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Abstract

Various methods have been developed for identifying gene–gene interactions in genome-wide association studies (GWAS).
However, most methods focus on individual markers as the testing unit, and the large number of such tests drastically
erodes statistical power. In this study, we propose novel interaction tests of quantitative traits that are gene-based and that
confer advantage in both statistical power and biological interpretation. The framework of gene-based gene–gene
interaction (GGG) tests combine marker-based interaction tests between all pairs of markers in two genes to produce a
gene-level test for interaction between the two. The tests are based on an analytical formula we derive for the correlation
between marker-based interaction tests due to linkage disequilibrium. We propose four GGG tests that extend the following
P value combining methods: minimum P value, extended Simes procedure, truncated tail strength, and truncated P value
product. Extensive simulations point to correct type I error rates of all tests and show that the two truncated tests are more
powerful than the other tests in cases of markers involved in the underlying interaction not being directly genotyped and in
cases of multiple underlying interactions. We applied our tests to pairs of genes that exhibit a protein–protein interaction to
test for gene-level interactions underlying lipid levels using genotype data from the Atherosclerosis Risk in Communities
study. We identified five novel interactions that are not evident from marker-based interaction testing and successfully
replicated one of these interactions, between SMAD3 and NEDD9, in an independent sample from the Multi-Ethnic Study of
Atherosclerosis. We conclude that our GGG tests show improved power to identify gene-level interactions in existing, as
well as emerging, association studies.
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Introduction

Genome-wide association studies (GWAS) have identified over

six thousand single-nucleotide polymorphisms (SNPs) associated

with complex human diseases or traits [1]. Most of these SNPs have

small effect sizes, and for most traits collectively explain only a small

fraction of heritable genetic variance [2,3,4]. Epistasis has been

hypothesized to play an important role in the genetic basis of

complex diseases and other complex traits [5,6,7] and to be one of

the contributors to this problem of ‘‘missing heritability’’ [3,8,9].

Even if epistasis explains only a tiny fraction of ‘‘missing

heritability’’, the importance of revealing the specific gene-gene

interactions that underlie that fraction is also in the unique type of

biological insight that gene-gene interactions can provide, i.e. from

the light they can shed on the pathway level. Although many gene-

gene interactions have been identified in non-human organisms

[10,11,12], their detection and replication in human GWAS are still

proving difficult (e.g. [13]). Challenges include the computational

complexity arising from the large number of pairwise or higher-

order tests when each pair or group of SNPs is considered, the

extensive burden of multiple-testing correction they entail [6,9], and

the reduced statistical power of each test when applied to tag SNPs

[9,14,15]. Several computer programs [16,17,18,19,20,21] and

statistical methods [15,22,23,24,25,26,27] have been developed for

detecting and replicating gene-gene interactions in GWAS while

addressing these challenges. In this study, we aim to improve the

power of gene-gene interaction testing by moving beyond testing

between a pair (or a group) of individual SNPs, which is the case in

conventional marker-based testing, and instead considering all pairs

of SNPs from each of a pair of genes in a single gene-based test of

interaction.

Gene-based tests have been proven successful for regular

GWAS tests of main (marginal) associations [28,29,30], and there

are several potential advantages to extending this methodology to

testing for gene-gene interactions. First, a gene-based approach

substantially reduces the burden of multiple-testing correction, e.g.

for 20,000 genes, there are ,26108 possible pairwise gene-based

interaction tests, while for 3 million SNPs there are over ,561012

possible marker-based interaction tests. Second, gene-based

interaction tests can increase power by aggregating signals across

variants in the target regions (a gene or any other locus) when

multiple causal interactions influence the phenotype of interest, as

has been shown to be the case for GWAS tests of main association

effects [31,32]. Third, in cases where the interacting variants are

only tagged, rather than directly observed, such tests can aggregate

signals from different tag SNPs in partial linkage disequilibrium

(LD) with the causal variants and with each other. Fourth, a gene-

based interaction test is a natural choice when testing is focused on
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a reduced set of pairs based on prior biological knowledge, which

is often on a gene-level, e.g. testing pairs of genes that exhibit

protein-protein interactions (PPI) or that participate in the same

pathways [15,33,34,35,36,37]. Finally, going beyond genotype-

based GWAS, gene-based interactions tests can also improve

power in sequencing-based association studies, with their design

being especially well-matched for whole-exome sequencing.

A gene-based interaction testing approach can also improve the

power of replicating interactions that is reduced due to population

heterogeneity in LD patterns leading to different tag SNP-pairs

being linked to the same underlying causal interaction [15]. The

power of replicating a marker-based interaction test, much like the

replication power of main effects, decreases with decreasing LD

between tag SNPs and the causal variants. However, for gene-gene

interaction testing the observed effect size decreases by the product

of LD in the two loci, therefore the reduction in power can be

much greater [14,15]. In a recent study, we developed an adaptive

local validation procedure using a locus-based approach, which

allowed us to successfully replicate a novel gene-gene interaction

underlying high-density lipoprotein cholesterol (HDL-C) levels in

multi-ethnic human cohorts [15]. The replicated gene-gene

interactions were replicated in proximate, but different pairs of

SNPs in the different ethnic populations, which can be due to

either heterogeneity in LD patterns or real differences in the

underlying causal interactions. In such scenarios [15,38], a gene-

based testing approach can prove powerful not only for the

discovery of gene-gene interactions but also for their replication.

Gene-based tests of main association effects can be classified

into two categories, tests that consider multiple markers in a gene

as part of a joint model [39,40,41,42,43,44,45,46] and tests that

combine marker-based test statistics or P values into a gene-based

equivalent (Figure 1A) [31,32]. One important advantage of the

latter type of tests, which are the focus of this paper, is that they do

not require any additional information once the marker-based

interaction P values have been evaluated. While it is imperative to

account for the correlation between tests of different markers that

is due to LD, this can be achieved using estimates from an external

reference panel if genotype information is not available. Here, we

propose four gene-based gene-gene interaction (GGG) tests

of quantitative traits by extending four existing methods of

combining P values: (i) minimum p value [32], (ii) extended Simes

procedure (GATES) [31], (iii) truncated tail strength [47], and (iv)

truncated-product P value [48]. Our tests employ these methods to

combine P values of interaction tests between all pairs of individual

SNPs to obtain a P value for a GGG test, while accounting for the

correlation between the individual P values (Figure 1B). A recent

study has recently extended ATOM [41], a gene-based main effect

test of the type that considers all markers in a gene in a joint

model, to a gene-based test that collapses all markers in each gene

prior to interaction testing [14]. An advantage of the P value

combining approaches is that if there are multiple heterogeneous

interactions between a pair of genes, first collapsing SNPs in each

gene according to the former approach can average out these

disparate signals and lead to a reduction in power. Other than P

value combining approaches, linkage disequilibrium has often

been utilized for detection of gene-gene interactions in case-

control studies. By comparing LD patterns between cases and

controls, Rajapakse et al. have recently developed a gene-based

test of interactions for case-control studies [26].

Following the derivation of the statistical tests of GGG, we

present extensive simulations with empirical LD patterns and allele

frequencies that evaluate the type I error rates and power of these

tests. They show all tests to have accurate type I error rates and to

be more powerful than a test of the type that first considers a joint

model of the markers in each gene, which we implement based on

principal components [49], similarly to the aforementioned

recently proposed method [14]. The simulations also suggest that

the two truncated tests, which both go beyond considering the

single strongest signal, are more powerful in cases when the

interacting variants are not observed directly and might be

partially tagged by different SNP-pairs and in cases of multiple

causal interactions. We further present an empirical application of

the novel methods, jointly with a curated human PPI network, to

test for gene-level interactions underlying lipid levels in GWAS

data from the Atherosclerosis Risk in Communities (ARIC) study

[50]. We report five significant gene-level interactions associated

with either total cholesterol (TC) or HDL-C levels, all of which are

novel and are not significant when marker-based interaction tests

are employed [15]. One of these suggestive gene-level interactions,

between SMAD3 and NEDD9 on the levels of HDL-C, is

significantly replicated in an independent cohort from the Multi-

Ethnic Study of Atherosclerosis (MESA) [51].

Materials and Methods

We test for interaction between two genes, each of which

consisting of multiple SNP markers (Figure 1B). A ‘‘gene’’ in this

context can be any locus or any collection of SNPs, with actual

genes lending themselves to the test only due to underlying

biology, not due to any statistical considerations. For a quantitative

trait of interest, we apply a linear model approach to test for

interactions between all pairs of SNPs between the two genes. We

then describe a derivation of the correlation between these

marker-based interaction test statistics, as well as a derivation that

relies solely on external LD information, which should prove

useful when genotype data for the individuals under study is not

directly available. Accounting for the derived correlation, we

extended four P value combining methods to combine those

marker-based interaction P values into GGG P values (Figure 1B).

Marker-based interaction test
The marker-based interaction test on which our gene-based

approach is based is a standard linear model [6,15]. Let

Y~ Y1 Y2 ::: Ynð Þ’ be the values of a quantitative trait of

Author Summary

Epistasis is likely to play a significant role in complex
diseases or traits and is one of the many possible
explanations for ‘‘missing heritability.’’ However, epistatic
interactions have been difficult to detect in genome-wide
association studies (GWAS) due to the limited power
caused by the multiple-testing correction from the large
number of tests conducted. Gene-based gene–gene
interaction (GGG) tests might hold the key to relaxing
the multiple-testing correction burden and increasing the
power for identifying epistatic interactions in GWAS. Here,
we developed GGG tests of quantitative traits by extend-
ing four P value combining methods and evaluated their
type I error rates and power using extensive simulations.
All four GGG tests are more powerful than a principal
component-based test. We also applied our GGG tests to
data from the Atherosclerosis Risk in Communities study
and found five gene-level interactions associated with the
levels of total cholesterol and high-density lipoprotein
cholesterol (HDL-C). One interaction between SMAD3 and
NEDD9 on HDL-C was further replicated in an independent
sample from the Multi-Ethnic Study of Atherosclerosis.

Gene-Based Testing of Interactions
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interest in a sample of n individuals, and let the genotype at two

SNP markers be denoted as Sj~ S1j S2j ::: Snjð Þ’ for j = 1, 2,

with Sij (0, 1, or 2) being the number of copies of the reference

allele at SNP j of individual i. The linear model with additive

effects of the SNP-pair and their interaction can be written as,

Yi~b0zb1Si1zb2Si2zb3Si1Si2zei ð1Þ

where bi (i = 0, 1, 2, or 3) is the regression coefficient and ei is a residual

that follows a normal distribution, N(0, s2). This model can be easily

extended to include dominance effects and other interaction

terms.[22] Using the matrix notation of

X~ 1 S1 S2 S1 S2ð Þ, the least square estimates of the

regression coefficients are b̂b~ b̂b0 b̂b1 b̂b2 b̂b3

� �’
~ X ’Xð Þ{1X ’Y ,

and the estimated variance-covariance matrix of b̂b is

Figure 1. Graphical illustration of the framework of gene-based single-marker test and its generalization to a gene-based gene–
gene interaction (GGG) test as proposed in this paper. While the former considers the P values of each single-marker test (A), a GGG test (B) is
based on all P values of an interaction test between each pair of markers from each of the two genes. In order to combine these pairwise P values into
a single test, a correlation matrix that concurrently accounts for linkage disequilibrium in each of the two genes needs to be estimated, which we
derive in Materials and Methods.
doi:10.1371/journal.pgen.1003321.g001

Gene-Based Testing of Interactions
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Var b̂b
� �

~ X ’Xð Þ{1ŝs2. The interaction between the two SNPs is

then tested by testing the null hypothesis H0: b̂b3 = 0, which leads to a

t-test statistic, T ~
b̂b3

SD(b̂b3)
[15].

Correlation between marker-based interaction test
statistics

In the following, we derive the correlation between marker-

based interaction tests which involve four SNPs, two in each of the

two genes. First, suppose genotype data for these SNPs is available

such that LD can be directly estimated. Let S1
1 and S1

2 be the

genotypes of the two SNPs in the first gene and S2
1 and S2

2 in the

second gene, both in matrix notation. Let Tij denote the t-test

statistic of the interaction between S1
i and S2

j . Our goal is to

calculate the correlation between two interaction test statistics,

which we refer here to the terms T11 and T22. While the case of

the two tests having a SNP in common is a special case of this

derivation in which the correlation between the two SNPs (the

SNP and itself in that case) is 1, T11 and T22 are correlated due to

LD between two SNPs in the same gene, for each of the two genes.

We can calculate the correlation as,

Cor T11,T22ð Þ&H ’4X ’11X22G4ffiffiffiffiffiffiffiffiffiffiffiffiffi
h44g44

p ð2Þ

where X11 and X22 are the two model matrices of the two

interaction linear models as described in Equation (1), H~

H1 H2 H3 H4ð Þ’~ X ’11X11ð Þ{1
, G~ G1 G2 G3 G4ð Þ’~

X ’22X22ð Þ{1
, and h44 and g44 are the elements of H and G in the

fourth row and the fourth column. The Supporting Text S1

describes a detailed derivation of Equation (2), which we also

validated using simulations (Figure S1). We emphasize that the

source of correlation is from correlation between different SNPs

within the same genes, rather than correlation between the two

genes, which are assumed to be in linkage equilibrium by the

marker-based interaction test underlying our approach.

If genotype data for these SNPs is not available, correlation

between pairs of SNPs can still be estimated, but only based on LD

information from reference panels such as those from HapMap

[52] or the 1000 Genomes Project [53]. In this case, we first derive

the correlation between the two SNP products as

Cor S1
1S2

1,S1
2S2

2

� �
~

r1r2s11s12s21s22zr1s11s12m21m22zr2m11m12s21s22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

11s2
21zm2

11s2
21zs2

11m2
21

� �
s2

12s2
22zm2

12s2
22zs2

12m2
22

� �q ð3Þ

where ri is the correlation coefficient between the two SNPs in the

ith gene, and mij and sij are the mean and standard deviation of Sij

(refer to Supporting Text S1 for details). Based on this correlation

between two SNP products, we then approximated the correlation

between the two test statistics using a high-order polynomial

estimated using simulations [31]. In cases when external LD

information must be used, this polynomial (Figure S2) of Equation

(3) should be used in place of Equation (2).

Combining marker-based interaction P values into GGG P
values

Between two genes with m1 and m2 SNPs, there are m16m2

marker-based interaction P values, pij (i = 1, …, m1; j = 1, …, m2).

We can calculate the pairwise correlation matrix between these

marker-based interaction test statistics, S, using Equation (2) or

Equation (3), depending on whether genotype information is

available. Using S, we are able extend four P value combining

methods to four equivalent tests of GGG, GG_minP [32],

GG_GATES [31], GG_tTS [47], and GG_tProd [48] as

described in the following sections.

GG_minP
The minimum P value is commonly used to combine P

values of association tests of main effect in several programs,

including PLINK [54] and VEGAS [32]. PLINK utilizes

permutations to calculate a gene-based P value while account-

ing for the LD among SNPs, while VEGAS samples a large

number of test statistics from given distributions and calculates

a gene-based P value as the proportion of sampled minimum P

values less than the observed minimum P value. Instead of

using permutation or sampling, we adopt the method from

Conneely and Boehnke [55] and integrate over a multivariate

normal density function, MVN(0, S), to calculate a gene-based

interaction P value,

PGG minP~1{Pr max Z1j j, Z2j j,:::, Zm1m2

��� ���� �h

vW{1 1{
Pmin

2

� 	
 ð4Þ

where Zi (i = 1, …, m1m2) follows a multivariate normal

distribution MVN(0, S), W is the standard normal distribution

function, and Pmin is the minimum of the m16m2 P values from

the single marker-based tests. The GG_minP test of GGG is

then defined as the two-sided test in Equation (4), which we

implemented using the R package mvtnorm [56].

GG_GATES
Liu et al. proposed a gene-based test of main effect, GATES, by

extending Simes procedure to assess the gene level association

significance [31]. GATES is similar to the minimum P value

approach in that it picks the strongest signal in a gene, but is

different in that the strongest signal does not have to be the one

with the minimal P value as described in Equation (5). For m16m2

ascending marker-based interaction P values, p 1ð Þ, …, p m1m2ð Þ, we

define the GGG P value of GG_GATES as,

PGG GATES~min
mep 1ð Þ
me 1ð Þ

,
mep 2ð Þ
me 2ð Þ

, :::,
mep m1m2ð Þ
me m1m2ð Þ

 !
ð5Þ

where me is the effective number of independent tests among the

m16m2 interaction tests and me(j) is the effective number of

independent tests among the top j interaction tests associated with

the ordered P values, p 1ð Þ, …, p jð Þ. We estimate the effective

number of tests, based on the correlations captured by S, using

formulas derived by Moskvina and Schmidt [57].

GG_tTS
While both GG_minP and GG_GATES only consider the

strongest signal among the marker-based interaction P values to

represent the gene level interaction, the tail strength method

[58] combines signals from all marker-based P values. Jiang et

al. extended the original tail strength method to a truncated

version which only combines P values less than a predefined

cutoff value, and demonstrated its superior power through

Gene-Based Testing of Interactions
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simulations [47]. We derived the GG_tTS statistic for GGG as,

GG tTS p(1), . . . ,p(m1m2)

� �
~

1

m1m2

Xm1m2

i~1

I p(i)vt
� �

1{p(i)
m1m2z1

i

� 	 ð6Þ

where I(.) is an indicator function and t is a predefined cutoff

value of which P values are to be combined. Throughout this

study, we set t to 0.05 (nominal significance level), as

recommended in Zaykin et al. [48]. Intuitively, GG_tTS

weighs all the P values that pass the cutoff of t, with the last

term in Equation (6) denoting the weights, and becomes larger

the smaller the P values. Since the marker-based interaction P

values are correlated due to LD between SNPs in a gene, the

null distribution of GG_tTS is unknown. We calculate

empirical P values for GG_tTS using a similar sampling

approach to that described in Zaykin et al. [48] and Liu et al.

[32]. First, we repeatedly simulate the interaction test statistics

from a multivariate normal distribution with correlation

calculated from Equation (2) using mvtnorm [56] and calculate

the GG_tTS statistic for each simulation. Then we calculate the

empirical P value as the proportion of simulations for which the

GG_tTS estimate is larger than the observed one.

GG_tProd
Similar to GG_tTS, we define a GGG test statistic for the

GG_tProd method [48] by a product function of the marker-based

interaction P values which are less than a cutoff value, t,

GG tProd p1, . . . ,pm1m2

� �
~ P

m1m2

i~1
p

I pivtð Þ
i ð7Þ

As the marker-based interaction tests between two genes are

correlated, there is no analytic solution for the distribution of the

two test statistics described in Equation (7). Thus, empirical P

values for GG_tProd are calculated using a similar approach

described above.

Gene-based interaction test using principal components
(GG_PC)

Principal components (PC) have been used to aggregate

information in a gene-based test of main association effect [40].

We included a PC-based method [14] in our study for comparison

purposes. The approach identifies PCs accounting for 90% of the

variance for each gene and then performs a global test for

interaction between PCs in a linear model framework similar to

Equation (1) with multiple pairwise interaction terms between PCs

of the two genes [14]. In the case where there are L1 PCs in gene 1

and L2 PCs in gene 2, there will be L16L2 interaction terms in the

linear model. The interaction was tested through an F-test with

L16L2 degrees of freedom comparing two models with and

without interaction terms. Importantly, both GG_PC as used here

and all other GGG tests included in this study test for pure

interaction effects, that is on top and beyond any marginal effects,

which is achieved by testing the null hypothesis that the interaction

term is zero.

Simulation studies of type I error rate and power
To evaluate the performance of our gene-based interaction tests

using data with realistic LD patterns, we picked two loci in linkage

equilibrium from the imputed genotype data of ,10,000

European American samples in the ARIC study [15,50]. The

first locus contains 53 SNPs from which 14 tag SNPs were selected

using Haploview [59]. The second locus contains 28 SNPs

including 10 tag SNPs. The LD patterns of the two loci and tag

SNPs are shown in Figure S3.

In each simulation, a random sample of size n was drawn

without replacement from the population of ,10,000 EAs. We

simulated both scenarios where causal variants are observed or not

(to consider scenarios in which they are not genotyped) by only

testing interactions between tag SNPs [14], which may or may not

include causal variants. For the PC-based method, we utilized the

PCs of the tag SNPs in the two genes. GGG tests combine P values

across all pairs of tag SNPs into gene-based interaction P values.

When calculating the correlation between marker-based interac-

tion test statistics, we used Equation (2) or (3), depending on the

simulated scenarios where individual genotype data are accessible

(Equation 2) or not (Equation 3).

To evaluate the type I error rate, we simulated the phenotype as

a random error which follows a standard normal distribution. We

varied the sample size n and the nominal significance level

(Table 1). For power evaluation, we simulated the phenotype as

the sum of the genotypic values of the causal SNP-pairs, their

interaction, and a random error which follows a standard normal

distribution, as described in Equation 1. We varied sample size n,

number of causal SNP-pairs, effect size of the causal interaction,

and minor allele frequency. We also simulated three scenarios

where the actual interaction occurs between unobserved SNPs (U-

U), between unobserved and observed SNPs (U-O), and between

observed SNPs (O-O). Here the observed SNPs refer to the tag

SNPs. Both type I error rates and power were estimated by the

proportions of simulations that resulted in significant P values out

of 10,000 and 5000 simulations, respectively.

Application with protein–protein interactions (PPI) to
GWAS

All work done in this paper was approved by local institutional

review boards or equivalent committees.

We obtained Affymetrix 6.0 SNP array genotypes of 9,713

European American samples from the ARIC study [50]. The

genotype data were further imputed to ,2.5 million SNPs using

MACH [60]. We considered four lipid measurements: total

cholesterol (TC), HDL-C, low-density lipoprotein cholesterol

(LDL-C), and triglyceride (TG). All measurements were done in

the fasting state using standard enzymatic methods. Each lipid

level is measured at multiple time points and we considered the

Table 1. Empirical, simulation-based type I error rates of
proposed GGG tests.

n a GG_PC GG_minP GG_GATES GG_tTS GG_tProd

1000 0.05 0.0506 0.0502 0.0564 0.0521 0.0492

0.01 0.0101 0.0099 0.0105 0.0113 0.0094

2000 0.05 0.0496 0.0474 0.0531 0.0508 0.0452

0.01 0.0092 0.0087 0.0091 0.0117 0.0088

3000 0.05 0.0504 0.0493 0.0557 0.0489 0.0528

0.01 0.0087 0.0082 0.0088 0.0099 0.0120

5000 0.05 0.0506 0.0485 0.0564 0.0511 0.0495

0.01 0.0103 0.0086 0.0090 0.0096 0.0098

doi:10.1371/journal.pgen.1003321.t001

Gene-Based Testing of Interactions
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average level per individual of each lipid in all our analyses [61].

We applied a log transformation to TG levels to normalize them

because of the skewness in the original distribution [61]. We

excluded individuals known to be taking lipid-lowering medica-

tions. Gender, age, age squared, and body mass index (BMI) were

included as covariates in all analyses [61,62,63]. Similar to the four

lipid phenotypes, we considered average values for age and BMI

whenever multiple measurements were available. Principal com-

ponent analysis was conducted using EIGENSOFT [64], and top

10 PCs were included in the analysis as covariates to account for

potential population stratification.

We assembled 2,974 high-confidence human PPIs [15] and for

each pair of interacting proteins exhaustively tested the pairwise

interactions between each SNP in the first gene and each SNP in

the second gene. We obtained gene information (hg18) from

UCSC genome browser to map SNPs to genes, and considered all

SNPs between 5 kb upstream and 5 kb downstream of the gene.

For n1 and n2 being the numbers of SNPs in the first and second

gene, respectively, the number of marker-based interaction tests is

n16n2 for this PPI. As a result, the marker-based interaction

analyses failed to identify any significant interactions associated

with the four lipid levels after multiple-testing correction [15]. We

then applied the four GGG tests, GG_minP, GG_GATES,

GG_tTS, and GG_tProd to combine these n16n2 marker-based

P values to a GGG P value for each PPI. We note that a physical

protein-protein interaction does not necessarily entail a statistical

gene-gene interaction underlying the studied trait, or vice versa,

but by focusing on pairs of genes whose proteins interact, we aim

to increase the likelihood of a pair of tested genes to exhibit a gene-

gene interaction, thereby increasing the power of detection and

replication of such interactions.

For computational efficiency and robustness, we adopted an

upper limit of 500 marker-based interaction P values to be

combined into a gene-based P value. Therefore, large gene pairs

which have more than 500 marker-based interaction P values were

divided into subgroups containing 500 P values or less and each

subgroup was combined into a GGG test. In order to further

improve the efficiency for GG_tTS and GG_tProd, we used an

adaptive sampling procedure when calculating empirical P values.

This adaptive procedure included the following three steps. First,

we sampled 1000 random vectors from the target distribution and

calculated the empirical P value. If the empirical P value is less

than 0.01, then we perform additional 99,000 samplings. If the

updated empirical P value is less than 161024, we do additional

99,900,000 samplings. As a result, the maximum number of

simulations is 108 in this adaptive procedure and the minimal

possible empirical P value is 161028, which is below the multiple-

testing corrected threshold, 1026, in this study. The number of

samplings in each of the three steps can be modified according to

the required significance level after correction for multiple testing.

Results

Type I error rate
We first set out to verify the type I error rates of the five gene-

based interaction tests, GG_minP, GG_GATES, GG_tTS,

GG_tProd, and GG_PC. To estimate these, we considered

randomly simulated phenotypes with real genotype data, thereby

maintaining empirically observed LD patterns and minor allele

frequencies (Materials and Methods). In each simulation, a

random sample of n individuals was drawn and interaction was

tested between two loci using tag SNPs alone (14 and 10 tag SNPs

in each locus respectively). We varied n from 1000 to 5000 and

considered two nominal significance levels, 0.01 and 0.05. For

each parameter setting, we evaluated the type I error rate from

10,000 simulations. All five GGG tests have type I errors

consistent with the nominal significance level (Table 1). To ensure

the type I error rates were not affected by the number of

interactions combined into a GGG test, we conducted another set

of simulations using more SNPs (30 and 20 randomly selected

SNPs in each locus respectively) and still observed type I error

rates consistent with the nominal significance levels (Table S1).

Statistical power
To evaluate the statistical power of the five GGG tests, we

repeated simulations with empirically observed LD patterns with

random pair or pairs of SNPs selected to exhibit interaction. We

define the level of the quantitative trait in the simulations to be the

sum of the genotypic values of the causal SNP-pair/s, their

interaction, and a random error. Gene-based interaction tests were

applied as above, based on tag SNPs, while each causal interaction

was simulated in one of three scenarios, with none (U-U), one (U-

O), or both (O-O) SNPs observed as tag SNPs. As expected, power

of all tests is affected greatly by the sample size, e.g. for the case of

two unobserved interacting SNPs (U-U), the power of the different

tests ranges between 14–47% for n = 1000, while it ranges between

73–99% for n = 5,000 (Table 2). It also depends on the effect size of

the interaction, with a difference, when the interacting SNPs are

directly observed (i.e. directly tested; O-O), between effect size of

0.15 to 0.25 at least doubling the power for a given sample size of

n = 1000 (Table 2). Minor allele frequencies (MAF) of the

interacting SNPs have a considerable effect on power as well, e.g.

because the 29th SNP in locus 1 has a relatively low MAF of 0.1, all

tests have lower power estimates for the interaction of SNP-pair

‘‘29-17’’ compared to other SNP-pairs (Table 2). The number of

interacting pairs of SNPs is another factor contributing to power, as

is whether the causal SNP-pairs are observed or not (Table 2).

In all simulated scenarios, GG_PC, which takes the approach of

first collapsing markers in each of the two genes, is less powerful

than the four P value combining GGG tests (Table 2; Figure 2),

which may be due to a combination of the principal components

not fully capturing the underlying interaction signals and the

multiple degrees of freedom associated with that test statistic. As

both GG_minP and GG_GATES consider the best signal to

represent a gene level interaction, they exhibit very similar levels of

power, although GG_GATES is slightly more powerful in all

simulated scenarios (Table 2; Figure 2). While GG_minP picks the

smallest P value to represent a gene-level interaction, GG_GATES

picks the strongest signal while accounting for the effective number

of tests, which may not necessarily be the smallest P value, which

explains the gain in power.

GG_tTS and GG_tProd both combine evidence from all

marker-based interaction P values below a pre-determined

threshold (Materials and Methods). These two tests show very

similar levels of statistical power, with any small differences in

power being attributable to the shape of the tail of the distribution

of P values (Figure 2). The main difference between the two tests is

that GG_tTS differentially weights the ordered P values before

combining them. Comparing the power of GGG tests that

consider only the single strongest signal (GG_minP and

GG_GATES) with tests that combine several relatively significant

signals (GG_tTS and GG_tProd), in almost all scenarios the latter

exhibit superior power (Table 2; Figure 2). An exception is the case

of a single pair of interacting SNPs that are directly observed and

available for testing. In this case, GG_minP and GG_GATES

exhibit considerably superior power across all simulated effect sizes

and sample sizes (Table 2; Figure 2). In all other scenarios, namely

when either or both of the pair of interacting SNPs is/are not
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Table 2. Empirical, simulation-based statistical power of GGG tests.

Simulation
number

Interacting
SNP-pairsa Typeb MAFsc

Effect
sized n Powere

GG_PC GG_minP GG_GATES GG_tTS GG_tProd

1 30-15 U-U .45-.48 0.15 1k 14.3 31.0 34.8 47.2 47.0

2k 27.5 60.0 65.2 76.3 76.0

3k 43.9 81.8 84.4 90.6 90.6

5k 73.3 94.5 98.0 98.3 99.3

2 30-17 U-O .45-.39 0.15 1k 14.1 30.4 33.6 45.5 45.4

2k 27.1 60.9 64.5 73.5 73.4

3k 44.5 83.6 85.1 88.9 89.0

5k 75.1 93.4 98.2 98.2 98.9

3 29-17 O-O .10-.39 0.15 1k 7.0 10.2 11.0 8.4 8.5

2k 10.9 16.8 19.4 13.6 14.3

3k 14.2 28.6 30.4 20.5 21.2

5k 21.5 51.4 52.9 33.7 35.0

4 29-17 O-O .10-.39 0.25 1k 13.1 25.3 27.0 18.4 19.1

2k 27.6 56.0 57.9 35.7 38.8

3k 40.8 81.4 82.6 52.8 60.4

5k 69.3 97.7 98.0 75.8 85.9

5 30-15,
40-20, 48-27

U-U .45-.48, .41-.34,
.30-.43

0.12 1k 17.8 33.5 37.0 49.3 49.1

2k 38.8 64.3 69.3 80.1 79.9

3k 57.7 83.9 86.5 92.2 92.0

5k 87.2 95.3 97.9 99.4 98.5

6 30-15,
40-20, 48-27

U-U .45-.48, .41-.34,
.30-.43

0.15 1k 28.3 51.5 55.8 68.1 68.2

2k 60.5 85.8 88.2 94.3 94.3

3k 83.7 97.4 98.2 99.4 99.4

5k 98.7 99.9 99.9 100 100

7 29-17,
39-22, 47-25

O-O .10-.39, .41-.38,
.29-.44

0.12 1k 18.8 42.8 47.1 54.3 54.3

2k 39.3 77.5 81.0 84.6 84.7

3k 57.5 93.7 94.5 95.9 95.7

5k 88.3 98.8 99.9 99.9 100

8 10-5, 20-10,
30-15, 40-20,
48-27

U-U .10-.39, .10-.44,
.45-.48, .41-.34,
.30-.43

0.12 1k 23.1 34.8 38.1 43.6 43.5

2k 51.1 67.5 71.8 79.0 79.0

3k 73.7 86.2 89.1 93.0 93.0

5k 96.4 96.6 98.7 99.2 99.7

9 6-4, 19-9, 29-17,
39-22, 47-25

O-O .12-.49, .32-.47,
.10-.39, .41-.38,
.29-.44

0.12 1k 54.9 89.7 92.1 96.3 96.3

2k 92.4 99.7 99.8 100 100

aIndices of the interaction SNPs in the two loci (Figure S3); Three types of scenarios are considered, of one, three, and five pairs of interacting SNPs, for each at least two
different sets of SNPs are considered, for a total of 7 different scenarios.
bU: SNP untyped; O: SNP observed; For scenarios with more than one pair of interacting SNPs, the U/O status of the first and second interacting SNP is the same across
all pairs.
cMinor allele frequency of all SNPs involved in interactions, by order.
dCoefficient of the interaction term in the linear model, b3, as described in Equation (1); For scenarios with more than one pair of interacting SNPs, the effect size is the
same for all pairs.
ePower, as percentage of significant tests with P value,0.05.
doi:10.1371/journal.pgen.1003321.t002
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directly observed, or when multiple pairs of (observed or

unobserved) SNPs are interacting, the strategy of aggregating the

significance signal across multiple pairs of SNPs, as implemented

in GG_tTS and GG_tProd, has the upper hand (Table 2;

Figure 2). For the case of multiple interactions, it is clearly

expected that GG_tTS and GG_tProd yield better results as they

aggregate these independent signals [31,41]. For the cases where

at least one of the interacting SNPs is not directly observed, the

increase in power likely stems from multiple observed SNPs (in LD

with the unobserved contributing SNP/s) jointly capturing the

signal better than any individual observed SNP.

Noticing that power is generally low for all GGG tests when the

MAFs of the causal variants are lower (Table 2), we performed an

additional set of simulations with yet lower frequency variants

(Table S2). We observed limited power for lower frequency

variants, though a similar pattern emerged that GG_tTS and

GG_tProd are usually more powerful than other tests, while

GG_minP and GG_GATES are more powerful only when there is

a single, and directly observed causal interaction (Table S2).

Robustness with external LD
Four of the GGG tests use LD information for estimating the

correlation between tests for different pairs of SNPs (Equation 2).

When genotyping or sequencing data are available for each

individual, these can be readily estimated, which is the situation we

considered thus far. However, we also aim for these tests to be

applicable to situations in which P values for each pair of SNPs are

available, but not the actual genotyping or sequencing data. In

such cases, external LD information from data of proximate

ethnicity can be used as a proxy for LD in the data by evaluating

the covariance between tests via Equation 3 (Materials and

Methods). We examined type I error rates and power in this

scenario, where LD information was estimated from a combined

panel of two population of European ancestry (CEU+TSI) in data

Figure 2. Average power of GGG tests summarized from Table 2. For each simulation scenario from Table 2, average power for each type of
test is presented as an average across the different sample sizes (n) reported in Table 2. The method that collapses markers in each of the two genes,
GG_PC, is least powerful in all simulation scenarios. Among the four GGG tests that combine P values, GG_minP and GG_GATES are more powerful
only in simulation scenarios 3 and 4, which are the only cases that we simulated a single marker-by-marker interaction with both markers available for
analysis (denoted by O-O in Table 2). GG_tTS and GG_tProd are most powerful in all other simulation scenarios.
doi:10.1371/journal.pgen.1003321.g002

Gene-Based Testing of Interactions

PLOS Genetics | www.plosgenetics.org 8 February 2013 | Volume 9 | Issue 2 | e1003321



from HapMap3 [52,65]. The type I error rate is still consistent

with the nominal significance level in this scenario when using

Equation 3 (Table S3). Power is lower, but only slightly, compared

to when individual genotyping data are available as in the previous

set of simulations above (Table S4).

Application with PPI to GWAS on lipid levels
We applied all GGG tests (except GG_PC, due to its limited

power) to real quantitative trait data from 9,713 European

American individuals from the ARIC study. We considered for

analysis the levels of four lipids: TC, HDL-C, LDL-C and TG. For

each, we tested for gene-based interaction between each pair of

genes based on 2,974 high-confidence human PPIs. We further

divided gene pairs that have more than 500 SNP-pairs into loci

that we analyzed separately (Materials and Methods), resulting in

12,320–13,254 gene-based (or locus-based) interaction tests for

each lipid level. In total, P values for a total of ,6 million pairs of

SNPs were obtained and combined to gene-based statistics of the

four types. The conservative genome-wide significance level for

our gene-based tests after Bonferroni correction is about 9.461027

(a= 0.05 divided by at most 13,254 gene-based tests and divided

by 4 traits tests). The Bonferroni corrected significance level if each

pair of SNPs in each PPI was tested separately using a marker-

based test would have been much lower, 261029. Our recent

study has detected no significant SNP-by-SNP interactions at that

significance level based on the same PPIs [15].

The GG_tTS test detected 5 significant gene-level interactions,

underlying TC and HDL-C, with P,9.461027 (Table 3). The

GG_ tProd test detected 1 significant gene-level interaction, which

is one of the 5 detected by GG_tTS (Table 3). While our

simulations use equal effect sizes for all causal interactions, if they

are different in the particular application to real data, it can

explain the differences in P values of the two tests (Table 3). The

GGG tests based on the single strongest signal alone (GG_minP

and GG_GATES) produced no significant results. These results

point to the importance of combining different signals across a pair

of genes (GG_tTS and GG_tProd) relative to both marker-based

tests based on pairs of individual SNPs [15] and GGG tests based

on only a single strongest signal (GG_minP and GG_GATES).

Also considering the potential differences in the effect sizes of the

underlying causal interactions, GG_tTS can be a better choice

than GG_tProd in real data analysis. Combined with the

simulation results (Table 2), these results suggest that the causal

interaction is either more complex than a single SNP-by-SNP

interaction or that the causal SNPs are not completely tagged in

these imputed data of 2.5 million SNPs.

Using 2,685 European American samples from MESA, we

successfully replicated the gene-level interaction that was support-

ed by both GG_tTS and GG_tProd, between SMAD3 and

NEDD9, on HDL-C levels. Replication is significant after

correcting for the 5 gene-level interactions of interest using both

GG_tProd (multiple testing corrected Pc = 0.01) and GG_tTS

(Pc = 0.05). The other four interactions did not significantly

replicate. SMAD3 is a transcriptional modulator activated by

transforming growth factor b (TGF-b) [66,67] and has been

reported to be marginally associated with coronary artery disease,

of which low HDL-C levels is a risk factor [68]. NEDD9 has been

associated with Alzheimer’s disease [69,70], which has been

recently claimed to share genetic risk factors with cholesterol levels

[71]. Neither of the two genes has been previously associated with

lipid levels. To examine this further, we tested for main (marginal)

associations of all SNPs in the ten genes involved in gene-based

interactions (Table 3) and found none to be significantly associated

by itself with any lipid level following multiple-testing correction

(Figure S4). We also performed gene-based tests of main effects for

the ten genes on four lipid levels, but found no gene-level marginal

associations (Table S5).

Discussion

This study proposed GGG tests that combine marker-based

interaction tests into a single P value of a gene-by-gene interaction

underlying quantitative traits. These can be viewed as an extension

of similar approaches that have proven successful for detecting

main effects in GWAS [28]. What made the extension possible is

the derivation of the correlation structure of the marker-based

interaction tests that is due to LD in each of the two genes, which

our tests allow incorporating either directly or based on LD from

an external reference panel. All four proposed GGG tests,

GG_minP, GG_GATES, GG_tTS, and GG_tProd, have correct

type I error rates, and are more powerful than a GGG test that

collapses each gene to its principal components, GG_PC. As

expected, GG_GATES and GG_minP, which are based on testing

the single most extreme signal, are more powerful in the simple

case of a single and fully-observed interaction. Among those four

tests, GG_tTS and GG_tProd are more powerful in cases where

there are multiple causal interactions as they aggregate multiple

signals into a single gene-level signal. Even in the case of a single

causal interaction, if one or both causal variants are not directly

observed, GG_tTS and GG_tProd still provide an improvement in

power, presumably due to aggregating signals from different SNP-

pairs that are each only partially linked to the causal SNP-pair.

When applied to real data, GG_tTS shows better power than

Table 3. Significant (P,9.461027; bolded) gene-level interactions affecting total cholesterol (TC) and high-density lipoprotein
cholesterol (HDL-C) levels in data from the ARIC study.

Trait Gene 1 Gene 2 P values

GG_minP GG_GATES GG_tTS GG_tProd

TC HDAC2 HDAC1 1.861022 2.361023 1.061027 1.961024

APP APBB2 6.561022 3.961023 6.561027 3.561026

HDL-C SMAD3* NEDD9* 2.561022 1.261022 8.461027 5.061027

RPS6KA2 MAPK1 6.261023 8.261024 2.661027 2.261024

KDM4A HIST1H3F 3.761023 2.261024 1.361027 2.161026

*The interaction between SMAD3 and NEDD9 on HDL-C levels was further replicated in data from the MESA study (multiple testing corrected Pc = 0.01 for GG_tProd and
Pc = 0.05 for GG_tTS).
doi:10.1371/journal.pgen.1003321.t003
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GG_tProd by having smaller P-values for four out of the five

interactions shown in Table 3. The proposed tests can potentially be

extended both to more complex types of interaction effects and to

dichotomous, case-control data using a similar P value combining

framework. The major modification needed for dichotomous traits

is a new derivation of the correlation between the marker-based

interaction test statistics in a logistic regression model.

The computational burden for a GGG analysis is minimal once

marker-based interaction P values have been obtained. Both

GG_minP and GG_GATES are fast as they do not require any

sampling from empirical distribution or permutations. The other

two tests, on the other hand, estimate empirical P values by

sampling a large number of random vectors that follow a

multivariate normal distribution dictated by the estimated

parameters. The computational burden can be reduced using

several procedures such as the adaptive procedure that we applied

of first sampling a small number of vectors and only increasing the

sample size when the empirical P value is small [72]. In practice,

sampling a large number of vectors is only required for a few

highly significant interactions. Another way to speed up the

analysis is to apply the tests that aggregate multiple signals,

GG_tTS and GG_tProd, only in cases where the more efficient

GG_minP or GG_GATES points to P values below a certain

threshold. Our results suggesting much improved power of

GG_tTS and GG_tProd in certain scenarios entail that this initial

threshold should not be too strict, e.g. it can be one of nominal

significance, without fully correcting for multiple testing.

When marker-based interaction P values are available, the

proposed gene-based tests can be used even without individual-

level data. This makes the tests readily applicable to an enormous

amount of publicly available data that could be re-analyzed using

this approach. Moving from the marker level to the gene level

makes a genome-wide interaction analysis, with sample sizes as

observed in GWAS, more promising since the multiple hypothesis

testing burden becomes orders of magnitude smaller. The GGG

tests proposed here can be applied to all pairs of genes genome-

wide. Alternatively, to allow further reduction in both multiple

testing burden and computing time, they can be applied to a

focused subset of pairs of genes that is likely to be enriched for

gene-gene interactions. Such a subset can be, for instance, all pairs

of genes that are known to be involved in protein-protein

interactions [73,74] or other type of physical interaction [74], or

pairs of genes that share a function [75] or play a part in the same

pathway/s [76]. A more enriched set can potentially be obtained

by further focusing on sets of genes based on knowledge specific to

the studied trait, e.g. based on known associations of this and

similar traits, gene ontology, or participation in pathways relating

to the trait. Finally, we note that the units of testing do not

necessarily have to be a physical gene, but can rather be any loci of

interest.

We applied the proposed methods to test for gene-level

interactions underlying lipid levels. As an enriched set of gene-

pairs, we considered all pairs of genes where the corresponding

proteins exhibit an interaction according to a high-confidence

human PPI network (without further knowledge specific to the

studied traits). We discovered five gene-level interactions under-

lying lipid levels that approach significance. All the interactions

appear to be more complex than expected from a single SNP-by-

SNP interaction, which is likely the reason none were detected in

our recent marker-based study of the same data [15]. One of the

five gene-level interactions, between SMAD3 and NEDD9 in their

effect on HDL-C levels, was further replicated in an independent

European American cohort. While a statistical gene-gene interac-

tion does not necessarily entail an epistatic interaction, it is

interesting to note that the TGF-b/Smad3 signaling pathway has an

important role in regulating glucose and energy homeostasis and

that Smad3-deficient mice are protected from diet-induced obesity

and diabetes [77]. NEDD9 (neural precursor cell expressed,

developmentally down-regulated 9) has been associated with the

risk of developing Parkinson’s disease and late-onset Alzheimer’s

disease, a disorder whose pathogenesis is modulated by cholesterol

levels and cholesterol-related genes [69,70,78].
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