additionally, the lumen-
positive voltage of TAL resulting from K+ recycling drives absorption of a second cation
(Na+, Ca2+, Mg2+) through the paracellular pathway. Therefore, the coordinated function
between NKCC2, ROMK, and CLC-KB, on the one hand, renders TAL epithelial cells
thermodynamically more efficient because two cations are reabsorbed at the expense of ATP
needed to pump one and, on the other hand, promotes the absorption not only of Na+ ions
but also of divalent cations [141].

Molecular physiology of NKCC2
NKCC2 belongs to solute carrier family 12 (SLC12; Human Genome Organization), the
electrically silent, cation-coupled chloride co-transporter family [27, 54]. SLC12A1 located
on human chromosome 15 encodes the Na+:K+:2Cl– co-transporter that is exclusively
expressed on apical membranes of the TAL, whereas SLC12A2 located on human
chromosome 5 encodes the Na+:K+:2Cl– co-transporter that is expressed on basolateral
membranes of several epithelial cells and in many non-epithelial cells. The cDNA encoding
these isoforms was simultaneously identified by two groups in 1994. Hebert and coworkers
identified the apical renal isoform that was named BSC1 for bumetanide-sensitive co-
transporter 1 [30] and then the basolateral isoform that was thus named BSC2 [35], while
Forbush and coworkers first identified the basolateral isoform that was named NKCC1 [161]
and then the renal-specific isoform, NKCC2 [111].

NKCC2 has been cloned and sequenced from human [136], rat [55], mouse [84, 100], rabbit
[111], shark [53], and eel kidney [32]. It is a protein of 1,095 amino acid residues with a
proposed topology featuring a central hydrophobic domain made up of 12 putative
transmembrane (TM) spanning regions (Fig. 2a). A long hydrophilic loop connects TM
segments 7 and 8 and contains two glycosylation sites. The hydrophobic domain is flanked
by a short amino- and a long carboxyl-terminal domain that are located within the cell. Anti-
NKCC2 polyclonal antibodies were used to demonstrate that NKCC2 is specifically
expressed in the apical membrane of TAL (Fig. 2a) [38, 86]. NKCC2 is able to form
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dimmers, and it is likely that it functions as dimers [138]. NKCC2 is glycosylated at the two
sites located in the long extracellular loop [109]. The absence of glycosylation is associated
with decreased co-transporter activity and increased affinity for extracellular chloride [109].
Thus, the long glycosylated loop between TM 7 and 8 must be oriented toward the
extracellular space.

Alternative spliced isoforms of NKCC2
The molecular and functional diversity of NKCC2 is enriched by the existence of at least six
alternatively spliced variants that arise from the combination of two independent splicing
mechanisms. The first is the existence of three mutually exclusive 96-bp cassette exon 4,
denoted A, B, and F, that encode part of transmembrane 2 (TM2) and the interconnecting
segment between TM2 and TM3 (Fig. 2a,c). These exons were originally described in rabbit
[111] and later identified in human [136], mouse [100], and rat kidney [163]. Thus, NKCC2
can be expressed as NKCC2-A, NKCC2-B, or NKCC2-F.

Knowledge of the axial distribution of NKCC2 isoforms along TAL comes from molecular
analysis using isoform-specific probes for Northern blots (Fig. 2d) [111] or in situ
hybridization [84], as well as from isoform-specific polymerase chain reaction primers
applied to single nephron segments [163]. Variant F is present only in the inner stripe of the
outer medulla, that is, at the beginning of the medullary thick ascending limb (MAL),
whereas variant B is present only toward the end of the cortical thick ascending limb (CAL)
in the renal cortex where macula densa cells are located. Variant A is present in all TAL,
suggesting that it is probably the default isoform, and that specific splicing mechanisms take
place in MAL and CAL to ensure the formation of F and B isoforms, respectively. The A, B,
and F variants exhibit different ion transport kinetics [61, 113] that explain the axial capacity
of TAL for solute transport observed many years before [21]. The affinity for the three co-
transported ions is B>A>F (Fig. 2e) in both mouse [113] and rabbit [61] NKCC2. Thus, the
F isoform, located at the beginning of the MAL (Fig. 2d) where solutes are highly
concentrated, is the low-affinity co-transporter, whereas the B-isoform, located at the end of
CAL (Fig. 2d) where tubular fluid has been diluted, is the high-affinity isoform, thereby
ensuring continuous salt absorption despite lower ion concentrations. The A variant, located
throughout the TAL, exhibits an intermediary affinity and is the isoform with the greatest
intrinsic transport capacity [113]. Experiments using chimeric constructs [52] or site-
directed mutagenesis [60] of NKCC2 expressed in Xenopus laevis oocytes point to only six
residues as responsible for kinetic differences between B and F isoforms (Fig. 2c).

A second splicing mechanism involves utilization of an alternative polyadenylation site in
exon 16 that produces two distinct C terminal domains: a long isoform composed of 457
amino acid residues generating the NKCC2 protein of 1095 residues (L-NKCC2) and a
truncated one of 129 residues producing a shorter NKCC2 isoform of 770 residues (S-
NKCC2), which is lacking the last 329 residues of L-NKCC2 but contains 55 residues at the
end, not present in L-NKCC2 (Fig. 2b). The expression S-NKCC2 at the protein level was
corroborated using polyclonal antibodies raised against the unique 55-residue fragment
[100]. Since this splicing mechanism is independent of A, B, and F exons, at least in mouse
kidney, six isoforms are potentially present: L-NKCC2 A, B, and F and S-NKCC2 A, B, and
F (Fig. 2a,b) [100]. S-NKCC2 exhibits functional properties of a co-transporter and as a
regulator of L-NKCC2. As a co-transporter, S-NKCC2 functions as a K+-independent but
bumetanide-sensitive Na+:Cl– co-transporter that is active only during cell swelling and is
inhibited by cAMP [112]. Consistent with the size of S-NKCC2 and L-NKCC2 [100], Hass
et al. [69] isolated 75- and 150-kDa proteins from mouse outer medulla membranes using a
photosensitive bumetanide analogue [3H]BSTBA.
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The S-NKCC2 isoform provides the molecular explanation for physiological observations
conducted in rabbit and mouse TAL cells suggesting the presence of two operating modes of
salt transport [41, 42, 141]. Under hypotonic conditions or in the absence of vasopressin
(i.e., absence of cAMP), the furosemide-sensitive salt transporter behaves as a K+-
independent, Na+:Cl– co-transporter (S-NKCC2). In contrast, when cells were exposed to
hypertonicity or to vasopressin (i.e., cAMP) the furosemide-sensitive transport became K+-
dependent, turning the transport mode to a Na+: K+:2Cl– co-transporter (L-NKCC2). It
remains to be defined how the K+ transport ability is lost by the SNKCC2 variant, especially
since it has been demonstrated in L-NKCC2 that information required for Na+, K+, and Cl–

transport is located within the central hydrophobic domain [146]. Therefore, it is possible
that the 55 amino acid residues play a role in reducing the K+ transport ability of S-NKCC2.
Interestingly, there are many positively charged residues within the unique 55-residue
segment of S-NKCC2 (Fig. 2c) that could function in preventing translocation of a
positively charged ion such as K+.

The role of A and B isoforms in TAL physiology in vivo has been analyzed by elegant
studies in which isoform-specific knockout mice were generated [24, 106]. Complete
deletion of NKCC2 in mice resulted in a very severe salt-losing nephropathy, leading to
early death of all pups in the first or second week of life [143]. In contrast, heterozygous
deletion of one allele (NKCC2+/– mice) had no apparent consequences upon renal function
[142]. Thus, it is not surprising that elimination of a single NKCC2 isoform, either A or B,
had no appreciable effects upon salt and water balance [24, 106]. These studies, however,
revealed that the A variant operates better under high perfusion flow rates, supporting
previous observations that this isoform mediates high capacity transport [113]. In addition,
in NKCC2-A–/– mice, the expected reduction in renin secretion by intravenous infusion of
saline solution was not observed, whereas in NKCC2-B–/– mice, the renin secretion
reduction was similar to wild-type mice, suggesting that because of its high capacity for Cl–

transport, the A isoform may be required for the macula-densa-induced decrease in renin
secretion during high flow rates. The double knockout A-B or null mice with specific
deletions of F isoforms have not been generated.

Regulation of NKCC2
Modulation of NKCC2 activity by cAMP-generating hormones such as vasopressin,
glucagon, isoproterenol, and parathyroid hormone is a fundamental mechanism regulating
salt transport in TAL [77, 78]. Before NKCC2 cDNA was identified, the most studied of
these hormones was vasopressin (Fig. 1). Experiments using isolated perfused tubules
showed that vasopressin increases TAL NaCl absorption [70, 77, 131] by what appeared to
involve trafficking of NKCC2 to apical plasma membrane. Surprisingly, however, since
NKCC2 cDNA was identified, few studies have analyzed the regulation of NKCC2 by
cAMP or vasopressin. As mentioned above, regulation of LNKCC2 is another function that
has been suggested for the S-NKCC2 isoform. Although it is well known that the apical
Na+:K+:2Cl– co-transporter in TAL is activated by vasopressin–cAMP, when expressed in
oocytes, L-NKCC2 activity is not affected either by increasing cAMP or by inhibiting PKA
activity. However, when oocytes were injected with both L-NKCC2 and S-NKCC2, the
activity of L-NKCC2 was reduced and fully restored by adding cAMP [114]. Colchicine
prevents the cAMP-induced increase of L-NKCC2 activity, suggesting that it is due to an
increase in L-NKCC2 translocation to the plasma membrane [97]. Thus, it is possible that S-
NKCC2 has a dominant negative effect upon L-NKCC2, which is released when cAMP is
increased. The distribution of S-NKCC2 in TAL is consistent with its regulatory function
(Fig. 2b). S-NKCC2 exhibits a predominant location in sub-apical membrane space; it is
expressed in some, but not in all MAL cells, and is present in the medullary but not in the

Gamba and Friedman Page 4

Pflugers Arch. Author manuscript; available in PMC 2013 February 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



cortical portion of TAL [100]. In this regard, vasopressin has no effect upon salt absorption
in the cortical portion of mouse TAL [76].

Compelling evidence indicates that less than 2% of NKCC2 in isolated TAL tubules is
located at the apical membrane under basal conditions and that this percentage increased
remarkably after exposing the tubules to cAMP [107]. This was also demonstrated in vivo in
another study using polyclonal antibodies that recognize NKCC2 when phosphorylated at
threonine residues 96 and 101 of the amino-terminal domain [58]. Treatment of mice with
vasopressin increased phosphorylation of NKCC2 at these threonines and transporter
translocation to the apical membrane. Another study showed that growth hormone also
activates TAL salt absorption. Growth hormone, which acts through a tyrosine-kinase-
associated receptor, induces phosphorylation of NKCC2 at the same threonines as
vasopressin [37], thus suggesting that the same residues can be phosphorylated by a non-
cAMP-dependent pathway. Finally, recent studies suggest that vasopressin-induced
trafficking of NKCC2 is mediated by lipid rafts [160] and that NKCC2 is also regulated by
direct interaction between the co-transporter and aldolase B [10].

Few studies have addressed acute regulation of NKCC2 by pathways other than cAMP-
PKA. The metabolic sensing AMP kinase, AMPK, directly interacts with and
phosphorylates NKCC2 at serine 126, resulting in activation of the co-transporter [47]. Such
an action could be a coupling signal between the metabolic state of the cell and the activity
of NKCC2. Cells shrinkage activates NKCC2 and is associated with phosphorylation of
threonines 96 and 101 [59]. NKCC2 is a target of the recently discovered kinase family
known as WNKs (with no lysine kinases) implicated in the genesis of hereditary
hypertension [93]. WNK3 is expressed in TAL cells and is a positive regulator of NKCC2
[127]. In this study, it was observed that co-injection of Xenopus oocytes with NKCC2 and
WNK3 increased the 86Rb+ uptake induced by NKCC2. The observed increase was greater
than twofold over control-injected oocytes with NKCC2 complementary RNA (cRNA)
alone. It was also observed in NKCC2 + WNK3 cRNA-injected oocytes that the presence of
WNK3 promotes phosphorylation of threonines 96 and 101. Interestingly, elimination of
WNK3 catalytic activity, by introducing the D294A mutation in WNK3 that is known to
turn WNK3 into a catalytically inactive form, not only prevented the positive effect of the
kinase upon NKCC2 but also turned WNK3 into a negative regulator [127]. Additionally,
recent studies suggest that NKCC2 is activated by intracellular chloride depletion and that
two type of kinases, WNK1/WNK3 and the STE-20 kinases SPAK/OSR1, are implicated
[98, 117]. These studies suggest that intracellular chloride depletion activates WNK1/
WNK3 that in turn interact with and activate SPAK/OSR1, which could be the kinase
phosphorylating NKCC2.

Since different stimuli induce NKCC2 activation and phosphorylation of threonines 96 and
101, it is possible that these threonines are part of a common mechanism to activate NKCC2
rather than a specific cAMP-PKA phosphorylation site. Thus, the molecular mechanisms for
vasopressin- or cAMP-induced activation of NKCC2 remain to be uncovered.

Salt transport in TAL can also be modulated by changing the level of NKCC2 gene
expression. Vasopressin, for instance, induces a long-term increase of NaCl transport in
TAL in isolated perfused tubule studies in Brattleboro rats [11] presumably due to
upregulation of NKCC2 protein expression in TAL cells [90]. Similarly, consistent with the
observation that arachidonic acid metabolites inhibits NKCC2 activity in rabbit MALs [40],
increased NKCC2 expression induced by the cyclooxygenase inhibitors indomethacin or
diclofenac was reversed by the prostaglandin E2 analog misoprostol [43]. Long-term
expression of NKCC2 is also regulated by acid–base status. NKCC2 expression increases
during acidosis [6, 7] by augmenting the stability of NKCC2 messenger RNA (mRNA)

Gamba and Friedman Page 5

Pflugers Arch. Author manuscript; available in PMC 2013 February 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



without affecting SLC12A1 transcription rate [87]. Under physiologic conditions, most of
the ammonium produced by proximal tubules is reabsorbed by TAL to be later secreted in
medullary collecting ducts and excreted into the urine [63, 91]. Thus, during acidosis in
which production of ammonium by proximal tubules increases, NKCC2 expression
increases as a compensatory mechanism to enhance ammonium absorption.

Bartter syndrome type I
In 1962, Frederick Bartter described a salt-losing nephropathy that featured hypokalemia,
metabolic alkalosis, polyuria, and hypertrophy of the juxtaglomerular apparatus [9]. The
clinical manifestation suggested that the affected segment of the nephron was the TAL. It is
now known that Bartter syndrome is a heterogenous but nevertheless monogenic autosomal-
recessive disorder that has been characterized at the molecular level, mostly in
consanguineous families. Up to five genes have been shown to cause Bartter syndrome:
Inactivating mutations of NKCC2, the apical K+ channel ROMK, the basolateral Cl–

channel CLC-KB, and its chaperon subunit Barttin result in Bartter syndrome types I, II, III,
and IV, respectively, whereas activating mutations of the calcium sensing receptor, CaSR,
produce Bartter syndrome type V. That all these five genes when mutated produce the same
disease strongly supports the molecular model of TAL salt absorption depicted in Fig. 1 in
which simultaneous operation of all these proteins is required for proper function of this
nephron segment. Types I and II Bartter syndrome are the more severe forms since the
clinical picture is usually present during the antenatal period as excessive accumulation of
amniotic fluid (polyhydramnios). After birth, most of the patients present with low blood
pressure, metabolic alkalosis with hypokalemia, hyperreninemia, secondary aldosteronism,
hypercalciuria, and nephrocalcinosis [132]. Consistent with reports of mutations in
SLC12A1 as the cause of Bartter's syndrome type I, targeted disruption of this gene in mice
produces a profound salt-wasting nephropathy with elevated mortality during the first 2
weeks of life [143].

Figure 3 shows the proposed secondary structure of NKCC2 to indicate the specific
missense mutations and location within the protein that have been defined as the cause of
Bartter syndrome type I. In addition, ten different small deletions (not shown in Fig. 3) or
mutations producing frame shifts, and thus truncated proteins, have been described [2, 12,
51, 92, 136, 137, 148]. Mutations are distributed throughout the co-transporter. Analysis of
the functional consequences of mutations G193R, A267S, G319R, A508T, Δ526N, and
Y998X in Xenopus laevis oocytes resulted in severely reduced activity of proteins that were
correctly routed to the plasma membrane, suggesting that intrinsic activity was diminished
[137]. One boy with a mild phenotype was found to have a G224D mutation affecting only
isoform B [147], thus producing an isoform-specific disease. More recently, two brothers
with late-onset manifestations of Bartter syndrome type I were described [118]. Both were
compound heterozygous, harboring a frame shift, D918fs, and a missense mutation, F177Y,
that reduced NKCC2 activity by half compared with wild-type NKCC2. It was suggested
that in these cases, the disease did not begin until the second decade of life due to the
residual activity of F177Y.

As discussed in the section on CaSR, Ca2+ directly regulates salt transport by TAL, and this
occurs by interaction with the CaSR in the basolateral membrane. Activation of this sensor
by Ca2+ decreases salt reabsorption by TAL, thus reducing the paracelluar calcium
reabsorption. Consistent with this, two studies show that activating mutations of the CaSR
results in a Bartter phenotype [149, 159]. Thus, mutations in the CaSR causing Bartter
syndrome are the gain-of-function type. Watanabe et al. [159] described two unrelated
patients with activating mutations in the CaSR (A843E and C131W) and a Bartter
phenotype. In the second study, Vargas-Poussou et al. [149] described another pediatric
patient with an L125P mutation in the CaSR that also exhibited a Bartter phenotype.
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NKCC2 and arterial hypertension
The fact that mutations in SLC12A1 cause a monogenic disease that features arterial
hypotension due to decreased NKCC2 activity indicates that this is a fundamental gene
defending normal blood pressure, and thus, single nucleotide polymorphisms (SNPs) or
mutations within SLC12A1 potentially could be implicated in heightening or diminishing
the risk for developing arterial hypertension. In this regard, a recent study [85] analyzed the
presence and distribution of rare independent SLC12A1 mutations encoding NKCC2,
SLC12A3 encoding the thiazide-sensitive Na+:Cl– co-transporter NCC, and KCNJ1
encoding the apical ROMK potassium channel in 3125 subjects of the Framingham Heart
Study who have been studied for 35 years with frequent periodic cardiovascular evaluation
and for which DNA was available. Thirty different mutations were observed in 49 subjects.
Most of them were missense mutations and were predicted to impair protein function. Of
these, ten were mutations in SLC12A1 (Fig. 3), 15 in SLC12A3, and five in KCNJ1. The
clinical and epidemiological analysis of this cohort of subjects revealed that carriers of these
mutations were located within the lower deciles of blood pressure, with significantly lower
systolic and diastolic blood pressures when compared with non-carriers. In addition, carriers
of these mutations were significantly protected against the development of arterial
hypertension, since prevalence of this disease was significantly lower at all ages when
compared with non-carriers. The results of this study strongly suggest that in the open
population, NKCC2 contributes to normal variation in blood pressure and some mutations
are protective against hypertension. It remains to be determined if there are mutations or
SNPs in SLC12A1 that increases the activity and/or expression levels of NKCC2, which
could be implicated in enhancing the risk for hypertension.

CaSR regulation of NKCC2, ROMK, and TAL calcium absorption
The role of calcium in regulating renal tubular transport processes and metabolism had been
investigated and described and was generally accepted phenomenologically, though no
convincing explanation was advanced to clarify the mechanism of such regulation. The
concept and existence of a calcium receptor was proposed and its features presciently
predicted [15]. Several years later, Brown, Hebert, and their colleagues succeeded in the
molecular cloning of the CaSR, the features of which were entirely consistent with its
anticipated characteristics [19, 126]. A number of comprehensive reviews discuss the
general physiology, pathophysiology, and pharmacology of the CaSR [16, 20, 25, 83]. Here,
we focus on the role of the CaSR in modulating Na+, Ca2+, and K+ transport in TALs.

Molecular physiology of the CaSR
The CaSR is a member of the class C superfamily of G-protein-coupled membrane receptors
(GPCR). Class C also includes pheromone and odorant receptors, to which the CaSR is most
structurally related, as well as metabotropic glutamate and γ-aminobutyric (GABA)
receptors [57]. The distinguishing structural feature of these GPCRs is that the ligand-
binding sites are contained within the large (≈600 amino acid) extracellular receptor
domain. The primary ligand-binding pocket, or orthosteric site,1 is formed by two prominent
three-dimensional lobes that characterize class C receptors. This structure has been
compared to a venus flytrap [29]. The CaSR constitutively forms homodimers, which is
essential to its action [8, 108].

Except for two cysteines forming a putative disulfide bridge, class C receptors do not have
any of the key features that characterize class A (rhodopsin, β-adrenergic) or class B (PTH,
calcitonin, secretin) receptors [57].

1Binding to the same recognition site as an endogenous agonist.
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Ligand bias
Although ionized calcium (Ca2+) is the cognate physiological CaSR ligand, its selectivity is
not absolute. Mg2+, Sr2+, Ba2+, Cd2+, Co2+, Fe2+, Ni2+, Pb2+, Gd3+, La3+, Eu3+, Tb3+, and
Yt3+ activate the CaSR [17, 73, 103]. A comprehensive pharmacological evaluation with
concentrations for half-maximal activation for comparable activation or signaling
parameters remains to be performed. Nonetheless, these inorganic di- and trivalent cations,
along with polycations such as spermine, aminoglycosides (e.g., streptomycin, gentamicin,
and neomycin), and polybasic amino acids (e.g., polylysine) are full agonists and are
referred to as type I calcimimetics. Allosteric modulators that require the presence of Ca2+

or other full agonists that enhance the sensitivity of activation without altering the maximal
response also regulate the CaSR and are designated type II calcimimetics. Allosteric
modulators include organic polycations [NPS R467, NPS R568, and cinacalcet (AMG
R073)] [74, 104] and L-amino acids [28]. The venus flytrap extracellular domain is required
for amino acid binding [101] as it is for activation by cationic agonists Ca2+, Gd3+, and
neomycin [72]. Though both amino acids and type II calcimimetics allosterically activate the
CaSR, they do so through different mechanisms [164]. CaSR activity is also modulated by
ionic strength [73] and by pH [121]. These actions could have significant regulatory effects
especially for TALs, which are found in a high-ionic strength environment, and collecting
tubules where urinary acidification proceeds.

The CaSR is abundantly expressed in the kidneys. CaSR mRNA transcripts are present
essentially throughout the nephron, viz., glomerulus, proximal convoluted and straight
tubules, medullary and cortical TALs, distal convoluted tubules, cortical and inner
medullary collecting ducts [125]. CaSR protein expression is prominently found in proximal
tubules, TALs, and cortical collecting tubules [124]. Notably, the membrane domain on
polarized renal tubular epithelial cells on which the CaSR is found differs between nephron
segments. In proximal tubules, the CaSR is expressed at the base of apical brush-border
membranes. Expression decreases from S1 to S3 proximal tubule segments. By contrast, in
TALs, the CaSR is found on basolateral cell membranes [23, 124]. In cortical and inner
medullary collecting ducts, the CaSR is localized to apical plasma membranes [23, 124,
130]. The CaSR is expressed only in some of the type A intercalated cells of the cortical
collecting duct [124]. The trafficking motifs responsible for directed membrane targeting of
the CaSR have not been identified (Fig. 4).

G proteins, CaSR signaling
G protein binding—Signaling by the CaSR is remarkably complex and incompletely
defined. Studies of isolated parathyroid cells established that raising extracellular Ca2+

activated phospholipase C (PLC) with attendant inositol phosphate formation and transient
elevations of intracellular Ca2+ and inhibited adenylyl cyclase with decreased cAMP
accumulation [15, 79, 157]. Initial characterization of the cloned and heterologously
expressed CaSR demonstrated that these properties were attributable to the receptor itself
and not an epiphenomenon [19]. The CaSR is expressed by Madin–Darby canine kidney
(MDCK) cells where it couples to Gαq/11 and Gαi2,3 [4]. These and similar findings prove
that CaSR signaling is mediated by the G protein families Gq/11 and Gi, although Gq/11 is
believed to be the more relevant signaling pathway. Recent evidence suggests that G protein
signaling by the CaSR may change from Gq/11 to Gi following malignant transformation
[94].

An overview of major CaSR signaling pathways is shown in Fig. 5. Calcium binding to the
CaSR results in G-protein-dependent stimulation of PLC with attendant inositol
trisphosphate (IP3) formation and rapid but transient release of Ca2+ from intracellular
stores. In dispersed parathyroid cells, PLC activation and PTH secretion is inhibited by
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treatment with pertussis toxin [26, 45] as is CaSR activation in MAL cells [1], indicating
that it is mediated by Gαi/o, whereas in MDCK cells [4], PLC activation is refractory to
pertussis toxin, suggesting that Gαq/11 mediates PLC activation. Thus, different G proteins
may mediate CaSR activation in distinct cell types where in some stimulation proceeds
through a mechanism involving Gi as opposed to releasing Gβγ subunits from pertussis
toxin-insensitive Gq/11 or through PLC-mediated increases in Ca2+, which then inhibits,
respectively, Gβγ- or Ca2+-sensitive isoforms of adenylate cyclase.

PLC activation is a direct consequence of CaSR occupancy and is mediated by Gq/11 [150].
Other CaSR signaling pathways including activation of Gi, phospholipase A2 (PLA2),
phospholipase D (PLD), mitogen-activated protein kinase (MAPK), and
phosphatidylinositol-3 and phosphatidylinositol-4 kinases (PI3K and PI4K, respectively)
have been described but are less well characterized [19, 81, 89, 158]. Activation of PLD and
Rho is mediated by Gα12/13 [82].

CaSR signaling in TAL
Elevated extracellular Ca2+ in MALs inhibits vasopressin-stimulated cAMP accumulation,
whereas in CALs, raising extracellular Ca2+ suppresses PTH-stimulated cAMP formation
while not impairing PTH-induced cAMP accumulation by proximal tubules. Takaichi and
Kurokawa [144, 145] noted that in dissected nephron segments, increasing extracellular
calcium from 1 to 5 mM inhibited cAMP production in response to PTH and calcitonin in
cortical TALs of Henle, but not in proximal convoluted tubules.

Although CaSR signaling is primarily effected by PLC in most cell types, PLC activation in
TAL does not appear to mediate increases of intracellular Ca2+, which has its origin in
extracellular fluid rather than from release from cytoplasmic stores [34, 154]. Moreover,
increases of intracellular Ca2+ reduce cyclic AMP formation by inhibiting the type 6
adenylate cyclase and increasing cAMP metabolism by activating a Ca2+-dependent
phosphodiesterase as noted above.

An alternative mechanism involved in CaSR signaling in TAL involves Ca2+ modulation of
phospholipase A2 (PLA2) activity. Ca2+ activation of PLA2 increases cytosolic arachidonic
acid, which is rapidly metabolized by a P450 ω-hydroxylase (CYP4) to 20-
hydroxyeicosatetraenoic acid (20-HETE) or by COX2 to prostaglandins [154]. Because
P450 is more highly expressed than COX2, 20-HETE formation is normally favored. CaSR
activation, however, increases TNFα stimulation of COX2 [44], which diverts arachidonic
acid metabolism toward prostaglandin synthesis at the expense of 20-HETE.

Increasing extracellular calcium stimulates cyclooxygenase-2 (COX2) and PGE2 synthesis
by MAL cells in a dose- and time-dependent manner [152, 153]. These effects, as discussed
below, are important for the regulatory effect of CaSR activation on NaCl absorption.

Regulation of NKCC2, ROMK, and other proteins in TAL by the CaSR
CaSR activation has two prominent physiological actions to regulate electrolyte absorption
in TALs. Moreover, mutations of the CaSR cause profound disruption of renal sodium and
calcium ion homeostasis. As noted earlier, in the TAL, the CaSR is expressed on basolateral
cell membranes. As such, it monitors extracellular calcium concentrations in the renal
interstitium. Importantly, variations of interstitial calcium occur under normal conditions, to
an extent permitting physiological regulation of CaSR modulated functions [102].

Activation of the TAL CaSR directly affects NaCl absorption mediated by NKCC2 and
indirectly regulates NaCl absorption by modulating ROMK (renal outer medullary K+

channel; Kir 1.1) channels. Likewise, CaSR activation directly affects Ca2+ transport.
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Whether or not effects on Na+ transport indirectly affect Ca2+ is uncertain and controversial.
The mechanisms of Na+, K+, and Ca2+ transport in TAL are outlined at the beginning of this
review (cf. Fig. 1) and serve as a general background for understanding the regulatory
influences of CaSR actions. It should be borne in mind that in addition to passive
paracellular Ca2+ movement that occurs along the entire length of the TAL, hormone-
regulated active cellular Ca2+ absorption occurs selectively in MAL, which is regulated by
calcitonin, and in CAL, where it is governed by PTH [139, 140].

NKCC2 and CaSR—Luminal membrane Na+ entry in TALs is mediated mostly by the
electroneutral, furosemide-sensitive Na+–K+–2Cl– co-transport, NKCC2 (SLC12A1). The
observation that Ca2+ regulates TAL Na+ transport predates the molecular cloning of either
NKCC2 or the CaSR. Calcium infusion increases both calcium and sodium excretion [95],
in part due to inhibition of iso-osmotic solute absorption by proximal tubules [39]. However,
urinary calcium excretion increases to a greater extent than does sodium excretion,
suggesting both a specific inhibitory effect of hypercalcemia on calcium transport and, by
inference, that this action occurs in distal tubules where calcium and sodium absorption is
inversely related and can be dissociated [48]. Evidently, in intact animals, elevations of
serum calcium are accompanied by suppression of PTH secretion [39], which decreases
calcium absorption at hormone-sensitive sites in cortical TALs and distal convoluted
tubules. However, hypercalcemia also directly inhibits calcium absorption by TALs of
Henle's loop [119, 133].

Hypercalcemia suppresses PTH-stimulated cAMP formation specifically in TALs while not
impairing PTH-induced cAMP accumulation by proximal tubules. Takaichi and Kurokawa
[144] noted that in dissected nephron segments, increasing extracellular calcium from 1 to 5
mM inhibited cAMP production in response to PTH and calcitonin in cortical TALs of
Henle, but not in proximal convoluted tubules. High ambient calcium also inhibited cAMP
production stimulated by forskolin, indicating that a post-receptor mechanism additionally
contributes to Ca2+ regulatory effects. These additional mechanisms are likely to be
mediated by the type 6, Ca2+-inhibitable adenylyl cyclase and the Ca2+-activated
phosphodiesterase.

Subsequent studies established that Ca2+ directly inhibits NaCl absorption in TALs [33] and
that elevated peritubular calcium (the location of the CaSR), but not luminal calcium or
magnesium, decreases the absorption of both Ca2+ and Mg2+ [120]. Contrary to these
observations, Desfleurs et al. [36] found that elevating extracellular calcium stimulated
cAMP formation but did not affect NaCl absorption or vasopressin-stimulated NaCl
transport in mouse CAL. These results are difficult to interpret because of the stimulatory
action of Ca2+ on cAMP given that the CaSR is not known to couple to Gαs. Indeed, CAL
express the type 6 Ca2+-sensitive adenylyl cyclase, which is inhibited upon raising
extracellular calcium [34]. Enhanced phosphodiesterase activity also contributes to
diminished cAMP formation. The previous findings pointing to an action of vasopressin
effects on CAL are at odds with the segment-specific actions of vasopressin on NaCl, which
proceeds in MAL but not CAL of the mouse [75].

ROMK—ROMK22 (Kir1.1b), as noted above, mediates K+ ion recycling across apical
plasma membranes to the luminal fluid of the TAL (Fig. 1). This action is largely
responsible for generating the lumen-positive voltage that serves as a driving force for the

2TAL apical membranes express 30- and 70-pS channels, and high-conductance, Ca2+-activated maxi K+ channels. ROMK, the 30-
pS channel is absent from apical membranes of ROMK-null mice. The 70-pS channel mediates 80% of the apical K+ conductance.
Current thinking suggests that the 70-pS K+ channel is a heterotetramer that includes ROMK, which may be a pore-containing subunit
of the 70-pS K+ channels. ROMK1 is expressed in cortical collecting ducts, whereas ROMK2 is present in TAL [13].
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cation-selective paracellular movement of Ca2+, Mg2+, and of additional Na+ absorption by
the TAL.

CaSR regulation of ROMK—The regulation of TAL K+ channels by eicosanoids and
P450 metabolites has been elegantly delineated [155]. As mentioned above, CaSR activation
in TALs increases 20-HETE formation in the short term and prostaglandin synthesis after
longer times [153]. 20-HETE potently inhibits NKCC2, ROMK, and the basolateral Na+/
K+-ATPase and, by this means, disrupts NaCl absorption at multiple cellular sites and
through independent mechanisms [3, 40, 156]. CaSR stimulation also induces TNFα
expression, activating COX2, thereby generating PGE2 which contributes further to
inhibition of NKCC2 [31, 152]. Notably, increasing extracellular Ca2+ reduces the activity
of the 70-pS ROMK. The 30-pS ROMK per se is insensitive to 20-HETE or CaSR
activation. Yet, 20-HETE and CaSR activation clearly inhibit NaCl absorption by TALs. It
is possible that 20-HETE may regulate another subunit of the 70-pS K+ channel, thereby
explaining how CaSR activation modulates apical K+ channels activity and, thereby,
NKCC2-mediated Na+ uptake.

CaSR regulation of TAL Ca2+ absorption—An extensive literature testifies to the
inhibitory effect of hypercalcemia on renal calcium absorption [110]. The physiological
relevance of CaSR regulation of renal calcium transport is underscored by hyper- and
hypocalcemic disorders resulting from CaSR mutations: Familial hypocalciuric
hypercalcemia and neonatal severe hyper-parathyroidism are caused by inactivating CaSR
mutations [115], whereas autosomal dominant hypocalcemia is caused by activating
mutations [116].

Calcium absorption in the TAL proceeds by parallel routes and mechanisms. Passive
calcium absorption occurs across the lateral intercellular space that forms the para-cellular
pathway. Transport is proportional to the net electrical and chemical driving forces. PTH in
the CAL and calcitonin in the MAL activates active transcellular calcium movement. Thus,
in contrast to proximal tubules, where calcium absorption is entirely passive and parallels
that of sodium, or distal tubules, where only active calcium absorption occurs and is
inversely related to the rate and magnitude of sodium transport, the TAL represents a hybrid
situation in which calcium and sodium movement may occur in parallel or may be
dissociated depending on the prevailing hormonal status and other ambient conditions
affecting mineral ion and salt homeostasis.

Hypercalcemia directly inhibits basal calcium absorption by TALs of Henle's loop [119,
133]. The participation of the CaSR in regulating basal and PTH-dependent Ca2+ transport
was analyzed in single perfused in CAL [99]. CaSR activation suppressed passive
paracellular calcium absorption, thereby confirming the findings obtained by Desfleurs et al.
[36]. The effects of CaSR activation were specific for calcium absorption and had no effect
on sodium transport. These findings are consistent with the finding that hypercalcemia
exerts a profound inhibitory action on calcium absorption by TALs in
thyroparathyroidectomized rats but only a minor reduction of sodium absorption [119].
Further studies determined that CaSR activation modulated PTH-dependent Ca2+

absorption. Gd3+, the prototype of a non-calcium type I CaSR agonist, was chosen for these
experiments so as to maintain equal concentrations of calcium at both apical and basolateral
surfaces, thereby avoiding a transepithelial calcium gradient that would alter passive
calcium diffusion3. PTH increased Ca2+ absorption without an accompanying change of the
transepithelial voltage. Gd3+ decreased Ca2+ absorption to control levels, again without
altering the transepithelial voltage. The type II calcimimetic NPS R-467 exerted comparable
actions to inhibit PTH-dependent Ca2+ transport. Thus, CaSR activation inhibited PTH-
dependent Ca2+ transport. Moreover, these effects occurred in the absence of a change of
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electromotive driving force, i.e., the reduction of Ca2+ absorption was due to inhibition of
active, transcellular Ca2+ absorption and not to a change in passive, paracellular calcium
movement. The use of non-Ca2+ ligands to activate the CaSR were not due to blockade of
ATP-permeable channels [129], Ca2+-sensitive K+ channels, the nonselective Ca2+-
permeable cation channel, polycystin-2 [62], the Ca2+-selective Trp3 channel [105], or other
non-selective cation channels [46, 162] or mechano-sensitive channels [71]. Indeed, the
precise molecular target of PTH-dependent, CaSR-regulated Ca2+ absorption by CALs is not
known. TRPV5, which mediates vitamin-D-dependent Ca2+ transport in distal tubules, is not
expressed in TAL. Yet, as noted above, PTH clearly stimulates cellular calcium absorption
by CAL.

CaSR activation with Gd3+ or NPS R-467 dissociated Na+ and Ca2+ movement in CAL
insofar as it inhibited Ca2+ absorption without affecting Na+ transport or the transepithelial
voltage [99]. Addition of bumetanide to the luminal fluid virtually abolished Na+ absorption
and transepithelial voltage.

The mechanism by which CaSR activation inhibits PTH-stimulated Ca2+ absorption in CAL
has not been examined. However, it is known that stimulation of Ca2+ transport by PTH in
CAL cells requires parallel activation of both protein kinase A and of protein kinase C;
interfering with either pathway is sufficient to inhibit Ca2+ movement [49, 50]. Based on
these observations, we imagine that by activating Gi, cAMP formation is attenuated, thereby
interfering with PTH action.
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Fig. 1.
Molecular physiology of salt transport in TAL. Five genes are known to be the cause of
Bartter syndrome type I to type V as stated. By acting in a Gαs-coupled receptor,
vasopressin or parathyroid hormone increases cAMP production which in turns increases the
activity of NCCC2 and ROMK, thereby augmenting salt reabsorption. In contrast, by acting
in a Gαq-coupled receptor, extracellular Ca2+ inhibits, both NKCC2 and ROMK, decreasing
salt reabsorption
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Fig. 2.
Molecular physiology of the Na+:K+:2Cl– co-transporter, NKCC2. a Topology, transport
mode, and immunolocalization of the long isoform of NKCC2 (L-NKCC2). There are 12
transmembrane spanning segments and a long hydrophilic loop between TM 7 and 8, with
two glycosylation sites. Location of the mutually exclusive cassette exons is shown in red. b
Topology, transport mode, and immunolocalization of the short isoform of NKCC2 (L-
NKCC2). Location of the mutually exclusive cassette exons is shown in red and the unique
55 piece at the end is shown in orange. White arrows in the picture show positive cells. c
Sequence and alignment of the alternative splicing of SLC12A1. The 31 residues of the
three exons are shown. Switching the red or green residues between B and F isoforms is
enough to switch their ion transport kinetics between each other. TM-2 transmembrane
domain 2. ICL Interconnecting segment between TM2 and TM3. The 55 unique piece of S-
NKCC2 is shown. Residues in blue are positively charged. d Distribution of L-NKCC2 and
S-NKCC2, as well as exons A, B, and F along TAL, as stated. e Ion transport kinetics and
capacity of transport for L-NKCC2 A, B, and F variants, as informed by Plata et al. [113]
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Fig. 3.
Missense mutations informed for NKCC2. Mutations in blue were informed as harbored by
patients with Bartter syndrome [2, 12, 51, 92, 136, 137, 148]. Mutations in red were
informed in normal subjects of the Framingham Heart Study [85]
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Fig. 4.
Three-dimensional structure of the dimerized CaSR. α-Helices are shown in red, β-sheets
are yellow, and loops and turns in green. Cysteines are shown in yellow. The putative
orthosteric site in protomer 1 is labeled. The dimer interface runs along the vertical axis
between the two protomers (from [80])
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Fig. 5.
CaSR signaling in TAL. Simplified model of CaSR by representative type I and type II
agonists. The CaSR is located on basolateral cell membranes of TAL. Its activation inhibits
cAMP formation mediated by Gαi and formation of lipid second messengers and
prostanoids through phospholipase C (PLC) and cytoplasmic phospholipase A2 (cPLA2),
respectively. Inhibition of Na+:K+:2Cl– co-transport on apical cell membranes is indirect
and mediated by blockade of ROMK by 20-HETE or PGE2. CaSR activation inhibits both
PTH-stimulated calcium absorption and passive paracellular calcium absorption (not
shown). Further details are provided in the text
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