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Abstract

One of the challenges of systems biology is to integrate multiple sources of data in order to build a cohesive view of the
system of study. Here we describe the mass spectrometry based profiling of maize kernels, a model system for genomic
studies and a cornerstone of the agroeconomy. Using a network analysis, we can include 97.5% of the 8,710 features
detected from 210 varieties into a single framework. More conservatively, 47.1% of compounds detected can be organized
into a network with 48 distinct modules. Eigenvalues were calculated for each module and then used as inputs for genome-
wide association studies. Nineteen modules returned significant results, illustrating the genetic control of biochemical
networks within the maize kernel. Our approach leverages the correlations between the genome and metabolome to
mutually enhance their annotation and thus enable biological interpretation. This method is applicable to any organism
with sufficient bioinformatic resources.
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Introduction

Assembling increasingly large datasets due to the enhanced

efficiency of various phenotyping technologies (e.g. metabolomic

and proteomic profiling or nucleic acid sequencing) permits

increasingly comprehensive views of biological processes. Howev-

er, the problem of analysis and visualization in systems biology has

led some commenters to question how best to ‘‘drink from a fire

hose’’ [1]. Statistical methodologies that are highly inclusive can

help solve the dual problem of analysis and visualization [2,3].

Here, we describe the use of weighted correlation network analysis

(WGCNA) as a method to integrate mass spectrometry-based

simultaneous of the maize kernel, isolated from a diverse panel of

inbred maize varieties previously utilized for genome wide

association studies of multiple traits [4,5,6,7,8]. We assert that

the use of such a study panel allows us to leverage the genetic and

genomic resources already available to enhance our annotation

and analysis of mass spectrometry results. Likewise, this approach

also improves the annotation of a genome by providing specific

metabolites and chemistries to describe the roles of predicted

proteins. This approach relies heavily on software written in the R

programming language, which should enable wide adoption by the

scientific community due to the lack of associated cost [9].

Our choice of study system was deliberate. Maize has incredible

genetic and phenotypic diversity, providing an ideal resource for

systems biology studies [10]. Variation in plant yield, composition,

and morphological traits has been reported in multiple collections

of diverse inbred varieties and related biparental mapping

populations [4,5,6,7,8,11]. Much has also been learned about

the structural and genetic variation within the maize genome

[12,13]. The quality of maize grain is a key factor for breeders and

other stakeholders, but the development of biomarkers to assist

breeding and transgenic crop improvement remains challenging

[14,15,16,17]. Metabolomics, relying on the use of mass signals as

markers, provides a rapid approach to characterize related

varieties and enable the description of existing and novel quality

traits [18,19]. The aim of metabolomics is to provide a

comprehensive and quantitative analysis of a vast number of

components in a specific biological sample, and identify as many

metabolites as possible [20,21,22].

Metabolomic analyses of plants can be especially challenging, as

plants contain great chemical diversity especially in secondary

metabolites [18,23]. These secondary metabolites help keep plants’

systems working properly, play roles in the response to genetic or

environmental changes, and have powerful physiological effects in

humans or animals [20]. Although mass spectrometry-based

metabolomics enables the measurement of hundreds or thousands

of compounds from a single complex sample, the plant

metabolome is still poorly defined and the identification process

for specific compounds remains challenging [24,25,26,27,28,29].

However, metabolite profiling is not mutually exclusive of

statistical genetic and genomics-based approaches [30]; the
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combination of systems biology strategies is mutually supportive

and beneficial.

Genome-wide association studies (GWAS) consider nucleotide

variation patterns, relative to population structure, to identify

correlations between particular genomic regions and phenotypes.

Often, susceptibility to particular diseases or metabolic syndromes

is analyzed using GWAS, as this statistical genomics approach is

useful in both humans and model systems [7,31,32]. GWAS have

been applied to metabolomic datasets, to identify SNPs that may

be causally linked to particular biochemical processes or pathways

[14,33,34,35,36]. However, in each of these cases the unit of

analysis has been individual metabolites, which does little to

improve the efficiency of calculation or maximize the benefit of

measuring hundreds or thousands of analytes.

Here, we describe non-targeted metabolite profiling of whole

maize kernels. The study of grain quality was approached from the

perspective of maize as a foodstuff, thus methanolic extracts were

isolated from cooked kernels. Our choice of study panel gave us

access to more than 1 million SNPs to support GWAS [12]. We

applied WGCNA to organize our data into modules that

contained multiple markers that also enabled the identification

of networks under genetic regulation. This condensation step

allowed us to reduce the complexity of the dataset, addressing the

multiple testing problem that is endemic to systems biology, and

increase computational efficiency. GWAS were applied to

weighted averages for each module (hereafter, module eigenval-

ues), to identify SNPs associated with collections of biochemical

markers. We suggest that the WGCNA procedure does not

excessively smooth the data, as SNPs correlated with module

eigenvalues were significantly correlated with specific compounds

assigned to those modules. Finally, module eigenvalues were used

in linear regression models to analyze traits that were recalcitrant

to GWAS.

Materials and Methods

Materials
HPLC-grade acetonitrile, methanol, and formic acid were

purchased from Fisher (Pittsburgh, PA); UPLC HSS C18 column

(1.8 mm, 2.1 mm6100 mm), sample vials, UPLC column test mix

and leucine enkephalin were purchased from Waters (Milford,

MA); and all other reagents were available through Sigma (St.

Louis, MO), or as indicated.

Sample Preparation
A maize inbred diversity panel was grown in 2010 on the

Musgrave Research Farm of Cornell University (Poplar Ridge,

NY)(Flint-Garcia et al., 2005). Duplicated trials were grown

using a randomized field design with regular check rows of the

B73 accession; 210 of the 282 accessions produced sufficient

grain for subsequent analysis, largely due to flowering time

issues. Whole maize kernels (n = 50) were covered with an equal

volume of 18 megaohm water and autoclaved for 30 minutes to

fully cook the grain. Samples were then freeze-dried and ground

to a fine flour using a consumer-grade grain mill (KoMo

Medium Mill, Pleasant Hill Grain, Hampton, NE). Ground,

cooked samples were frozen at 220uC until extracted with a 1:1

mixture of water and methanol. After 10 min sonication,

extracts were centrifuged for 10 min at 4000 rpm. The

supernatant was filtered through 0.45 mm filter. Two indepen-

dent biological replicates were obtained and analyzed, although

only one is discussed here.

UPLC and Mass Spectrometer
Sample injections were performed with an ACQUITY UPLC

system (Waters), equipped with a Waters Acquity UPLC HSS C18

column. The samples were injected by means of a 7.5 mL partial

loop injection with 3 technical replicates by randomizing all

injections. Mobile phase A consisted of 0.1% formic acid in water

and mobile phase B contained 0.1% formic acid in acetonitrile.

The following gradient was used: 4.5 min 2.4% B, 0.5 min 40% B,

3.5 min 64% B, and 3.5 min 97.6% B. Flow rate was 0.4 ml/min

and column temperature was maintained at 40uC. The eluent

from the column was delivered to a Xevo G2 TOF (Waters). The

mass spectrometer operated in a positive mode using a samples

cone voltage of 20 V and a capillary voltage of 2.5 kV with the

temperature of source and desolvation at 120uC and 350uC and

the flow rate of nitrogen desolvation gas at 850 L/h. Data were

acquired in a centroid mode from 50 to1,200 m/z with scan time

of 0.2 sec. MS data were collected at a collision energy of 6 V with

alternative collection of MSE mode using a ramped collision

energy of 20–40 V. Leucine enkephalin was used as the lock mass

compound (m/z 556.2771 in positive) and infused at 10 ml/min

with a concentration of 1 ng/ml. The lock mass was acquired in all

injections of samples to ensure accuracy and reproducibility. The

instrument was calibrated using sodium formate at a concentration

of 5 mM with mass accuracy within 1 ppm.

Data Transfer and Statistics Approaches
A variety of statistical procedures were employed to analyze

data using R (version 2.13.1) or JMP (version 9, SAS Institute,

Cary NC). MarkerLynx (v4.1, Waters) was used to integrate and

align MS data points and to convert them into exact mass and

retention time signals. Principal component analysis (PCA) was

performed using Pareto-scaled data on all detected features for

initial charactering the separation of maize variables and checking

repeatability for technical replicates. The MarkerLynx generated

feature list was somewhat larger than that obtained using XCMS,

but WGCNA produced highly similar outcomes from both

datasets. To use XCMS to identify and annotate features, raw

data files were converted to NetCDF format using the Waters

DataBridge software [37]. Peak detection and alignment was

performed on both the low and high collision energy channels (MS

and MSE) using XCMS software (version 1.22.1 [38]). Recon-

struction of indiscriminant MS/MS spectra (idMS/MS) was

performed as described [37], with exception that rather than

utilizing CAMERA groupings, the grouping was centered around

the retention time of the feature of interest, with a 2 second

window on either side. Reconstructed spectra presented in this

paper are supplied as File S1, an msp format spectral file suitable

for viewing using NIST MS search program. A correlational filter

was then used to find features that demonstrated similar

quantitative patterns to the feature of interest. Reconstructed

MS and idMS/MS spectra were exported as an ‘.msp’ formatted

spectral library using a custom R script. The library was batch

searched against the MassBank database [39], and manually

searched against the NIST (http://www.nist.gov/srd/nist1a.cfm)

and Metlin databases [40]. Identification confidence scores were

assigned as described [37]. For multiply charged peptides, the

spectra were manually converted to.mgf format, and the precursor

ion was manually interpreted based on the MS spectrum. idMS/

MS spectra were searched against the NCBInr protein database

using a taxonomy filter for maize (version 07/12/12) (43,920

sequence entries) using the Mascot database search engine (version

2.3). Search parameters were set as follows: monoisotopic mass,

parent ion mass tolerance of 0.05 Da, fragment ion mass tolerance

Chemical Genomics
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of 0.1 Da, no enzyme specificity, and variable modification of

oxidation of Met.

The XCMS also fills empty cells based on retention time and

mass specific signal, thus reducing the frequency of zero values in

the dataset. The XCMS generated data matrix, with an intensity

value for each feature and each sample, was used as input for the

clustering analysis by WGCNA. Weighted correlation network

analysis (WGCNA) was produced with the R package, creating

unsigned networks where both positive and negative correlations

could be clustered into a single module [2,3]. WGCNA used

autoscaled data in order to reduce the dominance of dynamic,

high-concentration metabolites (Table S1). Module eigenvalues for

each module were calculated for each of the 210 maize accessions,

providing a condensed dataset of derived variables for subsequent

genetic analysis. Cytoscape, the open source bioinformatics

software, was used to illustrate metabolite networks [41].

Genome-wide Association Study (GWAS)
GAPIT, the genome association and prediction integrated tool

(http://www.maizegenetics.net/gapit) was used to perform

GWAS and genome prediction. Module eigenvalues from

WGCNA were used as maize phenotypic traits in GWAS. The

genotypic data are publicly available from panzea.org (http://

www.panzea.org/lit/data_sets.html#genos). Previously, the maize

diversity panel had been characterized using next-generation

sequence analysis such that more than 1 million SNPs across the

maize genome are available to characterize the genetic diversity

[12]. A kinship matrix was calculated [42] and population

structure was modeled as a fixed effect [43]. Significant SNPs

(FDR corrected p,0.001 and p,0.05) were identified for each

module eigenvalue with a requirement that the SNP be present

with $5% allele frequency.

Results

Non-targeted Metabolite Profiling
Our long-term goal is to characterize phenotypic variation in

maize grain quality and to identify the genetic and environmental

factors that influence the metabolomic composition of this

important staple food and model plant. This effort will provide

information to better describe the existing food supply and also

project what new grain quality traits may be achievable in the

future using conventional plant breeding. Towards this goal, we

chose to use mass spectrometry based non-targeted metabolite

profiling of maize meal prepared from cooked, whole kernels

(Figure 1). While it may be counterintuitive to treat samples in this

way, our dataset represents a genetically diverse sample of a

foodstuff that could be consumed by either humans or animals.

This choice helps to define the range of normal and acceptable

variation within a highly diverse crop plant [17]. More than 8,710

metabolomic features were detected from the whole kernel

methanolic extracts (Table S1). Principal component analysis

(PCA) gave an initial characterization of the profiling results. PCA

explains about 22% of the variance with 2 PC’s (Figure S1). The

performance of PCA for this dataset is typical as the composition

varies very widely across genetically distant accessions.

Data Condensation by Weighted Correlation Network
Analysis (WGCNA)

One of the endemic problems of systems biology is the multiple

testing problem, wherein the number of variables measured dwarfs

observations. One potential solution to this problem is to condense

the dataset into a smaller number of distinct groups (hereafter,

modules), normalizing the issue of observations and variables.

WGCNA is an approach to display model network relationships,

identifying co-regulated groups of features (hereafter, nodes) such

as patterns of gene expression [2]. It can also be used to visualize

metabolite networks and increase the comprehensiveness of non-

targeted metabolomics [3]. WGCNA describes the relationships

between all of the input variables, summarizing the correlation

and connectivity of all nodes. The network can be more or less

elaborate, depending on the rules set for inclusion into the

network. A principal component is calculated for each module for

each variety, summarizing the contribution of all nodes included

into a particular module, which is referred to by a randomly

assigned color. This principal component (hereafter, module

eigenvalue) can be used for correlation tests or ANOVA.

For our dataset, 97.5% of the detected molecular features

(nodes) could be included in a network with 56 defined modules

(Table S2). The network was then pruned to require that the

minimum connectivity between nodes exceed 4 standard devia-

tions (SD) above the mean connectivity observed between all

nodes. At this threshold, the network contained 48 modules and

4,102 nodes (47% of nodes, 3.1% of the theoretical connections;

Figure 2). The network was redefined under even stricter terms,

using a 6SD threshold (Table S2). As the modules were defined by

the strength of the correlations among members, modules varied

in size and membership according to the inclusion threshold. For

example, the turquoise module in the initial description had 2,105

nodes and ,3.73 million edges (Table S2). At the 4SD threshold,

the turquoise module reduced to 1,597 nodes with more than 0.62

million edges, while at the 6SD shrinking further to 635 nodes with

40,217 connections. Nodes within the turquoise module were also

connected with members of the black module, which likewise

contained connections to both the turquoise and purple modules.

Figure 1. Genomics-assisted chemistry & chemistry-assisted
genomics. This flow chart describes the process by which statistical
genetics and genomics can enable metabolite profiling to have greater
power and impact.
doi:10.1371/journal.pone.0057667.g001
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Other modules were much less elaborate; orange contained 81

nodes in its initial description, 63 nodes at 1 SD, dropping to 9

nodes and 56 connections at 4SD, and disappearing completely at

6SD (Table S2). At the 4SD threshold some modules broke into

distinct clusters as connections that helped to define the original

module, using the original definitions, dropped below the

significance threshold (Figure 2). This facet of the WGCNA

procedure represents both a strength and a weakness for the

approach. Information can be applied to poorly connected

members of a particular module using guilt by association on

tightly connected central elements. However, as the module

eigenvalues are estimated when the network was initially

described, the poorly connected nodes may transmit an excessive

degree of variance to these values and perhaps confound

downstream applications.

Module Eigenvalues Drive Genome Wide Association
Studies

We expected that using WGCNA for the analysis of mass

spectrometry based non-targeted metabolite profiling data would

accomplish two goals: (1) define the co-regulated networks of

metabolites and peptides that contribute to maize kernel quality

and composition and (2) reduce the number of variables for

downstream analyses. One such analysis is a genome wide

association study (GWAS), to correlate particular genomic regions

with phenotypes of interest. This approach has already been

applied to maize but not on derived variables such as module

eigenvalues, so far as we are aware. And while computational

resources are improving, conducting GWAS with a SNP dataset as

large as that available for the Buckler Diversity Panel using

optimized procedures is still a time intensive procedure (0.5 hr/

trait or .150 d for the original data) [12,44]. Module eigenvalues

for all 56 modules were analyzed, 19 of which found significant

associations (FDR corrected p-value ,0.05; Table S2). Modules

that were detected under the most stringent membership

conditions (.6SD) were more likely to produce significant GWAS

outcomes than those present only under lesser requirements (14 of

27 versus 5 of 21; Table S2). However, modules with fewer

connections at 4SD were more likely to identify significantly

correlated SNPs with GWAS (x2 = 4.56, p = 0.0328). While

4,830 SNPs were identified by GWAS, nearly two-thirds were

associated with only two modules (plum2 and salmon). A variety of

patterns were observed in the results, ranging from few to many

SNPs and wide to narrow distribution across the genome

(Figure 3).

The strongest associations between SNPs and module eigen-

values were found with the midnightblue module. Nearly all of the

significant SNPs were identified at both conservative and relaxed

FDR corrected p-value thresholds and were located in a single

region of chromosome 7. Most SNPs were identified with variants

of the a-zein 19C2 seed storage protein, a result that is supported

by analysis of the mass spectrometry data, which are consistent

Figure 2. Visualization of maize grain metabolome. This node
and edge projection describes the grain metabolome observed in the
methanolic extract from 210 inbred line varieties of maize. This network
requires a minimum degree of connectivity between any two nodes (i.e.
biochemical markers detected by mass spectrometry) that exceeds four
standard deviations above the mean connectivity observed between
detected markers. According to this threshold, 4,102 nodes are
organized into 48 modules each represented by particular color.
However, some modules have separated into multiple, distinct clusters
as internal connectivity may fall beneath the 4 standard deviation
cutoff, such that there are 101 objects in this projection.
doi:10.1371/journal.pone.0057667.g002
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with a C-terminal peptide derived from a-zein 19C2 protein

(Figure S2; Table 1; File S1). The plum2 module gave results as

one might optimistically hope for, with a variety of genomic

regions identified under conservative significance thresholds. SNPs

associated with plum2 included those within a putative mitogen-

activated protein kinase, which suggested that signal transduction

pathway components were detected by GWAS, and also a

cytochrome P450 with significant similarity to flavonoid 3-

monooxygenases (Table 1). The darkslateblue module returned

far fewer SNPs above the a= 0.001 significance threshold, but

many above the 0.05 level. Much like plum2, these SNPs identified

a mixture of genes with potential functions while others had no

obvious connection to the regulation of maize kernel composition.

A potential pitfall for the WGCNA procedure as a data

condensation tool was the potential to excessively smooth the data,

creating a false picture of the genetic regulation of the

metabolome. In this instance, collapsing multiple metabolite

markers into a single signal might obscure the effect of a particular

locus for importance of a module constituent. To address this

concern, we examined the orange module in greater detail. At

4SD, orange has 9 nodes, one of which we identified as tyramine

(Figure S3). The abundance of tyramine alone was used as a trait

for GWAS; this result was compared with the GWAS on the

orange module eigenvalue (Figure 4). The orange module returned

27 significant SNPs, 7 of which were also identified as significant

for tyramine (Table 1). While GWAS on tyramine returned more

significant SNPs than for the orange module, our result does

indicate that SNPs associated with a single compound can be

identified from GWAS on the module eigenvalue.

Leveraging Genomic Information to Assist Annotation of
Mass Spectrometry Data

Compound identification in mass spectrometry based non-

targeted metabolite profiling experiments represents a major

challenge of this approach [45]. The utility of indiscriminant MS/

MS (idMS/MS) was recently demonstrated to improve the rate and

confidence of metabolite identification in non-targeted metabolite

profiling experiments [37]. In the current study, the idMS/MS

process was applied to selected features from modules with significant

GWAS results. As described above, GWAS with the midnightblue

module identifiedaregionofmaizechromosome7consistentwith the

a–zein 19C2 storage protein (UniProtKB P06677). Sixty-seven

features were identified in this module with retention times between

226.35 and 227.06 sec, suggesting that they all represent the same

compound. The reconstructed MS and idMS/MS spectra were

highly suggestive of a peptide structure due the observation of

multiple charge states. The molecular weight of the potential peptide

was inferred from the two multiply charged isotope clusters in the MS

spectra, and the corresponding idMS/MS spectrum was searched

against the maize genome using the Mascot database search engine.

This search returned a single peptide as the likeliest match

(PAASYQQHIIGGALF), which represents the C-terminus for both

the 19C1 and 19C2 variants of the a–zein storage protein. Taken

together, these results suggest that cis-acting variation at the a-zein

locus on chromosome 7 influences the quantitative expression of this

protein and this variation is apparent in the cooked maize meal

product. We achieved this peptide identification in spite of the fact

that our MS data were collected with small molecules in mind and

without the benefit of predictable proteolytic cleavage that most

proteomic search engines rely upon. Further, we accomplished this

from a single separation/MS experiment without the need for a

second targeted MS/MS experiment, demonstrating the utility of the

idMS/MS workflow. GWAS on this peptide alone returned

significant SNPs common with the midnightblue module eigenvalue.

However, midnightblue produced a far more significant p-value than

the single feature, in contrast to the previous example (Table 1).

WGCNA alone,without the benefit ofGWAS, canalsoassist in the

annotation of mass spectra. The orange module contained 9 features

with 4 different retention times at the 4SD network threshold,

suggesting that there are only a few compounds contained in this

module that behave similarly across this maize diversity panel. The

first twoeluting featuresdemonstratedastrongsimilarity to tyramine,

as described above. The third retention time group contained 3

isotopes of a molecular ion of 284.13, with a fragmentation patterns

consistent with p-coumaric acid. A dehydration conjugation between

tyramine and p-coumaric acid is consistent this molecular ion. The

fourth retention time group contained 3 isotopes of the molecular ion

314.14; the idMS/MS patterns suggested tyramine, which lead us to

hypothesize an additional tyramine conjugate. The molecular ion for

314.14 is consistent with a ferulic acid-tyramine dehydration

conjugate. The final retention time group consisted of a single

feature, where the idMS/MS spectra did not show strong matches in

public databases. As a whole, the spectral annotations of the orange

module members suggest that this cluster is focused on variation in

tyramine and at least two of its phenylpropanoid conjugates. The

module identification enabled annotation of the mass spectra, as we

were able to restrict our decision space based on the data. Likewise,

understanding theunderlyingchemistry shouldenableouranalysisof

the GWAS identified SNPs, to clarify how these genes would

contribute to the synthesis and modification of tyramine.

Figure 3. Genome-wide association studies on three module
eigenvalues (ME). Nineteen modules returned significantly correlated
SNP markers according to GAPIT. Three are shown here. Significance
thresholds were empirically calculated for each trait using GAPIT; FDR-
corrected p-values at both a conservative (p,0.001; green line) and
generous (p,0.05; aqua line) are displayed. MEmidnightblue identified
one region of chromosome 7 with high confidence, with a second
region of chromosome 1 with lower confidence. MEplum2 identified
multiple genomic intervals with high confidence. MEdarkslateblue
identified no significant regions at the conservative threshold, but
several regions at the lower threshold.
doi:10.1371/journal.pone.0057667.g003
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Correlation of Module Eigenvalues with Potentially
Related Phenotypes

One of the original applications of WGCNA estimated

eigenvalues was correlation analysis with related phenotypes, such

as using patterns of gene expression to predict disease risk [46].

WGCNA was used to condense large datasets into more

computationally manageable ones, with the added advantage of

creating new testable hypotheses regarding cause and effect

between genetic networks and phenotypic outcomes. Here, we

used the WGCNA estimated module eigenvalues for stepwise

regression of kernel weight, a commonly studied quality trait.

GWAS was applied to kernel weight, but failed to identify any

significant SNPs at the a= 0.05 significance threshold. The

GWAS procedure, as implemented by GAPIT, estimated the

heritability of kernel weight at 0.38, which suggested that genetic

regulation of kernel weight was highly complex and resulted from

the interaction of many genes of very small individual effect.

Stepwise regression for kernel weight that included all module

eigenvalues reduced to a model using 11 modules and explained

more than half of the observed variance (Table 2). These modules

included those with significant GWAS associated SNPs, modules

that were well defined according to the connectivity rules, and still

others that were more diffuse. While the regression model may

have overestimated the fraction of variance due to genetic factors

(0.548 vs. 0.38), the two analyses were consistent in their overall

findings. The eigenvalue regression model summarized the

contributions of 11 modules, which conservatively contained at

least 600 features (Table S2). Both statistical methods indicated

that kernel weight was determined by the interplay of many

genetic factors, however the module regression model did quantify

the relative input from defined entities and provide a logical

framework from which to build additional hypotheses.

Discussion

One of the promises of systems biology is that through the

integration of analytical technologies, a more comprehensive and

complete view of biological processes can be achieved. Here, we

utilized mass spectrometry based non-targeted metabolite profiling

to characterize the maize kernel metabolome. We chose to profile

cooked maize ground in a consumer-grade grain mill to better

understand the variation present in food product that might

reasonably be encountered by a consumer, rather than to estimate

the maximal genetic potential found in these fractions. We used

WGCNA to identify the patterns that help determine composition

and quality, and to resolve the multiple testing problem and

rebalance the number of observations to variables under analysis.

This data condensation step allowed us leverage investments made

in maize genetics and genomics to assist the annotation of our

mass spectra, through the application of simple (i.e. correlation

and regression) and complex (GWAS) statistical procedures. While

we chose to profile maize kernels, the statistical and bioinformatic

process outlined here is applicable to any biological system with

sufficient genetic and genomic investment and should enhance the

impact of systems biology approaches in plant, animal and

microbial model organisms.

A second promise of systems biology is that of translational

genomics, to apply our increasingly deep view of biological

processes in more applied contexts and to produce positive

outcomes for society. One such application is genomic selection or

whole genome prediction, where all available genetic markers are

used to predict phenotypes [15]. In a recent example, a SNP

microarray was used to genotype a panel of diverse maize varieties

that had also been evaluated using metabolite profiling and

standard agronomic evaluation [15]. Both genetic and metabo-

lomic markers gave high accuracy predictions of agronomically

important traits such as biomass accumulation and flowering time.

Table 1. Sample results from genome-wide association studies.

SNP 2log (p-value) Module/Marker Gene Annotation

S7_18857356 17.45 Midnightblue* a-zein precursor 19C2CDS

S7_18857356 8.74 1056.528_226.57* a-zein precursor 19C2CDS

S2_160151277 8.05 darkslateblue a-amylase/protease inhibitorCDS

S9_24144378 7.85 darkslateblue Protein phosphatase 2A regulatory subunitCDS

S2_184267091 9.59 plum2 Flavonoid 3-monooxygenase6.6 kb-59

S1_264986642 9.06 plum2 Mitogen-activated protein kinaseCDS

S5_168853373 6.75 orange# bZIP transcription factor4.4 kb-5

S5_168853373 9.28 138.092_70.421# bZIP transcription factor4.4 kb-5

SNP indicates the chromosome and position (bp) within the maize genome (version 5b.60). The significance of the SNP association is indicated by the negative of the
log for the false discovery rate corrected p-value. Module/marker indicates which module eigenvalue the SNP was associated. Single constituents of the midnightblue
(*) and orange (#) modules were also analyzed by GWAS. Gene annotation describes the closest gene model relative to the SNP evaluated.
doi:10.1371/journal.pone.0057667.t001

Figure 4. Module eigenvalues do not obscure the importance
of single compounds. MEorange was estimated from 81 molecular
features, one of which was identified to be tyramine. GWAS on
MEorange identified 27 significant SNPs at the FDR-corrected p,0.05
threshold. GWAS on tyramine alone identified 7 SNPs in common (red
circles) with MEorange.
doi:10.1371/journal.pone.0057667.g004
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Additionally, the use of metabolomics allowed a light to shine into

the ‘‘black box’’ of genomic selection, where the goal is merely to

apply abundant and anonymous genetic markers to predict the

phenotype of interest. Through simultaneous genetic and

metabolomic profiling, it is possible to correlate micro-scale

phenotypes (i.e. glucose) with macro-scale phenotypes (i.e.

biomass) while also generating hypotheses to address causality.

The methodology we describe here is consistent with that reported

by Riedelsheimer and colleagues [14,15], although the scale of

genetic and phenotypic data available to us is considerably larger.

As our understanding of biology is an accretive process, there

will always be more data to include in future analyses. One of the

limitations of this study is the size of the diversity panel

characterized by mass spectrometry. Statistical power increases

as a function of the size of the study panel, such that if we had

surveyed a larger fraction of the 282 varieties we should have been

able to resolve genes with smaller individual function. One of the

advantages of our workflow is that it encourages reexamination

(Figure 1). As we gain additional phenotypes with the study panel,

we can recalculate the network and start the correlation and

GWAS over again. As we identify particular metabolite or protein

markers, we can apply ‘‘guilt by association’’ to improve the

annotation of other members of the same modules and the

annotation of the genome itself. SNP detection technologies are

also rapidly improving in scale and price, such that repeating the

GWAS in a year’s time will likely identify new regions of the maize

genome that were not adequately covered in the present set of

SNPs [12]. Finally, even with incomplete knowledge of the maize

genome and inadequate statistical power, we were able to create a

logical framework to explain an otherwise recalcitrant trait. We

know that the basis of kernel weight is complicated [47], however,

we can build testable hypotheses out of the module regression

model that can be more fully explored in either larger diversity

panels, to repeat GWAS with more power, or to choose biparental

mapping populations, to test the effect of particular SNPs with the

power advantages that simple mapping populations offer [48].

Supporting Information

Figure S1 Principal component analysis of metabolite
profiling. Clustering of technical replicates indicated good

repeatability among samples. Three principal components ex-

plained 20% of the variance observed.

(TIF)

Figure S2 Determination of a–zein 19C2 by MS/MS.
The reconstructed spectrum for m/z 1056.528 at 226.57 seconds

revealed two strong isotope clusters at low collision energy: a

cluster with a monoisotopic peak at 524.943 with isotope spacing

indicative of a charge state of 3 and a second with a monoisotopic

peak at 786.910 with a charge state of 2. The calculated molecular

weight of the molecule was determined to by 1571.805 using the

524-isotope cluster, or 1571.804 using the 786-isotope cluster. The

idMS/MS spectra were searched against the maize NCBInr

protein sequence database using doubly charged 786.910 as the

parent ion. The only peptide match found was that to the c-

terminal peptide of a–zein 19 C1 or C2 (Mascot ion score 29,

identity score 30, amino acid sequence PAASYQQHIIGGALF).

This spectrum is annotated as a peptide from the a-zein 19 C

protein with identification confidence level 2.

(TIF)

Figure S3 Determination of tyramine by MS/MS. The

reconstructed idMS/MS spectrum for m/z 138.092 at 70.4

seconds demonstrates strong similarity to the NIST MS/MS

spectrum for Tyramine, matching fragments 138.09 and 121.058

with high mass accuracy. This feature is annotated as tyramine

with identification confidence level 2.

(TIF)

Table S1 Data matrix of maize genotypes and metabo-
lomic features. This table describes the subset of the Buckler

Maize Diversity Panel profiled using non-targeted UPLC-MS/MS

and the 8,710 features detected by the XCMS software.

(21.9 Mb.csv file).

(ZIP)

Table S2 Description of modules at three connectivity
(significance) levels and results of genome wide associ-
ation studies on module eigenvalues. At the $1SD

connectivity threshold, 97.5% of features detected by UPLC-

MS/MS are included in the network. At $4SD, 47.1% of features

detected are included. At $6SD, 20.8% of features detected are

included. Using the module eigenvalues estimated from all 56

modules ($1SD threshold), GWAS returned significantly associ-

ated SNPs for 19 modules (33.9%).

(DOCX)

File S1 MS and MS/MS spectra for tyramine, coumaryl
tyramine, feruloyl tyramine, and 19C2 alpha zein.
(MSPLIB)
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