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Purpose: To investigate tight-frame based iterative reconstruction (TFIR) technique for spectral
breast computed tomography (CT) using fewer projections while achieving greater image quality.
Methods: The experimental data were acquired with a fan-beam breast CT system based on a cad-
mium zinc telluride photon-counting detector. The images were reconstructed with a varying num-
ber of projections using the TFIR and filtered backprojection (FBP) techniques. The image quality
between these two techniques was evaluated. The image’s spatial resolution was evaluated using a
high-resolution phantom, and the contrast to noise ratio (CNR) was evaluated using a postmortem
breast sample. The postmortem breast samples were decomposed into water, lipid, and protein con-
tents based on images reconstructed from TFIR with 204 projections and FBP with 614 projections.
The volumetric fractions of water, lipid, and protein from the image-based measurements in both
TFIR and FBP were compared to the chemical analysis.
Results: The spatial resolution and CNR were comparable for the images reconstructed by TFIR
with 204 projections and FBP with 614 projections. Both reconstruction techniques provided accurate
quantification of water, lipid, and protein composition of the breast tissue when compared with data
from the reference standard chemical analysis.
Conclusions: Accurate breast tissue decomposition can be done with three fold fewer projection
images by the TFIR technique without any reduction in image spatial resolution and CNR. This can
result in a two-third reduction of the patient dose in a multislit and multislice spiral CT system in
addition to the reduced scanning time in this system. © 2013 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4790468]
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I. INTRODUCTION

Breast cancer is one of the most common cancers in women,
resulting in about 39 000 deaths in 2011 from this disease
in the United States. Many techniques, including mammog-
raphy and computed tomography (CT), have been devel-
oped for early detection and diagnosis of breast cancer. Re-
cent advances in solid state semiconductor materials allow
photon-counting and energy discriminating imaging detectors
to be used in a breast CT system to produce higher qual-
ity images.1–9 Cadmium zinc telluride (CZT) single crystal
detectors have been investigated and implemented as x-ray
detectors in current breast CT systems. These systems use
CZT due to its large effective atomic number (49.6), high
mass density (5.8 g/cm3), and higher quantum efficiency. CZT
based spectral breast CT can potentially be applied in material
decomposition to provide additional information for evaluat-
ing the risk of breast cancers. Compared to the two-material
segmentation of glandular and adipose tissues in mammo-
graphic breast density measurement, three-material decompo-
sition (water, lipid, and protein) can improve the capability of

predicting breast cancers. It has been reported that measure-
ment of the protein fraction can help to categorize a suspicious
finding as either malignant or benign.10 Malignant tissues
have a significantly higher water fraction compared to nor-
mal tissues.11, 12 Lipid content can be used to identify certain
benign lesions.13 The feasibility of three-material decomposi-
tion for breast tissue with spectral breast CT system has been
investigated in recent studies8, 14 in which the images were re-
constructed using a filtered backprojection (FBP) technique.
The FBP technique is widely used because it is computation-
ally fast, accurate, and easily implemented.15, 16 However, the
FBP technique has some disadvantages. For example, a large
number of projections are required to reconstruct CT images.
To reduce patient radiation dose, it is necessary to reduce the
number of projections needed for reconstruction. This leads
to undersampling and strong noise and streak artifacts in the
reconstructed images using the FBP technique.17 Thus, it is
desirable to find a technique to reconstruct the images with
fewer projections, but without the reduction in image quality.

Many efforts have been made in the past decades to de-
velop or find algorithms that can be used to reconstruct
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CT images with fewer projections. Algebraic reconstruction
techniques (ART) (Ref. 18) and simultaneous algebraic re-
construction techniques (SART) (Ref. 19) are both possible
algorithms that can be used for this purpose. These algo-
rithms assume that projections through the object are mod-
eled by a linear system of equations based on the discretiza-
tion of the Radon transform, and then are solved iteratively.
However, due to the highly demanding computation require-
ments, there has been no significant development in these
algorithms until the past decade. The techniques utilizing
these algorithms have been rediscovered20–25 and applied
to the image reconstruction of low-dose CT, such as total
variation,26–28 dictionary learning,17, 29–31 and tight-frame or
framelet techniques.32–34 The technique of total variation min-
imizes the total variation of the estimated images with the as-
sumption that the image gradient is sparse and is widely used
for low-dose, few-view, limited-angle, and truncated data.
However, it may lead to undesirable biases and artifacts as
well as loss of fine features, which may reduce the diagnostic
values of reconstructed images. Dictionary learning is more
specific to a particular application and more effective in terms
of a sparse representation, which learns from a set of given
samples and then processes the image patch by patch. Dictio-
nary learning has been successfully applied to image process-
ing and feature recognition areas. However, dictionary learn-
ing needs to acquire sample images to build dictionaries, and
is not effective for a totally unknown object. On the other
hand, tight frame offers a generally sparse representation of
L1 norm and total variation with high-order differencing, and
it also generalizes the wavelet with redundant representation.
Overall, the flexibility and usefulness of tight frame renders it
as a natural choice for sparsifying the CT image.

One potential application of the tight-frame iterative re-
construction (TFIR) technique is to reconstruct images for
a breast CT system. In a previous study,14 the postmortem
breast tissue samples were successfully decomposed into wa-
ter, lipid, and protein contents based on acquired images with
a CZT photon-counting detector and reconstructed using FBP
with a large number of projections. TFIR can reconstruct

images with fewer projections, while retaining image quality.
The reconstructed images can also be used for three-material
decomposition of breast tissue. Thus, the dose to patients can
be reduced by implementing the TFIR technique in image re-
construction for future breast CT systems.

In this study, we investigate an iterative image reconstruc-
tion technique based on a tight-frame sparsity model for a
spectral breast CT system using a CZT photon-counting de-
tector and the feasibility of decomposing breast tissue with
limited number of projections. In Sec. II, we introduce the
TFIR technique, the dedicated breast CT system in our lab-
oratory, image acquisition and reconstruction techniques and
the method for breast tissue decomposition. In Sec. III, we
report our results by comparing spatial resolution and con-
trast to noise ratio (CNR) of the images reconstructed from
the FBP and TFIR techniques. We also compare the results
of breast tissue decomposition with the images reconstructed
by conventional FBP technique with a large number of pro-
jections and by the TFIR technique with a factor of 3 less
number of projections. In Sec. IV, we discuss relevant issues
and the possible application of the TFIR technique for a breast
CT system.

II. METHODS AND MATERIALS

II.A. The TFIR technique

The image reconstruction problem via TFIR is formulated
as the L1-type convex minimization

X = arg min
X

‖AX − Y‖2
2 + λ‖WX‖1. (1)

In Eq. (1), A is the system matrix that corresponds to the x-
ray transform of the breast CT system, a discretized Radon
transform in 2D,35 X is the image to be reconstructed, Y is the
acquired data after the log transform, and λ balances the data
fidelity and the sparsity regularization.

In this study, W refers to the piecewise-linear tight-frame
transform that can be constructed by the tensor product of
the averaging mask, the first-order differencing mask, and the
second-order differencing mask

w0 = 1

4
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These masks correspond to the discretized high-order partial
derivatives, and therefore tight frame generalizes total varia-
tion. In addition, they provide rich multilevel redundancy in

sparsifying the image, and therefore tight frame also general-
izes the wavelet.

The multilevel tight-frame transform of X up to L levels is

WX =

⎡
⎢⎣ [WX]1

0,1 · · · [WX]1
2,2︸ ︷︷ ︸

Level:1

· · · [WX]l0,1 · · · [WX]l2,2︸ ︷︷ ︸
Level:l

· · · [WX]L0,1 · · · [WX]L2,2︸ ︷︷ ︸
Level:L

XL

⎤
⎥⎦ , (4)

with X0 = X and the following convolutions:

Xl = wl
0,0 ∗ Xl−1, [WX]l0,1 = wl

0,1 ∗ Xl, . . . , [WX]l2,2

= wl
2,2 ∗ Xl, 1 ≤ l ≤ L. (5)

In Eq. (5), considering computational efficiency, instead of
downsampling Xl, we dilute the masks (3) so that

wl
i1,i2

= Dlwi1,i2 , 0 ≤ i1, i2 ≤ 2, (6)

where Dl, w′, and s are (2l+1 + 1) × (2l+1 + 1) matrices with
nine nonzero entries defined by

Dlw =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(1, 1) · · · w(1, 2) · · · w(1, 3)

...
...

...
...

...

w(2, 1) · · · w(2, 2) · · · w(2, 3)

...
...

...
...

...

w(3, 1) · · · w(3, 2) · · · w(3, 3)

⎤
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for

w =

⎡
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w(1, 1) w(1, 2) w(1, 3)

w(2, 1) w(2, 2) w(2, 3)

w(3, 1) w(3, 2) w(3, 3)

⎤
⎥⎦ . (7)

On the other hand, the transpose of tight frame on Y = WX

in the format of Eq. (4) is

WT (Y ) = YL +
L∑

l=1

(
[Y ]l0,1 + · · · + [Y ]l2,2

)
. (8)

And we have WT (WX) = X.
Now, we can give the definition of the isotropic tight-frame
norm in Eq. (1) as

‖WX‖1 = ‖XL‖1 +
L∑

l=1

{∥∥[WX]l1
∥∥

1 + ∥∥[WX]l2 + ∥∥[WX]l3

+∥∥[WX]l4
∥∥

1

}
, (9)

with

[WX]l1 =
√(

[WX]l0,1

)2 + (
[WX]l1,0

)2
,

[WX]l2 =
√(

[WX]l0,2

)2 + (
[WX]l1,1

)2 + (
[WX]l2,0

)2
,

[WX]l3 =
√(

[WX]l1,2

)2 + (
[WX]l2,1

)2
,

[WX]l4 = [WX]l2,2, (10)

which corresponds to isotropic first-ordering differencing,
second-order differencing, third-order differencing (partial),
and fourth-order differencing (partial), respectively.

The solution of this nondifferentiable L1 problem (1) can
be solved through the split Bregman method.36, 37 The details
of Bregman algorithm for solving Eq. (1) have been previ-
ously reported.38, 39

Here, we propose the following three-step simple-to-
implement new algorithm that seems to be faster than split
Bregman method from our numerical experience. However,
the rigorous justification of the algorithm will be reported in
future⎧⎪⎪⎨

⎪⎪⎩
Xn+1/2 = arg min

X

‖AX − Y + f n‖2
2

Xn+1 = arg min
WX=Z

1
2‖WXn+1/2 − Z‖2

2 + λ‖Z‖1

f n+1 = f n + AX − Y

, (11)

where f n and the third step come from the Bregman
iteration.40

The first step of Eq. (11) is a least-square problem that
can be solved, e.g., by ART and SART. For our 2D prob-
lem, A can be either explicitly computed and saved or com-
puted on-the-fly. Here, we use the conjugate gradient method,
i.e.,

AT AXn+1/2 = AT (Y − f n), (12)

in which AX, ATX are evaluated instead of forming ATA. Note
that a few conjugate gradient iterations for Eq. (12) are suffi-
cient since it is not necessary to get an accurate intermediate
solution during the iterative scheme (12), and also an accurate
solution is difficult to obtain when A is ill-posed in the case
with incomplete projections.

Due to WT W = I , the second step of Eq. (11) has the ex-
plicit solution formula, the so-called shrinkage formula,

Xn+1 = WT S(WXn+1/2, λ). (13)

The exact form of Eq. (13) depends on the definition ‖WX‖1.
With our definitions (9) and (10) and Z = WX, the shrinkage
formula S in Eq. (11) consists of
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[Zn+1]L = max(|[Zn+1/2]L| − λ/2L, 0) · sgn([Zn+1/2]L),

([Zn+1]l0,1, [Zn+1]l1,0) = max([Zn+1/2]l1 − λ/2l , 0) · ([Zn+1/2]l0,1, [Zn+1/2]l1,0)

[Zn+1/2]l1
,

([Zn+1]l0,2, [Zn+1]l1,1, [Zn+1]l2,0) = max([Zn+1/2]l2 − λ/2l , 0) · ([Zn+1/2]l0,2, [Zn+1/2]l1,1, [Zn+1/2]l2,0)

[Zn+1/2]l2
,

([Zn+1]l1,2, [Zn+1]l2,1) = max([Zn+1/2]l3 − λ/2l , 0) · ([Zn+1/2]l1,2, [Zn+1/2]l2,1)

[Zn+1/2]l3
,

[Zn+1]l2,2 = max(|[Zn+1/2]l2,2| − λ/2l , 0) · sgn([Zn+1/2]l2,2), (14)

with

sgn(x) =
{

1,

−1,

x > 0

x ≤ 0
. (15)

II.B. Breast CT system

The breast CT system studied in this paper consisted of an
x-ray tube, fore and aft collimators, rotation and translation
stage platform and CZT photon-counting detector, shown in
Fig. 1.41 The x-ray tube (Dynamax 78E) used a tungsten tar-
get and was coupled to a constant potential x-ray generator
(Phillips Optimus M200). A total of 2 mm Al and 0.15 mm Cu
were used as prefiltration. The fore and aft collimators were
made of 3 mm thick lead sheets to minimize x-ray scatter,
and the collimator slit widths were 0.3 and 0.8 mm, respec-
tively. The rotation and translation stage platform consisted
of a high precision direct drive rotary (DDR) motor (Kollmor-
gen Goldline DDR D062M, Danaher Motion, Wood Dale, IL)
and a translation stage, not only providing both vertical and
horizontal translations to extend the field of view beyond the
size limitation of the detector, but also serving as the rota-
tion platform for the object. The CZT photon-counting detec-
tor (eV2500, eV Microelectronics, Inc., Saxonburg, PA) was
composed of a linear row of four CZT crystals with length of
12.8 mm, width of 3 mm, and depth of 3 mm. Each crystal
consisted of 16 pixels, yielding a total of 64 pixels with an

FIG. 1. Schematic drawing of the spectral CT system with a CZT photon-
counting detector (Ref. 41).

effective pitch of 0.8 mm in each pixel. The entrance beam to
the detector was shaped by a brass collimator and collimated
at the height of each pixel to 0.8 mm.41

The CZT detector was placed 1.35 m from the x-ray tube
and the rotation and translation stage platform was placed
0.95 m away from the x-ray tube, which resulted in an approx-
imate distance of 0.93 m between the source and the isocenter.
A field programmable gate array (FPGA) chip was used to
count the trigger pulses generated by five comparators from
each pixel over a user-defined collection period (frame, se-
lectable from 1 to 50 ms). Then each frame was sent to the
workstation over a USB interface for data processing, stor-
age, and visualization.42, 43 The peaking time of the detector
was set at 160 ns. The energy resolution of the detector was
calibrated up to 140 keV by the manufacturer (Endicott In-
terconnect Detection & Imaging Systems). The acquired pho-
tons were sorted into five user-definable energy bins via the
energy resolving capability of the detector. The maximum
count rate of the detector was calibrated to approximately
2.3 × 106 cps/mm2. The linear count rate range was less than
1.2 × 106 cps/mm2. The detector itself did not experience
pulse pileup and charge sharing correction mechanisms.41

During the scan, the rotation and translation stage platform
rotated the object as well as translated the object’s height, re-
sulting in a helical scan. A helical scan was performed with
a pitch of 2 in the experiment. The measured helical sino-
gram was first interpolated to generate 2D sinograms for each
slice, which were used for the following CT reconstructions.
Therefore, all reconstructions were based on 2D fan beam
geometry.

The CZT detector was operated in Ohmic mode with a bias
voltage of 1000 V across the CZT crystal. As a photon inter-
acted with the CZT crystal, an electron hole pair was created
for any energy above 4.64 eV deposited in the crystal. Elec-
trons generated from this interaction of photons within the
crystal were collected at the back of the electrode and formed
a pulse by application-specific integrated circuit (ASIC) with
its height proportional to the energy of the incoming photon.
A count was registered if the pulse height was higher than
the given threshold value. The lower boundaries of the energy
bins were defined by five user-definable thresholds, therefore,
the count within an energy bin could be easily obtained by
subtracting the count from its two adjacent thresholds.41
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(a) (b)

Delrin 

Al wires 

13 cm 

FIG. 2. (a) Layout and (b) picture of high resolution phantom with the Al
wire insert (the ruler is in unit of inch).

II.C. Image acquisition and reconstruction

A high-resolution phantom, motivated by a previous
study,44 was designed to compare spatial resolution of images
reconstructed by FBP and TFIR. This phantom was also used
in a previous study.45 In this phantom, a cylinder with diam-
eter of 13 cm and length of 2 cm was constructed of resin
as the phantom base. The phantom also included an insert
with 5 fine Al wires of various diameters (643, 813, 1020,
1290, and 1630 μm) and a cylinder of Delrin with diameter of
2.5 cm and length of 3 cm (Fig. 2). The resin was chosen as
the phantom base because of its similar x-ray attenuation to
breast tissue (0.2076 cm2/g for resin and 0.2186 cm2/g for
breast tissue at 50 keV) (Ref. 46) as well as the low cost and
convenience of fabricating the phantom base for inserting Al
wires. The Al wires in the insert were orientated vertically and
arranged with enough space between each of them to min-
imize reconstruction artifacts between wires. Image spatial
resolution was studied by extracting the profiles of Al wires
from reconstructed CT images. Postmortem breast samples
were obtained from the willed body program at the Univer-
sity of California, Irvine’s School of Medicine and sealed in
plastic bags. Five postmortem breasts were used in this study
whose mass varied from 326 to 434 g and breast density var-
ied from 34% to 72%. These samples were placed in a cylin-
drical high-density polyethylene plastic container of approxi-
mately 10 cm in diameter.

During the image acquisition, the object was placed on a
translation stage platform shown in Fig. 1 and was rotated at
approximately 0.977 rpm. With the frame rate of 20 frames
per second, a total of 1229 frames were acquired for a scan
that covered 360◦ of rotation. The tube potential was set at
100 kVp and the tube current was set 1.00 mA. The total en-
trance skin air kerma (ESAK) without back scattering under
the current setting was estimated to be 2.4 mGy. By setting the
lowest energy threshold at 22 keV to optimally eliminate elec-
tronic noise, all x-ray photons interacting with the CZT detec-
tor with the energy above the lowest threshold were acquired.
Another threshold of 42 keV was selected to split the photons
into low and high energy bins. These settings were kept during
image acquisition. All data acquired with the CZT detector
were corrected for nonuniformity across pixels, using a pre-
viously reported flat field correction technique8 with an open
source image processing software package.47 Resultant im-

ages were reconstructed using a conventional FBP technique
with the software package from the University of Michigan48

and by TFIR with various number of projections.

II.D. Image analysis

The image quality, including spatial resolution and CNR,
between the TFIR and FBP techniques was compared to eval-
uate the performance of the TFIR technique. For spatial res-
olution comparison, the CT images of the high-resolution
phantom were reconstructed by TFIR with 204 projections
and by FBP with 614 projections, which were downsampled
from the original dataset of 1229 projections. Two line pro-
files of an Al wire were extracted from the image in the
crossed directions, which were specifically selected to avoid
beam hardening. Then the average of these two line profiles
were fitted with a Gaussian function to evaluate the full width
at half maximum (FWHM).22, 49 For CNR comparison, the re-
gion of interest (ROI) was selected from glandular or adipose
tissue of the postmortem breast sample images to calculate
CNR using the following equation:

CNR = MG − MA√
σ 2

G + σ 2
A

, (16)

where Mi and σ i are the average mean gray value and the
standard deviation of the glandular (G) tissue and adipose
(A) tissue from the selected ROI, respectively. The size of the
ROI was determined by selecting a region as large as possible
within pure glandular tissue or pure adipose tissue.

II.E. Breast tissue decomposition

With dual-energy CT imaging technology, three equations
and three unknowns were used to calculate the tissue com-
positions based on the measured linear attenuation.10, 50 The
natural logarithm of the ratio of the measured attenuated pho-
ton intensity I over the nonattenuated photon intensity I0 is
defined as U = ln( I

I0
) = −∑

μiti , where i represents water,
lipid or protein. This equation was derived for a CT image
and can be written in a matrix form with a negative sign μF
= −U as the following:⎛

⎜⎜⎝
μL

W μL
L μL

P

μH
W μH

L μH
P

1 1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

fW

fL

fP

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−UL

−UH

1

⎞
⎟⎟⎠ , (17)

where μL
W , μL

L, and μL
P are the linear attenuation coefficients

of water, lipid, and protein, respectively. It describes the frac-
tion of an x-ray or gamma ray beam that is absorbed or scat-
tered per unit thickness of the absorber (water, lipid or pro-
tein). fW , fL, and fP represent the volume fractions of wa-
ter, lipid, and protein, respectively. UL and UH are the mea-
sured attenuations of the images, obtained by setting a gen-
eral threshold on ln(I/I0) to select the tissue area and then
summing ln(I/I0) in each pixel for each slice image in low
and high energy bins, respectively. Equation (17) was solved
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FIG. 3. Images of a high-resolution phantom (Al wires insert) reconstructed using TFIR and FBP with 204 projections, (a) and (b), respectively, and with 614
projections, (c) and (d), respectively. The images were adjusted to the same window and level. Crossed lines in (d) indicate the regions for the line profiles. The
line profiles for TFIR with 204 projections and FBP with 614 projections for 4 Al wires with diameters of 1630, 1290, 1020, and 813 μm are shown in (e), (f),
(g), and (h), respectively.

using least-squares fitting. Each material fraction was repre-
sented as follows:

fi = a0 + a1U
L + a2U

H . (18)

In the calibration process, the image attenuation measurement
at the low and high energies (UL and UH) and the fraction
values (fW , fL, and fP) were known. Then, the linear system
of equations was solved to determine the system matrix cal-
ibration coefficients of a0, a1, and a2. In the decomposition
process, the image attenuation measurements from the tissue
samples with unknown compositions were inputted into the
system to determine the image-based measurements (water,
lipid, and protein contents).14

II.F. Chemical analysis

To validate the results from the image-based measure-
ments, a chemical analysis was performed to measure the
water, lipid, and protein in the sample based on a standard-
ized procedure devised by the United States Department of
Agriculture.51, 52 Samples were weighed before and after plac-
ing them in a 95◦ oven for at least 48 h to get the mass of pure
water. Next, the sample was grounded into slurry and mixed
with petroleum ether, and then filtered using a Buchner fun-
nel to extract the mass of protein. Finally, the petroleum ether
was evaporated using heat and vacuum distillation to isolate
the lipid content and determine the lipid mass. The mass of
mineral ash was assumed to be negligible.

III. RESULTS

Image spatial resolution was compared using reconstructed
images of a high-resolution phantom (Al wire insert) by TFIR
and FBP at various number of projections. Figure 3 shows the
reconstructed image of Al wire insert in the first energy bin
22–42 keV by TFIR and FBP at 204 projections [(a) and (b),
respectively] and 614 projections [(c) and (d), respectively].
Two line ROIs were drawn across the center of an Al wire
[crossed lines in (d) of Fig. 3] and the average line profile
was then calculated to reduce the uncertainty caused by the
artifacts. The average line profiles for the 4 Al wires were ex-
tracted from the images reconstructed by TFIR with 204 pro-
jections and by FBP with 614 projections, and then were fitted
by a Gaussian function to get the FWHM, shown in (e)–(h) of
Fig. 3 for Al wires with diameter of 1630, 1290, 1020, and
813 μm, respectively. The FWHM for TFIR with 204 projec-
tions using 4 Al wires is smaller than that of FBP with 614
projections, which indicates that compared to FBP, TFIR can
reconstruct an image with threefold fewer projections without
a loss in spatial resolution. Due to the fact that the thinnest Al
wire with a diameter of 0.643 mm is smaller than the detec-
tor pixel size, its reconstructed image is blurred in both TFIR
with 204 projections and FBP with 614 projections. There-
fore, this Al wire is not useful for FWHM calculations.

CNR comparison was made using reconstructed images of
a postmortem breast sample. Figure 4 shows a CT slice of a
postmortem breast sample in the first energy bin 22–42 keV
reconstructed by TFIR and FBP at 204 projections [(a) and
(b), respectively] and 614 projections [(c) and (d), respec-
tively]. Two ROIs [red polygons in Fig. 4(d)] were drawn in
pure glandular and adipose tissue regions to calculate CNR.

Medical Physics, Vol. 40, No. 3, March 2013



031905-7 Zhao et al.: Tight-frame based iterative image reconstruction 031905-7

(a) (b)

(c) (d)

FIG. 4. A CT slice of a postmortem breast reconstructed using (a) TFIR with
204 projections, (b) FBP with 204 projections, (c) TFIR with 614 projections
and (d) FBP with 614 projections. The images were adjusted to the same win-
dow and level. The two polygons indicate the ROIs selected from glandular
(ROI1) and adipose (ROI2) tissues to calculate CNR.

The CNR value is 3.36 for TFIR with 204 projections and
3.04 for FBP with 614 projections. The results indicate that
TFIR can produce comparable CNR with one third number of
projections as compared to FBP. Similar results were obtained
for CNR calculated from other postmortem breast samples.
The spatial resolution and CNR were also studied for the high
energy bin images and similar results were obtained.

Furthermore, the breast tissue was decomposed into wa-
ter, lipid, and protein contents using CT images reconstructed
by TFIR with 204 projections and FBP with 614 projections.
Figure 5 illustrates volumetric fractions of water, lipid, and
protein for 5 postmortem samples, derived from image-based
measurement (FBP with 614 projections and TFIR with 204

projections) and chemical analysis. Figure 6 shows the Bland-
Altman analysis of volumetric fractions derived from image-
based measurement, FBP with 614 projections (VFBP) and
TFIR with 204 projections (VTFIR), for (a) water, (b) lipid,
and (c) protein. The comparison indicates that TFIR can be
applied to breast tissue decomposition by acquiring threefold
fewer projections compared to the FBP technique and achieve
similar breast tissue compositions as compared to the refer-
ence standard chemical analysis.

IV. DISCUSSIONS

In this study, some geometric approximations of the breast
CT system were made in the TFIR technique. For example,
the CZT detector in this breast CT system has 4 crystals with
16 pixels for each crystal and a pixel size of 0.8 mm. A gap of
0.57 mm exists between crystals. In the TFIR technique, this
gap was assumed to be 0.8 mm to simplify the algorithm. As
a result, in order to reconstruct the images without any loss in
spatial resolution, 204 projections were required by TFIR.

The TFIR algorithm in this study was simplified, carefully
implemented, and optimized for our spectral CT system. Fur-
thermore, the system matrix is relatively small, which resulted
in a reconstruction time of approximately 10 s for each CT
slice. However, with the fast development of computer tech-
nology and graphics processing unit (GPU) assisted process-
ing technique, it is possible to include more accurate geomet-
ric information for the TFIR reconstruction, which can po-
tentially further reduce the required number of projections
without any loss in spatial resolution. We have previously
reported on a dual-dictionary learning based IR CT recon-
struction technique.45 However, the dual-dictionary learning
technique requires previously built dictionaries with a recon-
struction time of approximately 30 min for each CT slice. The
TFIR technique is capable of reconstructing a sequence of re-
lated images that are more compressible than one image. The
sequence of related images can be volume fractions of water,
lipid, and protein, which require fewer projections without
sacrificing accuracy. This approach can potentially be used
for material decomposition in future studies. It should also be
pointed out that the data fidelity term does not account for the
statistics in CT systems and typically weighted least squares
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FIG. 5. Volumetric fractions of breast composition of 5 postmortem breasts derived from image-based measurement (FBP with 614 projections and TFIR with
204 projections) and the chemical analysis, for (a) water, (b) lipid and (c) protein. The dashed line is the line of identity.
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FIG. 6. Bland-Altman analysis of volumetric fractions of breast composition of 5 postmortem breasts from image-based measurement using FBP with 614
projections (VFBP) and TFIR with 204 projections (VTFIR), for (a) water, (b) lipid and (c) protein.

with diagonal weighting matrix is used. This will be investi-
gated further in future studies.

The results of breast tissue decomposition from image-
based measurements (TFIR with 204 projections and FBP
with 614 projections) are in agreement with the chemical
analysis. However, there are several sources of error in these
measurements.14 The image-based breast tissue decomposi-
tion in this study is dependent on a reliable measurement
of the energy-dependent attenuation coefficient. However, ar-
tifacts induced by pulse pile-up, field nonuniformity, and
charge-sharing may lead to uncertainties in the measurement
due to limitations of the CZT-based photon-counting detec-
tor. In the calibration process described in Sec. II.E, the use
of polyoxymethylene plastic as a substitute for protein can
introduce additional error in material decomposition studies.
This is due to the fact that the calibration coefficients were
extracted from polyoxymethylene plastic, whereas in tissue
decomposition the same calibration coefficients were used to
measure protein content. It should also be pointed out that due
to the breast sample holder the diameter of the postmortem
breast samples were approximately 9 cm, which is less than
the average diameter of 14 cm for a breast in a clinical imag-
ing situation. This technique will have to be applied to larger
breast sizes in future studies.

In a multislit and multislice (MSMS) spiral CT system,
the scanning time is determined by the detector frame time
and the number of projections required for reconstruction.
The frame time is limited by the counting capability of the
detector, which is typically in the range of 1–50 ms.2, 43, 53

Therefore, further reduction of the frame time might result in
incomplete collection of the charges generated by a single
photon, leading to a poor energy resolution. The reduction in
the number of projections needed to reconstruct a high qual-
ity image is deemed to be more efficient. The TFIR technique
can reconstruct high quality images with one third number of
projections as compared to the conventional FBP technique.
Furthermore, the images can be used to accurately determine
water, lipid, and protein contents in breast tissue. Therefore,
for a MSMS breast CT system with a scanning time of ap-
proximately 10 s, the radiation dose could be reduced by a
factor of two-third using photon-counting detectors with a
scanning time that is comparable to the current breast CT sys-

tems that use flat-panel detectors.54 It is also noted that the
future MSMS breast CT systems should be designed to avoid
smearing the object and locating it away from the center of
rotation during image acquisition. In this study, for images
reconstructed by TFIR with 204 projections, the number of
projections were downsampled from the original dataset by
extracting every sixth projection from the whole set of 1229
projections. This cannot be implemented in the future MSMS
breast CT system because the main purpose of adopting the
TFIR technique, dose reduction to patients, must be fulfilled.
This can be addressed by using a high-power pulsed x-ray
tube to acquire the projections at particular rotation angles. A
similar technique has previously been implemented.55

V. CONCLUSION

This study demonstrates that the TFIR technique can re-
duce the required number of projections by a factor of 3 as
compared to the FBP technique without any reduction in im-
age quality. The images reconstructed by the TFIR technique
can also be used for accurate breast tissue decomposition.
Therefore, the application of the TFIR technique can poten-
tially reduce the radiation dose by a factor of two-third in a
MSMS spiral CT system.
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