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Abstract Microbial ecology is flourishing, and in the process, is making contri-

butions to how the ecology and biology of large organisms is understood. Ongoing

advances in sequencing technology and computational methods have enabled the

collection and analysis of vast amounts of molecular data from diverse biological

communities. While early studies focused on cataloguing microbial biodiversity in

environments ranging from simple marine ecosystems to complex soil ecologies,

more recent research is concerned with community functions and their dynamics

over time. Models and concepts from traditional ecology have been used to generate

new insight into microbial communities, and novel system-level models developed

to explain and predict microbial interactions. The process of moving from molecular

inventories to functional understanding is complex and challenging, and never more
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so than when many thousands of dynamic interactions are the phenomena of

interest. We outline the process of how epistemic transitions are made from pro-

ducing catalogues of molecules to achieving functional and predictive insight, and

show how those insights not only revolutionize what is known about biological

systems but also about how to do biology itself. Examples will be drawn primarily

from analyses of different human microbiota, which are the microbial consortia

found in and on areas of the human body, and their associated microbiomes (the

genes of those communities). Molecular knowledge of these microbiomes is

transforming microbiological knowledge, as well as broader aspects of human

biology, health and disease.

Keywords Microbiome � Timeseries � Microbial community analysis �
Operational taxonomic units

Introduction: the revolution in DNA sequencing provides new insight
into a range of microbial phenomena

Microbial ecology used to be a small and specialized field that struggled to identify

more than a tiny proportion of the Earth’s microbial biodiversity. Part of the

problem was due to the prevalence of pure-culture methods, in which microorgan-

isms had to be removed from their natural environments (which included

communities of other organisms) and cultured in laboratories. Recent advances in

molecular techniques, sequencing technologies and computational methods have

enabled researchers to explore the microbial world at unprecedented levels, with a

focus on the natural habitats of microorganisms. The combination of these advances

has so far produced remarkable insight into the role of microorganisms in human

health and their powerful effects on the natural world, while at the same time

developing novel evidence about the evolution and diversification of life on Earth.

In this article, we discuss how these advances have allowed researchers to create

new lines of inquiry, we summarize important biological and philosophical results

from recent publications, and we discuss how our improved understanding of

microbial ecology may affect our lives in the coming years.

The last decade has seen a transformation and democratization of DNA

sequencing (Shendure and Ji 2008). High-throughput sequencing, of the type

necessary to characterize the complex microbial communities that inhabit our

bodies, used to be the exclusive province of a few large sequencing centers: only

research groups with access to substantial resources could engage in sequencing

projects. Now, a benchtop machine that fits in an individual investigator’s

laboratory can produce billions of 100-nucleotide sequences per month. For

comparison, a bacterial genome from the gut is typically about three million

nucleotides and the human genome is about three billion nucleotides. However, the

number of bacterial genomes that inhabit a human implies that they contribute far

more genes than does our human genome (Turnbaugh et al. 2007). Playing music

from a digital file once required a high-end workstation but can now be performed

on a handheld device because transistors can now be packed more densely onto a
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microchip. In the same way, characterizing the types (e.g., the strains, species or

phyla) of microbes present in a given sample (the microbiota) or the genes present

in these microbes (the microbiome) are problems that can be addressed with a fixed

amount of sequencing that is rapidly becoming cheaper and more accessible.

These transformations in sequencing technology have correspondingly changed

what it means to undertake a sequencing project. When sequences were very

expensive (in the late 1970s and early 1980s), it was a substantial accomplishment

to sequence even one gene from one species. Correspondingly, the focus was on

identifying genes that acted as the best phylogenetic markers. These were short

fragments of sequences from which inferences about the patterns of evolution were

likely to match the inferred patterns of evolution of the corresponding species.

These markers therefore provided efficient readouts of evolutionary history while

minimizing sequencing costs. For example, ribosomal RNA genes, which play

essential structural and catalytic roles in the ribosome and are thought to be almost

exclusively vertically transmitted (Lawrence 1999; Amann et al. 1995), have been

especially useful for reconstructing phylogenetic trees, including phylogenetic trees

of organisms that have not been isolated in pure culture (Pace 1997). Initial studies

focused on the 5S rRNA gene (Woese and Fox 1977), although expansion to longer

rRNA genes, notably the small subunit rRNA, has allowed substantially greater

phylogenetic resolution (Lane et al. 1985; Winker and Woese 1991). Here we

describe several conceptual changes deeper sequencing has led to already, and will

refine in the future.

From catalogs to robust, reproducible community patterns

The initial focus on cataloging the rRNA genes in individual species allowed

phylogenies of known taxonomic groups to be reconstructed. This work provided

the framework for our initial understanding that life on Earth falls into at least three

distinct lineages: the Archaea, the Bacteria, and the Eukarya (initially described as

the archaebacteria, the eubacteria, and the urkaryotes, respectively) (Woese and Fox

1977). These findings, which focused on sequencing DNA from known species,

were soon complemented by a radical idea: that these phylogenetic marker genes

could be isolated from unknown species via bulk DNA extraction directly from the

environment. This technique, pioneered by the Pace lab (Pace et al. 1986), allowed

researchers to start building catalogs of the known and unknown organisms, the

DNA of which was present in any given environment. As the cost of sequencing

DNA declined, the focus on sequencing single marker genes such as the 16S rRNA

gene expanded to include shotgun metagenomic surveys, in which total DNA

extracted from a sample is fragmented and sequenced. Both approaches are widely

employed today. Marker-gene surveys are used to investigate the microbiota of a

sample, and metagenomic surveys are used to investigate both the microbiota and

the microbiome of a sample. These two views of microbial communities can yield

different findings, because functional genes are frequently transferred horizontally

(i.e., between different lineages). In contrast, rRNA genes are almost always

transferred vertically. However, several recent studies have shown similar patterns
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emerging from studies involving both types of data (Turnbaugh et al. 2009a; Fierer

et al. 2012b; Harris et al. 2013).

The 26 years of sequencing since Pace’s first community sequencing efforts have

revealed a picture of 85? phyla within the bacteria alone, and in some cases as

many as 15 new candidate phyla have been detected in a single study (Ley et al.

2006; Harris et al. 2013). The bacterial and archaeal census has been estimated to

reach as many as 106–109 species (Schloss and Handelsman 2004), when calculated

using sequence similarity criteria. Robust patterns of microbial community

composition have now been observed, in a wide range of host-associated and

free-living contexts. For example, human body sites are highly distinct from one

another and highly diverse among individuals (Costello et al. 2009; HMP-

Consortium 2012). Although any two humans are[99 % identical in their genome

composition (Venter et al. 2001), there are no species-level OTUs (operational

taxonomic units) shared across the gut microbial communities of all humans

(Yatsunenko et al. 2012). This lack of shared OTUs suggests that many of the

phenotypic differences that we see between humans may arise from differences in

our microbiota, rather than differences in our genomes. We suspect that this

observation will drive many advances in medicine in the coming years. For

example, lean and obese individuals differ systematically in their gut microbial

communities (Ley et al. 2006; Turnbaugh et al. 2009a; Knights et al. 2011) but

much less so in their genomic composition. Obesity can be identified 90 % of the

time using the bacteria in the feces alone (Knights et al. 2011), but with only 58 %

accuracy from variations in the genomes of different individuals (Sandholt et al.

2010). Similarly surprising insights have arisen in environmental microbiology. For

example, pH has been found to be the main driver of microbial communities in soil

(Lauber et al. 2009; Rousk et al. 2010; Chu et al. 2010; Fierer et al. 2012a), and

salinity plays a crucial role in structuring both free-living bacterial and archaeal

communities across many environments (Lozupone and Knight 2007; Caporaso

et al. 2011b; Tamames et al. 2010; Auguet et al. 2010). These patterns can be

striking: for example, seasonal patterns in marine water microbial diversity are

highly reproducible in the Western English Channel (Gilbert et al. 2012), with the

same organisms dominating microbial communities in different seasons annually.

However, most of the organisms present in any given season are found even at just a

single time-point if more sequences (millions rather than thousands) are collected

from the sample (Caporaso et al. 2012). These results suggest that seasonal

differences do not arise from the presence or absence of community members, but

rather from variations in the abundance of organisms that are always present. This

finding reinforces the point that much of what we think we know about the

microbial world may be limited by the amount of sequencing that it is cost-effective

to perform. The work to catalog Earth’s microbial diversity has thus produced a

compendium of rich and detailed observations, and efforts such as the Earth

Microbiome Project (Gilbert et al. 2010; Knight et al. 2012) will round out our

encyclopedia of our microbial world. But cataloging alone is insufficient: a list of

the species present in a rainforest, for example, speaks little to the interactions,

functions or potential of the organisms so listed.
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The problem with phylogenetic marker gene surveys, such as the 16S rRNA gene

sequencing projects described above, is that they tell us the ‘who’, without the

‘how’, thus failing to answer the most pressing questions. For instance, how can an

organism live at pH 0 (Edwards et al. 2000), and what can such capacities teach us

about the potential for pollution mitigation or for life on other planets? Endeavors

such as the Genomic Encyclopedia of Bacteria and Archaea (GEBA) (Wu et al.

2009) perform whole-genome sequencing on organisms that are as phylogenetically

divergent as possible from previously sequenced organisms. Even a small amount of

this phylogenetically targeted genome sequencing provides novel gene discovery

that greatly outpaces gene discovery from organisms chosen arbitrarily or at

random. Targeted sequencing can inform us about the reproducibility of the

evolutionary process among organisms from different lineages that adapt to similar

environments. For example, comparative genomics based on whole-genome data,

and linked to rich evolutionary history and detailed environmental information

(derived from marker gene databases and marker gene surveys, respectively), can

offer insights into which types of biochemical or regulatory functions are necessary

to survive in a given environment. These results enable an understanding of the

systems biology of microbial communities, which can ultimately be applied to

engineer microbial communities to treat disease, generate electricity, or clean up

hazardous waste sites. However, marker gene surveys still improve our under-

standing of microbial ecology and enable novel findings and technological

applications. We will focus on this technique for the remainder of the paper to

show how this is the case.

How do we know which microbes are present?

A key problem with studies of the microbiome lies in determining which organisms

are present. All stages of the process, including DNA extraction, amplification of

specific target genes, clustering of sequences, and identification of taxonomic group

are prone to both error and bias (Hamady and Knight 2009). As the number of

sequences involved in a given study has grown, reliance on advanced computational

methods has increased (Gonzalez and Knight 2012). However, the algorithm that is

chosen can have large impacts both on beliefs about what organisms are present in a

given environment (Liu et al. 2008) and how many kinds of organisms are present

(Kunin et al. 2010; Quince et al. 2009). Even defining kinds of organisms is

complicated at the microbial level. In lieu of a robust definition of a microbial

species (Cohan 2002), the percentage of sequence identity of a marker gene is often

used to define operational taxonomic units or OTUs. For example, most 16S rRNA

gene-based studies treat a cluster of sequence fragment ‘reads’ (the output of a DNA

sequencing instrument, and thus the typical observation in studies of microbial

communities) that are[97 % identical to one another as members of the same OTU.

97 % identity is treated as a proxy for species-level groupings of organisms,

although this definition is known to be problematic for several reasons. One is that

the rate of evolution of the 16S rRNA gene differs among taxonomic lineages, so

the same number of differences in the sequence may represent different times since

From molecules to dynamic biological communities 245

123



divergence from a most recent common ancestor. The choice of algorithm for

assigning sequences to OTUs can also have a large impact on which sequences are

clustered into the same OTU and on how many OTUs are observed in a study. For

example, it is not clear whether a 97 % sequence identity threshold means that each

sequence added to an OTU must be 97 % similar to all other sequences in the OTU

cluster, or whether each sequence should be 97 % similar to the sequence that

defines the center of the cluster (i.e. the cluster centroid) (Schloss and Handelsman

2005; Schloss and Westcott 2011). Because neither laboratory nor computational

protocols are standardized, reported differences among studies often stem from

differences in methodologies rather than from differences in the underlying biology.

And because techniques for performing meta-analyses of microbiome data are still

only emerging, it is often difficult to standardize a reanalysis, and comparisons of

results across studies and especially among laboratories must be performed with

caution.

Modern marker-gene-based studies often investigate the composition of micro-

bial communities at the OTU level, due to difficulties in relating counts of short

DNA sequence fragments to named species. Although short reads of sequences

(100–400 bases is currently typical, depending on sequencing platform) from the

genomes of well-studied organisms can often be assigned at least to the family level,

and sometimes at the genus or species level, many sequences cannot confidently be

assigned to known named taxonomic groups. The limitation here is primarily the

amount of information present in short reads of marker genes for differentiating

closely related taxa. Figure One shows that when working with the most informative

region of the 16S rRNA gene for broad analyses of bacterial and archaeal

communities, the fraction of reads that can be assigned to taxonomic groups

increases as expected with the length of the sequence. In real-world experiments (as

opposed to the simulation presented in Fig. 1) this effect is exacerbated by PCR and

sequencing biases and errors.

Our inability to assign detailed taxonomy to short reads is often not important for

many of the questions that are interesting to address at the community level.

Phylogenetic diversity calculations allow us to determine the relative similarity of

microbial communities, using similarity of the fragment of the marker gene as a

proxy for the relatedness of the organisms represented by those marker genes.

Although in principle horizontal gene transfer, the movement of genes among

different genomes, could obscure the phylogenetic pattern, in practice the difference

in gene content between two organisms closely tracks the differences in marker

genes such as the 16S rRNA gene (Zaneveld et al. 2010; Konstantinidis and Tiedje

2005). However, there are cases in which genomes with identical 16S rRNA genes

have markedly different properties (e.g., Bacillus cereus, a harmless soil bacterium,

and Bacillus anthracis, the causative agent of anthrax, are almost indistinguishable

except for a plasmid that confers pathogenicity (Ivanova et al. 2003)). Additionally,

our conclusions are limited by our depth of sequencing (i.e., the number of marker

gene sequence reads collected from a sample). A study that collects 1,000 sequences

per sample will miss species that are only present at an abundance of one cell in a

million. These limitations to knowledge are widely appreciated by specialists, but

are often omitted in popular accounts and in descriptions for non-specialists.
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Is there a core human microbiome?

Our initial expectations of the microbial diversity living within and on human

beings were limited and biased because relatively few microbes can be grown in

culture (Rappé and Giovannoni 2003; Staley and Konopka 1985) and because many

phylogenetically and functionally distinct kinds of microbes are difficult to

distinguish by morphological or biochemical characteristics. For instance, Esche-
richia coli was believed to be a common and abundant gut microorganism

inhabiting most members of the human population. However, culture-independent

surveys based on 16S rRNA gene sequencing and/or shotgun metagenomic

sequencing (in which all the DNA from a given community is extracted and

analyzed) typically find it at less than 1 % abundance in the gut of healthy adults

(Eckburg et al. 2005; Turnbaugh et al. 2009a; Costello et al. 2009; Qin et al. 2010).

The scientific and medical community sought to determine the ‘‘core’’ microbiome

of humans at the level of microbial species shared by everyone (Turnbaugh et al.

2007). Surprisingly, such a core does not seem to exist at the level of species;

instead what appears to be shared are microbial functions (Turnbaugh et al. 2009a;
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Qin et al. 2010). One suggestion is that there might be a few types of common but

only partially overlapping (or perhaps non-overlapping) microbial communities.

One study found just three ‘‘enterotypes’’ or types of gut bacterial communities in

human populations (Arumugam et al. 2011), although this simplistic picture appears

not to be true when additional subjects and populations are considered (Wu et al.

2011; MacDonald et al. 2012; Jeffery et al. 2012; Claesson et al. 2012; Yatsunenko

et al. 2012; HMP-Consortium 2012). However, the idea that human gut microbial

communities might be classified into just a few types is conceptually appealing and

has received much media attention (Brandon 2011; Yong 2012; Zimmer 2011), so

debate on this topic is likely to continue. The microbial diversity revealed due to

improvements in culture-independent techniques, in part due to the vast decrease in

sequencing costs noted above, has been remarkable. There are no shared OTUs

across the gut communities of all humans, even at a depth of coverage of one

million sequences per sample (HMP-Consortium 2012). This unexpected finding

has given rise to the idea of microbes as personal identification markers (Fierer et al.

2010). In addition, because monozygotic twins differ in their microbiota (Turnb-

augh et al. 2009a; Yatsunenko et al. 2012), it could be argued that our microbiota

are more personally unique than our own genomes.

In some sense, whether or not there is a core microbiome is a purely definitional

issue. Finding a core depends on the level at which sequences are aggregated

(grouping together more similar or more distantly related groups of organism, for

example), the abundance threshold that may be set deliberately or may be

intrinsically limited by technology or study design (for example, if only 1,000

sequences per sample are collected, organisms that are as rare as one in a million

microbes will be missed), and the fraction of individuals that a taxon must appear

into be considered ‘‘core’’ (for example, the MetaHIT consortium used a 50 %

threshold (Qin et al. 2010)). Some kind of core can always be defined. A more

productive research direction is to ask whether there are systematic differences

among the microbial communities of every human that can be correlated with the

physiological state of each individual.

Microbial community states associated with disease

Much attention has focused on testing whether differences in microbial diversity

correlate with physiological states, especially disease states. For example, Ruth Ley,

Peter Turnbaugh and colleagues in the laboratory of Jeffrey Gordon embarked on an

exploration of changes in the microbiota associated with obesity in different mouse

models. This seminal work revealed robust differences in the gut communities of

these mice compared with lean mice, both in the case of genetically induced obesity

in the ob/ob leptin model (Ley et al. 2005) and in diet-induced obesity (Turnbaugh

et al. 2008). Remarkably, increased adiposity was transmissible to genetically

normal mice on a standard, calorie-controlled diet by transferring these microbial

communities from the obese mice to the normal mice (Turnbaugh et al. 2006, 2008).

The major taxonomic difference between the mice microbiota was the relative

abundance of the phyla Bacteroidetes and Firmicutes. This finding has been shown
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to hold for human hosts as well (Ley et al. 2006), although the same pattern has not

been replicated in all human studies (Duncan et al. 2008; Schwiertz et al. 2010). As

mentioned above, we can now predict—based on the microbial community

composition alone—whether an individual is obese or lean at 90 % accuracy

(Knights et al. 2011) while predictions based on host genomic markers perform little

better than chance (Sandholt et al. 2010). Interestingly, these predictions work best

when the microbes are classified into broad groups. Clustering the sequences into

groups at the 80 % sequence identity level (corresponding approximately to

bacterial phyla) actually works better than clustering the sequences into groups at

the 97 % sequence identity level (corresponding approximately to bacterial species)

for classifying people as lean or obese. These more detailed analyses at the species-

proxy level do, however, provide better resolution when classifying multiple

samples from the same site (Knights et al. 2011). A possible explanation for the

improved predictability using phylum-level classification could be that differences

in biochemical pathways are differentially represented across phyla but conserved

across OTUs within phyla. These biochemical pathways are the primary features

that differentiate obese from lean individuals. Models trained on data that are too

specific (i.e., clustered at 97 % identity rather than a lower percent identity) are

prone to overfitting, and have reduced predictive capacity. But it is important to bear

in mind that the phylogenetic levels at which bacteria are associated with particular

states may vary considerably, depending on the ecology of the particular phenotype

or disease.

Recent large-scale endeavors, such as the Human Microbiome Project (NIH

2012), the American Gut (Human-Food-Project 2012) and the Personal Genome

Project (Personal-Genome-Project 2012) are opening up new opportunities for

analysis because they are building a base of healthy microbiomic data against which

disease states (collected by some of these projects) can be contrasted. This is

important because of the breadth of diseases associated with the microbiome.

Disease states that have been found to be associated with features of the microbiome

include inflammatory bowel disease (Frank et al. 2007; Michail et al. 2012), wasting

diseases (Gordon et al. 2012), obesity (Kallus and Brandt 2012), halitosis (Kazor

et al. 2003), dental caries (Yang et al. 2012), and perhaps even autism (Finegold

et al. 2010). The gut microbiome appears to be causal for certain disease states, and

is not just a biomarker. Causality can be inferred when, for example, fecal

transplantation (and thus microbiota inoculation) in human subjects is used

successfully to treat inflammatory bowel disease (IBD—primarily ulcerative colitis)

(Landy et al. 2011) and insulin sensitivity associated with metabolic syndrome

(Vrieze et al. 2012). These results indicate that gut microbes play an active role in

these disease states and are not merely effects of the host’s condition. It is possible

that in the not-to-distant future a microbiome sample will become a normal

component of a health checkup. Microbiome analyses may be used to diagnose

disease and could provide possible avenues for the prevention of disease through

predictive tests. As we mentioned above, molecular samples from microbial

communities may track or predict disease states better than does the human genome.
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Changes in the microbiome over time

Microbial ecology shares similarities with traditional ecology, yet there are some

important differences. In the ecology of macroorganisms, it is often possible to

observe interactions directly, such as predation or competition for resources. Such

observations are much more difficult in the microbial world, and ecological

interactions must often be inferred from statistical variations in sequence data

instead. Species definitions, although notoriously problematic even for macroor-

ganisms, are even more difficult in microbes, and operational definitions based on

similarities in DNA sequences must be used instead (as already discussed).

Additionally, the cost of DNA sequencing posed a barrier until recently to collecting

the detailed time-series and spatial datasets that are necessary for ecological

modeling in microorganisms. However, some aspects of microbial ecology are

substantially easier than in large-organism ecology. For example, the reliance on

DNA sequence data means that with advances in technology, even a deep sampling

of the population (millions of individuals) can be performed rapidly, and

observation biases are likely to be less profound than when attempting to glimpse

rare and elusive insects or mammals. The ability to collect large-scale information

about microbial populations is likely to allow classical ecological models to be

applied to the microbial world far more effectively than has been possible in

macroecology, because more types of microbes can be simultaneously observed

with large population sizes and with replicated sampling.

Ecological principles offer more than just ways to stratify the human population

(e.g., by disease state). At infancy, our microbial populations go through remarkable

changes in structure prior to reaching a resemblance to most adult communities.

Inoculation is not necessarily from our mothers, and is substantially influenced by

delivery mode. Microbial communities of children delivered vaginally initially tend

to resemble their mother’s vaginal communities, while the microbial communities

of children delivered by C-section initially tend to resemble human skin

communities. Skin inoculations may be obtained from the mother, the medical

staff involved in the delivery, or hospital surroundings (many of which harbor

communities resembling human skin) (Biasucci et al. 2010; Dominguez-Bello et al.

2010). Stabilization of the microbiota of human children occurs around the third

year of life (Yatsunenko et al. 2012), but routine disruptions, adjustments and

fluctuations appear to be normal in healthy individuals (Costello et al. 2009;

Caporaso et al. 2011a). While in general, the intra-individual microbiome variation

is less than inter-individual, the amount of variability over long time periods

(Caporaso et al. 2011a) gives rise to the idea of microbial ‘‘weather’’ in which

microbial communities react to dietary and health conditions (even as they causally

affect them). This phenomenon may be especially important in determining the

health of the elderly (Claesson et al. 2012).

A revelatory aspect to studies of the microbiome is that classical ecological

models and datasets previously only obtainable for a few economically important

systems, such as fisheries, are now testable on the microbial scale because of the

ability to assess simultaneously the relative abundance of thousands of species in

thousands of samples (Gonzalez et al. 2011). However, this move towards accounts

250 D. McDonald et al.

123



of microbial communities in terms of alternative stable states and dynamical

systems (Costello et al. 2012; Lozupone et al. 2012; Gajer et al. 2012) is not entirely

without peril. In the absence of theories of underlying causes, defining the number

and boundaries of these states can be technique-dependent and implicitly theory-

laden in ways difficult to identify—especially by investigators who are not

specialists in the relevant mathematical techniques. With the availability of larger

datasets and the ability to track communities over time, key ecological concepts

such as resilience, alternative stable states, predator–prey cycling, and bottom-up

versus top-down regulation of ecosystems will be increasingly important. However,

it is equally important not to forget the lessons learned from past applications of

these techniques, especially in traditional ecological modeling. For example, it has

been known for almost four decades that Lotka-Volterra predator–prey dynamics

with time lags produce patterns that would appear as completely uncorrelated

between two species that in fact do interact deterministically (Fig. 2) (Holling

1973). However, this fact is routinely ignored in network analyses that seek to find

connections among organisms by building a network in which nodes correspond to

organisms, and edges correspond to pairs of organisms that are correlated.

Correlation is usually assessed by determining whether the abundances of two taxa

are correlated across a set of samples, typically using the Pearson correlation

coefficient that assumes that all interactions are linear. In other words, taxa are

linked if their correlation coefficient exceeds an arbitrary researcher-defined

threshold. These networks are often used to find groups of organisms that ‘‘co-

occur’’, presumably because of shared environmental preferences or because of

mutualistic ecological interactions. Hence these network methods, which often rely

on linear correlations among organisms to detect relationships (Qin et al. 2010;

Steele et al. 2011; Barberán et al. 2012), would incorrectly assert organisms to lack

ecological connections even when these connections are fully deterministic. This

happens simply because the inference procedure requires an understanding of the

time-evolution of the system in order to find these causal links.

The analysis of time-series in microbial ecology has also been limited because

the performance of standard signal processing methods is degraded with uneven

sampling periods and small numbers of data points (Moller-Levet et al. 2003;

Mason 1978; Mallat 1989). Such degradations have historically been common in

microbial ecology datasets due to the cost of obtaining the data. However, we have

already obtained valuable information about the temporal dynamics of a few

microbial communities, such as the assembly of an infant’s gut microbiome and its

transition towards a healthy human adult gut microbiome (Koenig et al. 2011). In

the few cases in which even sampling has been performed or can be assumed,

techniques exist to detect abrupt disruptions (Beltran et al. 1994; Mallat and Zhong

1992). In these contexts, such disruptions could mean one of the interventions that

has been shown to have large effects in mice or humans such as diet change

(Turnbaugh et al. 2009b) or antibiotic administration (Dethlefsen et al. 2008;

Dethlefsen and Relman 2011). Therefore, as in disease surveillance, choosing a

specific analytical approach (for example co-occurrence analysis, clustering

analysis, and control systems analysis) depends to a large extent on whether the
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goal is to monitor a trend, detect an outbreak or provide general awareness of the

possibility of change (Robertson and Nelson 2010).

Conclusions and outlook

Overall, the ability to collect far larger amounts of sequence data has led to much

broader and deeper characterizations of the human microbiome and microbial

communities in other habitats, especially when linked to rich contextual information

about the provenance and status of each sample (Knight et al. 2012). In particular,
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Fig. 2 Predator-prey dynamics for two species X and Y lead to a scatterplot (relating sampled species
abundances) that is interpretable when successive time-points are connected (a). If, however, the
information about time were not included (b), these dynamics would appear uncorrelated because when X
is high, Y can be either high or low, and vice versa. Thus, even in a completely deterministic system, it is
impossible to tell whether two species interact with each another simply by examining multiple samples
in which both are present. However, this technique is widely used in practice despite its limitations.
Figure adapted from (Holling 1973)
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the increased use of time-series studies (enabled by the decline in the cost of

sequencing) allows us to apply for the first time a wide range of ecological models

to the microbial world. Perturbation experiments are especially important for

understanding how microbial communities change and for understanding groups of

species that change together and interact in complex ways. However, this expanded

body of ecological data introduces substantial epistemic issues, especially in regard

to how data are interpreted via models and concepts. For example, the definition of

OTUs at both the organism and the gene level (e.g. in the construction of ‘‘gene

catalogs’’ (Qin et al. 2010)) is in many respects a return to phenetic methods, which

have been criticized due to their lack of theoretical justification and their instability

when more data are added (de Quieroz and Good 1997). The methodological

principle of clustering sequences at some threshold before analysis is also not well

grounded theoretically. One example would be if a single nucleotide change in the

16S rRNA gene of a single species distinguished exactly lean from obese humans,

or co-varied perfectly with disease severity in IBD. Such findings would be of

enormous importance yet would be missed completely by current techniques.

Similarly, we know that because of factors such as horizontal gene transfer, gene-

and taxon-level analysis will not map precisely on to each another, yet the data to

perform such analysis and the theoretical framework for reconciling differences is at

this point largely lacking.

Some of the solutions to these problems are being sought in large-scale projects

such as the Earth Microbiome Project (Gilbert et al. 2010; Knight et al. 2012).

These research consortia are working towards understand relationships among

microbial processes across different systems and timescales. They will be

especially important for identifying which theoretical constructs across different

scales and levels of analysis are especially useful both for understanding and

predicting microbial community responses. And as this article has made clear, the

availability of large datasets and the development of new methods with which to

analyze them have already produced dramatic changes in how the microbial world

is understood, and its relationship to the rest of the biological world. As the many

human microbiome studies discussed above show, microbial ecology—especially

molecular microbial ecology, even at its relatively crude stage of development—is

transforming how human biology itself is understood. This transformation, which

we expect to occur not just in human biology but in traditional ecology and

biology more broadly, will raise philosophical issues that require the attention of

scientists and philosophers. We have indicated just some of these issues, dealing

with the units of analysis and the causal powers associated with them, and how

imperfect methods and models become more refined and effective in the process

of inquiry. Philosophy of biology itself can learn a great deal from these recent

and future developments in microbial ecology, as other papers in this special issue

demonstrate.
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