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Abstract

Large-scale population sequencing studies provide a complete picture of human genetic variation within the studied
populations. A key challenge is to identify, among the myriad alleles, those variants that have an effect on molecular
function, phenotypes, and reproductive fitness. Most non-neutral variation consists of deleterious alleles segregating at low
population frequency due to incessant mutation. To date, studies characterizing selection against deleterious alleles have
been based on allele frequency (testing for a relative excess of rare alleles) or ratio of polymorphism to divergence (testing
for a relative increase in the number of polymorphic alleles). Here, starting from Maruyama’s theoretical prediction
(Maruyama T (1974), Am J Hum Genet USA 6:669–673) that a (slightly) deleterious allele is, on average, younger than a
neutral allele segregating at the same frequency, we devised an approach to characterize selection based on allelic age.
Unlike existing methods, it compares sets of neutral and deleterious sequence variants at the same allele frequency. When
applied to human sequence data from the Genome of the Netherlands Project, our approach distinguishes low-frequency
coding non-synonymous variants from synonymous and non-coding variants at the same allele frequency and discriminates
between sets of variants independently predicted to be benign or damaging for protein structure and function. The results
confirm the abundance of slightly deleterious coding variation in humans.
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Introduction

Most studies of deleterious genetic variation in humans have

focused on the allele frequency spectrum and on the excess of rare

alleles at functionally significant sites [1–7]. However, information

about a deleterious effect of an allele is not limited to its population

frequency. A classic result by Takeo Maruyama [8] predicts that both

deleterious and advantageous alleles are younger (arose more recently

by mutation events) than neutral alleles at the same population

frequency. The predicted difference in age is greater for more strongly

selected alleles. Intuitively, a deleterious allele is less likely to reach a

given population frequency than a neutral allele. However, if it does

reach this frequency, it likely did so in a short sequence of steps.

Under the assumption of constant population size and no

dominance, mean allelic age conditional on population frequency

is exactly symmetric with respect to direction of selection —

beneficial and deleterious alleles with the same absolute value of

the selection coefficient at the same frequency have identical mean

ages.

Thus, a profound consequence of Maruyama’s theoretical

prediction is that it enables statistical discrimination between

classes of neutral and deleterious alleles even if the alleles are at the

same population frequency. Approximating allelic age conditional

on present allele frequency may provide a new way to quantify

deleterious genetic variation, independent from analyses based on

allele frequency distribution or polymorphism-to-divergence ratio.

Conditional on current allele frequency, both allelic age and, in

particular, time spent in the past at higher frequencies can be

estimated by enumerating either mutation or recombination

events after the first appearance of the allele in the population.
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Approaches based on comparison of allelic ages have been

previously used to detect alleles under positive selection [9–11].

The same basic principle can be extended to the analysis of

deleterious variation. We have taken this idea to characterize

deleterious variation in sequencing data.

Some existing methods for estimating age use intra-allelic

variability [12], patterns of linkage disequilibrium [13], or shared

haplotypes [14]. These approaches were designed for fine-

mapping of mutations or for estimating the absolute age of very

rare mutations and may therefore be unsuitable for genome-wide

analyses. Importantly, as we show below, difference in sojourn

times at higher frequencies is more informative than the allelic age.

Therefore, a statistical approach based on comparison of sojourn

times at higher frequencies is potentially more powerful than an

approach based on the estimation of the allelic age.

Here, using a new dataset of completely sequenced parent-child

trios, we provide evidence that the ‘‘Maruyama effect’’ (i.e., at a

given allele frequency, deleterious alleles are on average younger

than neutral ones) can be observed in human genetic data. We

introduce a statistic that is based on proximity of completely linked

mutations at a lower frequency and recombination events. We

demonstrate that this statistic can successfully discriminate

between functional classes of human low-frequency derived allelic

variants even if they are at the same frequency. This confirms the

abundant selection against deleterious alleles in the human

population.

Results/Discussion

First, we recapitulated Maruyama’s theory with diffusion

approximation and simulations (see Methods) and confirm that

neutral alleles at a given frequency are older than selected ones

(Figure 1a, 1b). A neutral allele observed at frequency x spent, on

average, an equal amount of time at each frequency below x,

whereas a deleterious allele spent progressively shorter time at

higher frequencies (Figure 1c). The difference in the average age of

neutral and selected alleles is primarily due to shorter sojourn

times at higher frequencies for selected alleles. This suggests that a

statistic capturing sojourn times at higher frequencies would better

discriminate between neutral and selected alleles than a statistic

based on an accurate estimation of the allelic age.

Both mean allelic age and mean sojourn times at each frequency

are exactly symmetric with respect to the sign of selection

coefficient. However, the symmetry is limited to the case of

constant size population and no dominance. In a growing

population the mean ages of deleterious and beneficial alleles of

the same frequency differ (see Methods). The assumption of

constant population size greatly simplifies the analysis of allelic

ages under a standard diffusion approximation. However, the

assumption of constant population size is clearly violated for the

human population. To investigate the case of a growing

population, we resorted to forward computer simulations (see

Methods for exact details of demographic history). Computer

simulations indicated that the difference between mean ages of

deleterious and neutral alleles of the same frequency is present in a

recently rapidly expanding population, though it is smaller than in

the case of a constant-size population (Figure 2A, 2B). The

difference in ages was present also in a demographic scenario that

included a bottleneck followed by a rapid recent population

expansion (Figure 2C).

We have developed a statistical approach to discriminate

between classes of neutral and deleterious alleles at the same

frequency. The test statistic, which we call the Neighborhood-

based Clock (NC) is defined as the logarithm of the minimal

physical distance to the nearest completely linked allelic variant at

a lower frequency or to the nearest detectable recombination event

(Figure 3). Therefore, younger alleles should correspond to larger

values of the NC statistic. The intuition behind this statistic is that

lower frequency allelic variants linked to the tested variant likely

arose by mutation after the tested variant. Similarly, recombina-

tion events are expected to happen after introduction of the tested

variant by mutation. The NC statistic captures information about

the age of the alleles and especially about the time spent in the past

at appreciable population frequencies.

To assess whether the NC statistic can indeed discriminate

between functional classes of human allelic variants, we analyzed

coding variants discovered in the pilot data from the Genome of

Netherlands project (GoNL). The pilot GoNL dataset (see

Methods) consists of complete genomes of 47 parent-child trios,

which enables accurate variant calling and haplotype phasing.

Thus, the unique trio-based design of the GoNL dataset allowed us

to compute NC statistics informed by family-based rather than

population-based phasing, an especially important advantage for

rare and low frequency alleles.

We subdivided all coding variants into synonymous and non-

synonymous (missense and nonsense). We further annotated the

missense variants using PolyPhen-2 predictions as benign, possibly

damaging, and probably damaging [15]. In the GoNL dataset,

consisting of 94 unrelated parents, there are 25997 common

coding SNPs with a minor allele count w20. Of those common

SNPs, 13956 (53.7%) are synonymous and 12041 (46.3%) are non-

synonymous (including 1466, or 5.6%, of probably damaging

missense SNPs). The fraction of non-synonymous and, especially

probably damaging SNPs, increases for SNPs with low frequencies

(Figure 4). At minor allele count 2 there are 7437 coding SNPs, of

which 3102 (41.7%) are synonymous, and 4335 (58.2%) are non-

synonymous (including 1176, or 15.7%, of probably damaging

missense SNPs).

We estimate that 14.8% of non-synonymous alleles at minor

allele count 2 are deleterious. At minor allele count 2 there are

3102 synonymous SNPs (which constitute 7.9% of all 39454

synonymous SNPs). In contrast, at minor allele count 2 there are

4335 non-synonymous alleles (which constitute 9.2% of all 46946

Author Summary

A key challenge in human genetics is to identify, among
the multitude of genetic differences between individuals,
those that have an effect on traits. Even though new
genetic variants arise through mutation in each genera-
tion, most are present only in a small proportion of
individuals because they have slightly negative effects on
fitness. Detecting such slightly deleterious variants is a key
challenge in analyzing how genetics influence human
characteristics. In this paper, we test a theoretical
prediction by Takeo Maruyama from 1974 that a slightly
deleterious variant is, on average, younger than a neutral
(non affecting fitness) variant present at the same
population frequency. Thus our method detects selection
by using estimated age of variants. We applied our
method to human data from the Genome of the Nether-
lands Project, and we show that it distinguishes low-
frequency protein-modifying variants from silent variants
at the same population frequency and discriminates
between sets of variants predicted to be benign or
damaging for protein structure and function. Our results
confirm the abundance of slightly deleterious protein-
coding variation in humans.
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non-synonymous SNPs). Therefore, there is an enrichment of rare

non-synonymous alleles compared to synonymous alleles. If we

assume that all synonymous SNPs are selectively neutral, then we

can treat their distribution as the neutral expectation. Therefore,

there are 4335{46946 � (3102=39454)~643:95 more non-syn-

onymous alleles at minor allele count 2 than expected if all non-

synonymous variants were neutral. Those 643:95 alleles constitute

14.8% of all 4335 non-synonymous alleles at minor allele count 2.

Figure 1. Simulation and theoretical results for allelic age and sojourn times. a. Example trajectories for a neutral and deleterious allele
with current population frequencies 3% (indicated by the arrow). The shaded areas indicate sojourn times at frequencies above 5%. b. Mean ages for
neutral and deleterious alleles at a given population frequency (lines show theoretical predictions, dots show simulation results with standard error
bars). Simulation results are averages of alleles in a frequency range, while theoretical prediction are for alleles at a fixed frequency. The graph shows
that deleterious alleles at a given frequency are younger than neutral alleles, and that the effect is greater for more strongly selected alleles. c. Mean
sojourn times for neutral and deleterious alleles. Vertical line denotes the current population frequency of the variant (3%). Mean sojourn times have
been computed in bins of 1%. Line connects theoretical predictions for each frequency bin. Dots show simulation results. The graph illustrates that
deleterious alleles spend much less time than neutral alleles at higher population frequencies in the past even if they have the same current
frequency.
doi:10.1371/journal.pgen.1003301.g001
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Figure 2. Age distributions for neutral and deleterious alleles from simulations. (A) Constant-size, (B) recently rapidly expanding
population, and (C) bottleneck followed by rapid expansion. For presentation, distributions are trimmed. Deleterious alleles in all cases are younger
than neutral alleles at the same frequency, though the effect is weaker in rapidly expanding populations.
doi:10.1371/journal.pgen.1003301.g002
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Figure 3. Cartoon presentation of the NC statistic. The NC statistic aims to capture the length of the haplotype carrying a variant. For a given
variant (called the index variant, shown in the middle of the figure), the value of the NC statistic is the base-10 logarithm of the sum of physical
distances measured up-stream (59 direction) and down-stream (39 direction) from the index variant to the closest variant that is either beyond a
recombination spot (example shown on the left) or is linked to the index variant but is rarer than the index variant (example shown on the right). The
red arrow in the figure illustrates that sum of the two distances.
doi:10.1371/journal.pgen.1003301.g003

Figure 4. Allele frequency spectra in GoNL data, for synonymous alleles and non-synonymous alleles stratified by PolyPhen-2
functional predictions. For better presentation, the graphs have been cropped at minor allele count 10.
doi:10.1371/journal.pgen.1003301.g004
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By the same logic, we estimate that 27% of probably damaging

missense variants at minor allele count 2 are deleterious.

Below, we focus primarily on low-frequency derived alleles (i.e.,

alleles that differ from the ancestral state). We note that, even

though the theoretically predicted difference in age is greater for

high-frequency deleterious variants (Figure 1b), we expect that the

difference between functional categories of coding variants can be

detected only for variants with derived allele frequency up to 10%,

because deleterious variants rarely ever reach higher frequency.

The NC statistic can discriminate between non-synonymous

and synonymous SNPs at the same derived allele frequency

(Figure 5 and Table 1) and bootstrap analysis shows that the effect

is not explained by a small number of variants (Figure 6). This is

consistent with the abundance of low frequency deleterious non-

synonymous alleles in humans. Variants predicted to be probably

damaging by PolyPhen-2 have higher values of NC statistics.

Overall, we observe a positive correlation between PolyPhen-2

predictions of damaging effects of derived missense variants and

the NC test statistic (Table 2). This result indicates that the NC

statistic independently captures some of the same selective

characteristics of variants as PolyPhen-2, and it may contain

additional signal not present in the conservation or structural

properties which PolyPhen-2 is based on.

Low-frequency ancestral alleles are expected to be much older

than derived alleles at the same minor allele frequency. Those

ancestral alleles date from before the human-chimpanzee divergence

Figure 5. Empirical Cumulative Distribution Function of the NC statistic for alleles at minor allele count 3 in GoNL data. Synonymous
derived variants serve as the baseline distribution. The distribution of NC for probably damaging derived missense variants is notably shifted towards
higher values, consistent with their younger age. The NC-statistic distribution for ancestral alleles are at minor allele count 3 is strongly shifted
towards lower values, consistent with much older age of those alleles.
doi:10.1371/journal.pgen.1003301.g005
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and each low-frequency ancestral allele corresponds to a high-

frequency (i.e., almost fixed) derived allele. For example, an

ancestral allele at minor allele frequency of 1% corresponds to a

derived allele at population frequency of 99%. In agreement with

this expectation, the NC statistic is, on average, much lower for

ancestral variants than for derived variants (Figure 5).

As another independent test whether deleterious variants are on

average younger than neutral alleles of the same frequency, we

analyzed the fraction of population-specific SNPs. Because this

analysis required data from multiple human populations, we used

an entirely different data set, pilot data from the 1000 Genomes

project (see Methods). We observed that non-synonymous SNPs,

especially those predicted to be damaging, are more often

population-specific (Figure 7) than synonymous SNPs of the same

frequency. This is consistent with non-synonymous SNPs being on

average younger. As expected, the difference disappears at

population frequencies greater than 10%. Previously, also using

1000 Genomes data, Marth et al. [16] showed an increase in

population specificity of variants in coding regions compared to

intergenic regions. Importantly, this analysis is independent of the

NC statistic and of the GoNL data, and thus provides additional

evidence of the younger age of deleterious alleles.

Finally, we examined examples of published low frequency

variants shown to be significantly associated with human complex

traits. Variants R46L of PCSK9 associated with reduction of LDL-

cholesterol [17] and two variants in IFIH1 (I923V and H460R)

associated with Type-I diabetes [18] have been observed in the

GoNL dataset. The PCSK9 R46L variant and IFIH1 I923V

variant are both younger than average according to the NC

statistic (33rd and 9th percentile, respectively). The IFIH1 H460R

variant is a low-frequency ancestral allele and, accordingly, has

low NC statistic (indicating old age), at 2.4 standard deviations

lower than average for synonymous variants at the same minor

allele count (lower than 99.2% of synonymous variants at allele

count 4). These results suggest that although the NC statistic

cannot be applied to pinpoint individual functional variants (at

Table 1. Discrimination of derived missense alleles by the NC statistic.

MAC Variants N meanNC Effect size 95% CI P

2 coding-synon 2813 4:97 baseline

2 missense 3957 5:02 0:089 (0:0387, 0:138) 0:0012

2 benign 1772 5:02 0:088 (0:0361, 0:136) 0:0083

2 possibly damaging 708 4:99 0:040 ({0:013, 0:091) 0:141

2 probably damaging 1136 5:05 0:142 (0:0914, 0:188) 0:0003

3 coding-synon 1708 4:68 baseline

3 missense 2277 4:75 0:134 (0:0726, 0:197) 2:17|10{5

3 benign 1035 4:74 0:118 (0:0521, 0:183) 0:00213

3 possibly damaging 368 4:75 0:137 (0:0714, 0:202) 0:0149

3 probably damaging 650 4:79 0:211 (0:146, 0:275) 1:58|10{6

4 coding-synon 1216 4:46 baseline

4 missense 1496 4:56 0:16 (0:088, 0:238) 2:68|10{5

4 benign 695 4:54 0:127 (0:050, 0:207) 0:00817

4 possibly damaging 254 4:59 0:217 (0:144, 0:287) 0:000512

4 probably damaging 376 4:59 0:212 (0:140, 0:284) 0:000124

5 coding-synon 935 4:37 baseline

5 missense 1102 4:42 0:0966 (0:010, 0:188) 0:00934

5 benign 530 4:42 0:0922 (0:005, 0:176) 0:0454

5 possibly damaging 181 4:4 0:0596 ({0:028, 0:158) 0:312

5 probably damaging 277 4:52 0:266 (0:185, 0:353) 2:73|10{5

6 coding-synon 814 4:24 baseline

6 missense 896 4:28 0:082 ({0:015, 0:171) 0:0562

6 benign 432 4:26 0:047 ({0:044, 0:136) 0:291

6 possibly damaging 145 4:29 0:101 (0:012, 0:187) 0:183

6 probably damaging 215 4:37 0:243 (0:149, 0:338) 0:000826

2–6 coding-synon 7486 baseline

2–6 missense 9728 1:79|10{10

2–6 benign 4464 5:30|10{06

2–6 possibly damaging 1656 0:001

2–6 probably damaging 2654 3:25|10{13

Missense alleles are sub-classified info categories based on PolyPhen-2 predictions. Effect sizes were calculated as standard deviations from the mean of the NC statistic
for synonymous variants at the same minor allele count (MAC). Within each MAC class, P-values were calculated by 1-sided Mann-Whitney test. Combined P-values for
MAC 2–6 were computed by meta-analysis (Methods).
doi:10.1371/journal.pgen.1003301.t001
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least in relatively small sequencing datasets available at present), it

may have potential to enrich for groups of functional variants in

burden association tests (reviewed in [19]). This must be

investigated in the future on much larger datasets.

Our approach does not distinguish effects of positive and

negative selection. As noted above, the theory predicts that the

effect of selection on age and on time spent at each frequency in

the past is symmetric with respect to selection coefficient, assuming

no population growth and no dominance effects (in a quickly

growing population strong positive selection produces younger

alleles than negative selection [20]). We focused on negative

selection in this study because at low derived population

frequencies many missense variants are deleterious [5] and very

few are advantageous. Nonetheless, our approach may be

applicable to positive selection too.

Our analysis benefitted from whole-genome sequencing data

allowing low-frequency alleles far away from the coding regions

(*100 kb) to be identified. Additionally, the accurate haplotype

phasing available in the trio-based sequencing data from GoNL

was indispensable for our analysis, which required accurate

identification of linked variants and recombination events.

To our knowledge, ours is the first large-scale real-data analysis

of this effect theoretically predicted by Maruyama in 1974. Our

analysis provides additional evidence, completely independent of

allele-frequency distribution, for the abundance of deleterious

alleles in coding regions in the human population.

Methods

Theoretical mean ages and sojourn times were computed for

constant-size populations, using diffusion approximation of the

stochastic process. Let w(x,t; p) be the probability density that the

allele frequency in the t th generation is between x and xzdx,

(0vxv1) given its starting frequency p. Then, w(x,t; p) satisfies

the backward Kolmogorov equation

Lw

Lt
~sp(1{p)

Lw

Lp
z

p(1{p)

4N

L2w

Lp2

Following Maruyama and Kimura [21], we denote by

W~

ð?
0

w(x,p,t) dt

the density of mean sojourn time at frequency x starting at

frequency p before fixation or loss. Then, W satisfies the equation

{d(x{p)~sp(1{p)
LW
Lp

z
p(1{p)

4N

L2W

Lp2

where d denotes Dirac’s delta function.

Now, given the current frequency x and initial frequency p, the

density of mean sojourn time at frequency z is

Wz(p,z)~
W(p,z)W(z,x)

W(p,x)

For the boundary conditions, for all x, W(0,x)~0 and W(1,x)~0,

the density for frequency z below x (0vzvx) is

W1~
(e{4Ns(1{z){1)(e{4Nsz{1)

sz(1{z)(1{e{4Ns)

while the density at frequency z above x (xvzv1) is

W2~
(e{4Ns(1{z){1)(e4Ns(1{z){1)(1{e4Nsx)

sz(1{z)(e{4Ns(1{x){1)(1{e4Ns)

It then follows that mean age of a variant at current frequency x is

the sum of sojourn times at all frequencies

a(x)~

ðx

0

W1dzz

ð1

x

W2dz

Both the sojourn times and age are symmetric functions of the

selection coefficient s. In other words, deleterious and advanta-

geous alleles at a given frequency are expected to be younger than

neutral alleles, and selected alleles are expected to spend

progressively less time at higher frequencies leading to the current

population frequency.

Forward-in-time, individual-based computer simulations were

performed in SFS_code [22]. The parameters were selected to

examine the behavior of the age of selected alleles and not to

emulate realistic demographic scenarios. Coding region of 100 kb

or 200 kb was simulated for 2.05 N generation after the initial

burn-in of 10 N generations (N = 5000 or 10000). 70% of

simulated variants were under selection, the remainder were

neutral. Expansion phase started at time 2 N generations after

burn-in, with expansion rate of 156.48. The scaled mutation rate

per site was H= 4Nm = 0.0001, and scaled recombination rate per

site r = 4Nr = 0.0001. Additionally, a scenario that included a

bottleneck was simulated. The bottleneck was an instantaneous

population reduction of 50% at time 2N, followed by rapid

population expansion as in other simulation scenarios.

The data presented here include SNP genotypes in a pilot subset

of 47 trios collected by the Genome of the Netherlands (GoNL)

Project (http://www.nlgenome.nl), using whole-genome sequenc-

ing at 12| coverage with Illumina HiSeq technology performed

Figure 6. Bootstrap distribution of normalized difference between NC statistic on missense and synonymous variants for derived
allele count 2 and 3. Vertical red bars indicate 95% confidence intervals. For presentation, panels have been aligned along the X axis.
doi:10.1371/journal.pgen.1003301.g006

Table 2. Correlation between the NC statistic and PolyPhen2
predictions.

derived ancestral

MAC N r P N r P

2 3957 0:022 0:092 108 0:002 0:492

3 2277 0:048 0:015 104 {0:164 0:941

4 1496 0:046 0:047 71 {0:055 0:668

5 1102 0:073 0:011 84 {0:034 0:617

6 896 0:095 0:004 89 0:271 0:008

Within each minor allele count, derived missense alleles are positively
correlated (Spearman’s r) with PolyPhen2 predictions (pph2_prob), while no
such correlation exists for ancestral missense alleles. P-values are 1-sided
(alternative hypothesis rw0).
doi:10.1371/journal.pgen.1003301.t002
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Figure 7. Allele frequency spectra and population-private coding alleles. The graphs show the proportion of population-private
synonymous alleles and non-synonymous alleles stratified by PolyPhen-2 functional predictions.
doi:10.1371/journal.pgen.1003301.g007
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at Beijing Genome Institute (BGI). The sequence data were

aligned to the human reference genome build hg19 using BWA

[23], duplicate reads removed, re-alignment performed around

insertions/deletions from the pilot of the 1000 Genomes Project

[24], and base quality scores recalibrated. Variant discovery and

genotyping was done using the Unified Genotyper in the Genome

Analysis Toolkit (GATK) [25] across all individuals simultaneous-

ly. The initial calls were filtered using Variant Quality Score

Recalibration (VQSR) [26], resulting in 11,521,751 biallelic SNPs

identified with a corresponding Ti/Tv ratio of 2.21. We used

Phase By Transmission in the GATK to calculate the posterior

probability for all possible genotypes in each trio from the raw

genotype likelihoods and expected modes of transmission, and

identified the best-guess genotype in the trios. We phased these

best-guess SNP genotypes for all trios using Beagle v3.3 [27].

Data from July 2010 release of the 1000 Genomes low-pass pilot

data was used. Variant annotations and functional predictions

were computed using PolyPhen-2. In all analyses, only non-

singleton variants (i.e., with minor allele counts at least 2) were

used and only those that had annotated phased genotypes.

The NC test statistic was computed for variants at minor allele

count of 2–6 separately. The statistic, for each coding variant, was

computed as base-10 logarithm of the sum of the up- and down-

stream physical distances to the closest recombination event

(computed using the 4-gamete test [28]) or a fully linked rarer

variant, i.e., variant present on a strict subset of the haplotypes.

The ancestral/derived states of variants were calculated using

the ancestral reference human_ancestor_GRCh37_e59 provided

with the 1000 Genomes project.

P-values were computed using Mann-Whitney rank-sum test. P-

values were 1-sided, with alternative hypotheses following younger

age for non-synonymous variants. Effect sizes were calculated as

standard deviations from the mean of the NC statistic for derived

synonymous variants at a given minor allele count. Confidence

intervals were computed using the percentile bootstrap method on

1000 bootstrap permutations of variant labels. Combined p-values

were computed by meta-analysis using the Z-score method,

weighted by sample size.
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