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Abstract
Genome-wide association studies (GWAS) have identified hundreds of genomic regions
associated with common human disease and quantitative traits. A major research avenue for
mature genotype-phenotype associations is the identification of the true risk or functional variant
for downstream molecular studies or personalized medicine applications. As part of the Population
Architecture using Genomics and Epidemiology (PAGE) study, we as Epidemiologic Architecture
for Genes Linked to Environment (EAGLE) are fine-mapping GWAS-identified genomic regions
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for common diseases and quantitative traits. We are currently genotyping the Metabochip, a
custom content BeadChip designed for fine-mapping metabolic diseases and traits, in~15,000
DNA samples from patients of African, Hispanic, and Asian ancestry linked to deidentified
electronic medical records from the Vanderbilt University biorepository (BioVU). As an initial
study of quality control, we report here the genotyping data for 360 samples of European, African,
Asian, and Mexican descent from the International HapMap Project. In addition to quality control
metrics, we report the overall allele frequency distribution, overall population differentiation (as
measured by FST), and linkage disequilibrium patterns for a select GWAS-identified region
associated with low-density lipoprotein cholesterol levels to illustrate the utility of the Metabochip
for fine-mapping studies in the diverse populations expected in EAGLE, the PAGE study, and
other efforts underway designed to characterize the complex genetic architecture underlying
common human disease and quantitative traits.

1. Introduction
In the last seven years, genome-wide association studies (GWAS) have been used
extensively to identify common genetic variants associated with human diseases and
quantitative traits. While there are many replicated and mature, known relationships between
genomic regions and phenotypes, very few individual genetic variants have been identified
as the risk variant for downstream molecular studies or personalized medicine applications.
The lack of true functional variants revealed by GWAS stems from the fact that GWAS is
based on linkage disequilibrium (LD), the non-random association of alleles at different
variants along the chromosome. That is, GWAS fixed-content products mostly assay
presumably neutral common genetic variants that are in LD or “tag” other genetic variants
not directly assayed resulting in GWAS-identified regions that probably contain the true risk
(unassayed) variant.

To identify the true risk variant, a major proposed activity in the “post-GWAS” era is fine
mapping. In a fine-mapping experiment, the GWAS-identified region is densely interrogated
via thousands of common and rare variants. Fine-mapping experiments can also take
advantage of the known LD differences observed across populations. For example,
populations of African-descent have lower levels of LD compared with populations of
European-descent and therefore may be useful in identifying the risk variant masked by
higher levels of LD in other populations. Fine mapping across populations is also useful for
identifying population-specific variants associated with phenotypes.

In recognition for the need to fine-map mature GWAS-identified regions originally
identified in European-descent populations, the National Human Genome Research
Instituted established the Population Architecture using Genomics and Epidemiology
(PAGE) study to genotype African American and Asian populations linked to phenotypes
using the Illumina Metabochip, a custom iSelect BeadChip designed to fine-map GWAS-
identified regions for metabolic diseases and traits. We as Epidemiologic Architecture for
Genes Linked to Environment (EAGLE) are genotyping ~15,000 DNA samples linked to
de-identified electronic medical records in the Vanderbilt University biorespository (BioVU)
for fine mapping within the PAGE study. As the first step in quality control, EAGLE has
genotyped 360 HapMap samples from European, African, Asians, and Mexican-descent
populations. This short report describes the quality control, variant properties, and the
potential for fine mapping of GWAS-identified regions in the anticipated populations within
EAGLE and the PAGE study.
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2. Methods
2.1. Study populations

DNA samples were obtained by the PAGE Coordinating Center from the Coriell Cell
Repositories1. A total of 360 samples overlapping the International HapMap Project
collection were obtained, including 30 trios of Northern and Western European ancestry
from Utah from the Centre d’Etude du Polymorphisme Humain (CEPH) collection (CEU;
catalog ID HAPMAPPT01), 90 unrelated individuals representing 45 individuals each from
Tokyo, Japan and Beijing, China (ASN; catalog ID HAPMAPPT02), 30 trios from the
Yoruba in Ibadan, Nigeria (YRI; catalog ID HAPMAPPT03), and 30 trios from
communities of Mexican origin in Los Angeles, California (MEX; catalog ID
HAPMAPV13). Samples were chosen to reflect the overall genetic ancestry of
epidemiologic and clinical-based samples available in the PAGE study1.

2.2. Genotyping
Aliquots of HapMap DNA samples were distributed by the PAGE Coordinating Center to
individual PAGE study sites. The Vanderbilt DNA Resources Core genotyped the Illumina
Metabochip on the HapMap samples distributed by the PAGE Coordinating Center on the
Illumina iScan (San Diego, California). The Metabochip is a custom BeadChip targeting
196,725 genetic variants. Common and less common genetic variants were chosen from
among the first iteration of the 1000 Genomes Project and represent index GWAS-identified
variants regardless of disease or phenotype as of 2009; regions targeted for fine-mapping for
specific GWAS-identified regions associated with coronary artery disease, type 2 diabetes,
QT-interval, body mass index/obesity, lipid traits, glycemic traits, and blood pressure;
mitochondrial markers; HLA markers; sex chromosome markers; and ancestry informative
markers2, 3. Illumina software GenomeStudio (v1.7.4) was used to determine the genotype
calls for each variant for each sample, and manual re-clustering was performed on all
mitochondrial and Y chromosome variants. Data were stored and accessed by the Vanderbilt
Computational Genomics Core for quality control and downstream analyses using BC
Platforms (Espoo, Finland).

2.3. Statistical methods
Standard quality control metrics were generated using PLINKv1.074 and PLATOv0.845.
FST calculations were based on the Weir and Cockerham algorithm6 implemented in
PLATO. Allele frequencies and FST were calculated for CEU, YRI, JPN and CHB
combined (ASN), and MEX unrelated samples separately. Linkage disequilibrium (r2) was
calculated using independent samples stratified by race/ethnicity using Haploviewv4.27.

3. Results
We genotyped 360 DNA samples from the International HapMap collection including 90
CEU, 90 YRI, 90 ASN, and 90 MEX on the Illumina Metabochip. From the 360 samples,
358 (99%) samples were successfully genotyped. And, out of the targeted 196,725 genetic
variants on the Metabochip, we obtained data for 185,788 genetic variants for an overall pre-
quality control call rate of 94.44%. From this initial dataset, we then performed quality
control as outlined by Buyske et al2 (Table1).

To examine potential population differences for genetic variants targeted by the Metabochip,
we first determined minor allele frequencies for every variant by HapMap population. As
shown in Figure 1, the majority of variants for this custom BeadChip are polymorphic. More
than one half (58% for ASN) to up to three-quarters (75% for YRI) of the alleles assayed by
the Metabochip occurred at greater than 1% frequency. Conversely, one quarter (24% for
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YRI) to more than one-third (38% for ASN) of the variants were monomorphic in this small
sample set.

We also calculated a fixation index, FST, for all pair-wise population comparisons. FST is an
estimate of population differentiation ranging from 0 (no measureable genetic
differentiation) to 1.0 (very great genetic differentiation), and its distribution for
Metabochip-targeted variants in HapMap samples is given in Figure 2. The majority (76%)
of FST values are less than 15 for all genetic variant pair-wise population comparisons. The
most population differentiation was observed between YRI and ASN. Conversely, the least
population differentiation was observed between CEU and MEX.

Of the most highly differentiated SNPs (FST > 0.15), we examined the degree to which
alleles altered the expression or function of genes using annotation resources from the
Genome-Wide Annotation Repository (http://gwar.mc.vanderbilt.edu). We defined two
categories of SNP annotation for this analysis: predicted changes to protein function via
SIFT and PolyPhen2 algorithms 8, 9, and prior associations to expression levels of nearby
genes 10, 11. The total number of SNP and gene annotations is shown in tables 2 and 3.

Using this collection of genes associated to differentiated SNPs through functional
annotations, we performed gene enrichment analysis to identify specific biological
mechanisms that likely have altered function between ethnic groups. This analysis revealed
multiple pathways showing differences between CEU and MEX and CEU and ASN
populations. KEGG pathways showing significant adjusted p-values (p < 0.05) are shown in
Table 4.

Notably, the most significantly enriched pathways between CEU and MEX indicate a
dramatic difference in the functional properties of glutathione and drug metabolism through
cytochrome P450. Enrichment of these three pathways is the result of a single SNP –
rs1010167 -- altering expression of three genes, GSTM1(p=3.88e-7), GSTM2(p=1.54e-7),
and GSTM4(p=8.44e-7)11. This SNP falls within a region of chromatin that has been
functionally categorized as an active promoter by the analysis of Ernst et al. in multiple cell
types 12, and is confirmed to bind multiple proteins via ChIP-seq data as reported by the
HaploREG database 13. rs1010167 was not previously genotyped by the HapMap phase III
project.

Remaining pathways showing high differentiation in the CEU/ASN and CEU/MEX
comparisons are largely immune-related, and are driven mostly by functional changes to the
Major Histocompatibility Complex (MHC) found on chromosome 6. Interestingly, there
were no significant pathways found for differentiated functional SNPs involving YRI
comparisons.

To illustrate the fine-mapping potential of densely targeted regions on the Metabochip, we
calculated linkage disequilibrium (r2) by HapMap population for the CELSR2/PSRC1/
SORT1 locus known to be associated with low-density lipoprotein cholesterol levels from
GWA studies in European-descent populations14-16. Consistent with the observations of
Buyske et al17 in samples from African American and Swedish participants, we observed
less LD in YRI compared with CEU for this genomic region. To extend the observations
made by Buyske et al, we examined LD for the same genomic region in HapMap samples of
Asian and Mexican ancestry (Figure 3 c,d). As observed with minor allele frequency and
FST, the CEU and MEX populations displayed similar levels of LD for this genomic region.
In contrast, the ASN population had LD patterns that were distinct from CEU, YRI, and
MEX LD patterns. For the ASN population, the CELSR2/PSRC1/SORT1 locus contained
strong pair-wise LD statistics punctuated by weak LD.
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4. Conclusions
We demonstrate here that the Metabochip custom BeadChip produces high-quality data for
diverse populations from the International HapMap Project. We further show that the
majority of variants observed in all populations considered were common and that a sizeable
fraction of variants were monomorphic. Finally, we demonstrate population differences in
both allelic diversity and LD patterns, both of which will impact the effectiveness of fine-
mapping efforts that employ this BeadChip in the post-GWAS era.

Many of the observations reported here were expected based on population genetics theory
and recent empirical genome-wide data from the International HapMap Project18, 19 and
1000 Genomes Project20. That is, as expected, the greatest population differentiation (as
measured by FST) was observed between African-descent and Asian-descent populations21.
However, other observations such as the proportion of common and rare variants did not
follow expectations given the bias in genetic variant selection for this custom BeadChip22.
From our FST analysis, we also observe significant differentiation of functional alleles
within drug metabolism and auto-immune associated pathways between CEU and ASN/
MEX populations. These variants may explain some aspects of ethnic differences in HLA-
based autoimmune disease susceptibility, and indicates that cytochrome P450 drug
metabolism may be altered in individuals of Mexican ancestry.

A major limitation of this study is sample size. With only 60 to 90 independent samples per
HapMap population, our ability to observe rare alleles targeted by the Metabochip was
limited for any HapMap population. Indeed, although the shape of the allelic distribution
was similar, proportionally more variants in our dataset were classified as common or
monomorphic compared with Buyske et al reflecting our limited ability to observe rare
variants. Larger sample sizes will be required to take advantage of the full range of the
allelic spectrum targeted by the Metabochip for fine mapping.

A final observation made here that will impact fine-mapping efforts is the extent of LD for
an LDL-C associated region across populations. As Buyske et al2 noted, the breakdown of
LD in African Americans for this region (and West Africans here) will be useful in
identifying the true risk variant in a region with high LD in European populations. However,
we note in ASN that the same genomic region has very high LD and thus this custom
BeadChip may not fine map equally well for all targeted GWAS-identified regions for all
populations. Because this custom BeadChip was designed using early iterations of the 1000
Genomes Project data, additional iterations of chips designed for fine mapping will be
required to capture the latest genetic diversity data now emerging in non-European descent
populations from later releases of the 1000 Genomes Project.
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Figure 1. Distribution of minor allele frequencies of genetic variants assayed by the Metabochip,
by HapMap population
Allele frequencies were determined in the founder (unrelated) samples of Northern and
Western European ancestry (CEU; n=60), West African ancestry (YRI; n=60), Asian
ancestry (ASN; n=90), and Mexican ancestry (MEX; n=60). On the x-axis, genetic variant
frequencies were binned as monomorphic, rare (0.1%-1-%), less common (1-2.5%), and
common (2.5-5%, 5-10%, and 10-50%) by population. Number of observations for each bin
is given on the y-axis.
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Figure 2. Distribution of genetic differentiation (FST) by HapMap population pairwise
comparison
FST, a measure of population differentiation, was calculated per SNP in PLATO based on
the Weir and Cockerham algorithm6 for each HapMap population pair. Calculations were
performed on unrelated samples of Northern and Western European ancestry (CEU; n=60),
West African ancestry (YRI; n=60), Asian ancestry (ASN; n=88), and Mexican ancestry
(MEX; n=60). On the x-axis, FST values were binned no difference (zero), >0.0-0.25,
>0.025-0.05, >0.05-0.10, >0.10-0.15, >0.15 by pair-wise population comparison. Number of
observations for each bin is given on the y-axis.
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Figure 3. Extent of linkage disequilibrium (r2) for 50kb region targeted by the Metabochip
containing genome-wide association study (GWAS)-identified CELSR2/PSCR1/SORT1 by
HapMap population
Pair-wise linkage disequilibrium (LD) was calculated on unrelated samples using
HaploView for European-descent [a)CEU; n=60], African [b)YRI; n=60], Asian [c)ASN;
n=88], and Mexican [d)MEX; n=60] HapMap populations. For each LD plot, the genetic
variants are labeled by chromosomal position at the top from 5′ to 3′. Each square
represents a pair-wise LD statistic and they are coded on a gray scale where black is perfect
LD (r2=1) and white to gray is weak LD. The numbers in select squares represent the LD
metric for that pair-wise comparison (for example, 1 is r2=0.01).
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Table 1

Number of genetic variants removed from Metabochip dataset after quality control, by criteria and HapMap
population. We performed quality control steps appropriate for a single dataset as outlined by Buyske et al.2.
Lower genotyping call rates were observed for YRI compared with other HapMap populations consistent with
our observations for targeted genotyping in EAGLE (data not shown).

Criteria SNP Failure
Determination

# SNPs removed

CEU YRI CHB JPN MEX

Call Rate < 0.95 14515 73445 11851 13585 14871

Mendelian Errors > 1 (out of 30
trios)

97 10 0 0 144

Replication Errors < 2 0 0 0 0 0

Hardy-Weinberg
Equilibrium p-

value

< 1 × 10−6 11 1 11 10 19

Discordant calls
on EAGLE

HapMap samples
versus HapMap

database

> 3 (out of 90
samples)

329 178 285 292 301
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Table 2

Number of differentiated SNPs showing functional effects

Population
Comparison

SIFT
(Deleterious)

PolyPhen2
(Possibly or

Probably
Damaging)

Significant
eQTL

Total
functional

SNPs*

ASN/MEX 6 12 202 218

YRI/ASN 23 50 786 844

YRI/MEX 15 33 620 654

CEU/ASN 10 24 445 474

CEU/YRI 13 28 598 631

CEU/MEX 0 1 15 16

*
this total accounts for overlap between annotations
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Table 3

Number of distinct genes affected by differentiated SNPs

Population
Comparison

SIFT
(Deleterious)

PolyPhen2
(Possibly or

Probably
Damaging)

Significant
eQTL

Total
Genes

Affected*

ASN/MEX 5 12 127 141

YRI/ASN 24 49 610 663

YRI/MEX 17 31 444 481

CEU/ASN 9 24 260 285

CEU/YRI 15 26 455 489

CEU/MEX 0 1 15 16

*
this total accounts for overlap between annotations
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Table 4

Pathways with significant enrichment for highly differentiated functional alleles

Population
Comparison KEGG Pathway Reference

Genes
Observed

Genes
Expected

Genes P-value

P-value
(adjusted

for multiple
testing)

CEU/MEX Glutathione
metabolism 24 3 0.04 1.02E-05 9.47E-05

CEU/MEX
Metabolism of
xenobiotics by
Cytochrome P450

30 3 0.06 2.03E-05 9.47E-05

CEU/MEX Drug metabolism -
Cytochrome P450 29 3 0.05 1.83E-05 9.47E-05

CEU/ASN Allograft rejection 26 6 0.83 0.0001 0.0007

CEU/ASN Graft-versus-host
disease 22 6 0.7 4.70E-05 0.0007

CEU/ASN Systemic lupus
erythematosus 54 9 1.71 4.35E-05 0.0007

CEU/ASN Arginine and proline
metabolism 17 5 0.54 0.0001 0.0007

CEU/ASN Autoimmune thyroid
disease 26 6 0.83 0.0001 0.0007

CEU/ASN Antigen processing and
presentation 29 6 0.92 0.0002 0.0013

CEU/MEX Asthma 17 2 0.03 0.0004 0.0014

CEU/ASN Type I diabetes
mellitus 30 6 0.95 0.0003 0.0016

CEU/MEX
Intestinal immune
network for IgA
production

24 2 0.04 0.0009 0.0018

CEU/MEX Type I diabetes
mellitus 30 2 0.06 0.0013 0.0018

CEU/MEX Allograft rejection 26 2 0.05 0.001 0.0018

CEU/MEX Graft-versus-host
disease 22 2 0.04 0.0007 0.0018

CEU/MEX Autoimmune thyroid
disease 26 2 0.05 0.001 0.0018

CEU/MEX Antigen processing and
presentation 29 2 0.05 0.0013 0.0018

CEU/ASN
Intestinal immune
network for IgA
production

24 5 0.76 0.0008 0.0039

CEU/ASN Riboflavin metabolism 8 3 0.25 0.0016 0.007
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