Table 2. Regression of kernel weight using module eigenvalues.
Source | DF | SS | F-ratio | p-value | t Ratio |
MEsalmon4gwas | 1 | 30242.822 | 22.7874 | <0.0001 | −4.77 |
MEroyalbluegwas | 1 | 21356.628 | 16.0918 | <0.0001 | −4.01 |
MEdarkslatebluegwas | 1 | 14387.453 | 10.8407 | 0.0012 | 3.29 |
MEsalmongwas | 1 | 7384.471 | 5.564 | 0.0194 | 2.36 |
MEpink4SD | 1 | 36952.627 | 27.8431 | <0.0001 | 5.28 |
MEblue4SD | 1 | 20934.891 | 15.774 | 0.0001 | 3.97 |
MEdarkgrey4SD | 1 | 11517.166 | 8.678 | 0.0037 | 2.95 |
MEgreen1SD | 1 | 53412.158 | 40.245 | <0.0001 | −6.34 |
MEred1SD | 1 | 31513.736 | 23.745 | <0.0001 | 4.87 |
MEsaddlebrown1SD | 1 | 20056.221 | 15.112 | 0.0001 | 3.89 |
MEwhite1SD | 1 | 11504.719 | 8.6686 | 0.0037 | −2.94 |
Error | 173 | 229601.4 | |||
Model | 184 | 539795.71 | 21.2477 | <0.0001 | Adj r2 = 0.548 |
Superscripts indicate whether the module eigenvalues gave significant correlations with GWAS and/or was included in the network using the 4SD threshold or the initial description of the network (1SD threshold).