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Abstract
Cell migration paths of mammary epithelial cells (expressing different versions of the
promigratory tyrosine kinase receptor Her2/Neu) were analyzed within a bimodal framework that
is a generalization of the run-and-tumble description applicable to bacterial migration. The
mammalian cell trajectories were segregated into two types of alternating modes, namely, the
“directional-mode” (mode I, the more persistent mode, analogous to the bacterial run phase) and
the “re-orientation-mode” (mode II, the less persistent mode, analogous to the bacterial tumble
phase). Higher resolution (more pixel information, relative to cell size) and smaller sampling
intervals (time between images) were found to give a better estimate of the deduced single cell
dynamics (such as directional-mode time and turn angle distribution) of the various cell types
from the bimodal analysis. The bimodal analysis tool permits the deduction of short-time
dynamics of cell motion such as the turn angle distributions and turn frequencies during the course
of cell migration compared to standard methods of cell migration analysis. We find that the two-
hour mammalian cell tracking data do not fall into the diffusive regime implying that the often-
used random motility expressions for mammalian cell motion (based on assuming diffusive
motion) are invalid over the time steps (fraction of minute) typically used in modeling mammalian
cell migration.
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INTRODUCTION
Cell migration is of crucial importance in cells ranging from simple bacteria to complex
mammalian cells. Bacteria migrate towards a food source or move away from unfavorable
environments 12 while eukaryotic cell migration forms the basis of many normal
physiological processes such as embryogenesis 36 as well as pathogenic conditions like
tumor metastasis 13, 14.
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Individual cell migration has been found to play a crucial role in organ morphogenesis 44.
Tumor cells are also thought to frequently down regulate their cell-cell adhesions and
migrate as individual cells during tumor metastasis 33. In addition, understanding how cells
behave on an individual level is an essential element in predicting their population-level
behavior. For example, the transport properties from the individual cellular level have been
correlated to those at the population level 19, 26, 46 for both random and biased cell
migration of bacteria and leukocytes. The single cell level studies are typically done at lower
densities of cells and may not necessarily encompass all the high-density features.
Nonetheless, the knowledge of single cell level parameters can provide a good starting point
to model and predict population level behavior. This information can be useful in
quantifying the subtle differences in cell motility arising due to different genetic makeup
such as comparing the invasive abilities of malignant cells compared to normal cells.

The motion of an individual bacterium has been well described by a run-followed by-tumble
framework 6, 7, 12. The runs last for several seconds while tumbles last for a fraction of a
second (~ 0.1s). The tumbling phase involves the reversal of the bacterial flagella from
anticlockwise to clockwise, at which point forward motion of the cell comes to an end. After
re-orientation, the flagella again revert to anticlockwise rotation, and the bacterium starts to
move in a new direction. Berg’s tracking microscope7 has been used to follow bacteria
rigorously as they migrate and ‘run and tumble’ parameters have been determined for E. coli
both in the presence and absence of a chemoattractant 7. A clear criterion was developed to
identify the ‘runs and tumbles’ in bacterial motion and used to develop run time, tumble
time and turn angle distributions for the bacteria from the tracking data 7, 8. This framework
was extended for tracking migration of E. coli near solid planar surfaces 28 and study
migration of other bacteria such as Pseudomonas putida 22, 23.

The incorporation of single-cell dynamics into a model for cell populations has been
successfully done in the past for bacteria. Using the tumbling frequency and turn angle
distributions from the ‘run and tumble’ analysis of the data collected from bacterial tracking
experiments, as well as a quantitative relationship between chemoattractant concentration
gradient and run-time extension, the ‘cellular dynamics’ simulation methodology 27, 29 was
developed to predict the population level dynamics based on known individual bacterial
information. Cellular dynamics was found to predict cell motion through porous
media 5, 21, 22. In these simulations, a large number of bacteria are simulated based on
known single cell dynamics. To simulate bacterial motion within a porous media, the
mathematical characterization of experimentally determined cell-surface dynamics 28 is also
required. In order to extend this scheme to eukaryotic cells, similar parameters need to be
extracted from the mammalian cell tracking data; the first step in doing so is to characterize
the cell motion in the absence of a chemoattractant.

The bimodal model for mammalian cell motility, presented for the first time in this paper,
contrasts with the persistent random walk (PRW) model that is based on a continuum
version of Ornstein-Uhlenbeck process used to describe Brownian dynamics. The PRW
model has been often used to study the motility of individual mammalian cells 25. In the
PRW model, a non-linear equation-involving mean squared displacement of the cell as a fit
of two parameters namely, the mean speed and persistence time, is used to model the
migration of mammalian cells 18. The persistence time is described as a characteristic run-
time incorporating the persistence displayed by a cell 39. Several investigators have used this
model to fit the time-lapse video-microscopy cell migration data and extract cell-specific
parameters such as persistence time 11, 20, 25, 30–32, 34, 35, 37, 41, 50–52. However,
information regarding the short-time dynamics such as the turn angle distribution and turn
frequency as the cell migrates cannot be deduced from the PRW model.
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The availability of excellent data for the migration of individual bacteria over frequent
sampling time intervals as well as the relatively faster time scale over which bacteria
migrate have facilitated good characterization of bacterial motion in terms of run time
(Poisson) and turn angle distributions. The tracking data of mammalian cell migration has
been largely confined to taking frequent snapshots of a fixed field of view over several time
points. The migrating cell must remain in this field of view for this purpose, unlike the
three-dimensional tracking of bacteria where a given individual bacterium was tracked
automatically so that it always remained in the center of the field of view. Some attempts
have been made at modifying the tracking software to keep a given mammalian cell within
the field of view 43 but fixed time-lapse video-microscopy still remains the most popular
method to track mammalian cells on 2-D substrates in order to get cellular parameters 15, 38.
The 3-D tracking of mammalian cells (15–20 µm) is difficult to assess compared to the 3-D
visualization of smaller in size bacterial cells (1 µm). Our experimental capabilities restrict
us to collecting fixed time-lapse microscopy data of mammalian cells on 2-D tissue culture
plastic substrates and we developed an analysis tool based on this data.

In this work, we have approached the problem of analyzing cell migration of individual
mammalian cells, specifically MCF-10A cells (human mammary epithelial cells), within a
bimodal (directional and re-orientation modes) framework similar in spirit to that used in the
analysis of bacterial motility 7, 8. We interpret the re-orientation phase in a mammalian cell
migration as the time during which the actin polymerization machinery in the cell
preferentially polymerizes actin at a new leading edge and the cell is propelled in the new
direction 3, 12. The cellular activity of proteins like Rac has been found to regulate the
random versus directionally persistent mode of migration in a cell 40. The role of
phosphoinositide (PI) 3 kinase signaling in actin motility in various chemotactic systems
from Dictyostelium discoideum to fibroblasts has been discussed where directional bias in
eukaryotic cells is said to arise due their spatial sensing of chemo-attractant gradients
leading to heterogeneous distribution of this signaling 45, 49. An attempt is made here to
separately locate the directional-mode (mode I, the more persistent mode) analogous to a
bacterial run and the re-orientation-mode (mode II, random or the less persistent mode)
analogous to a bacterial tumble in a mammalian cell migration path by performing simple
video-microscopy experiments.

A criterion for locating runs and tumbles in a cellular trajectory based on work by Berg and
coworkers with bacterial migration was applied to MCF-10A cellular trajectories. Using this
criterion, the turn angle distributions of control MCF-10A-pbabe, pre-malignant neuN and
invasive neuT were generated. The single cell dynamics such as the mean directional-mode
time, re-orientation-mode time and turn angle distributions were extracted for the MCF-10A
cells from the tracking data. We have further discussed the effect of sampling time interval
of experimental data collection and also the resolution at which the data is collected.

MATERIALS AND METHODS
Cell culture

The cell lines used in the motility experiments were a kind gift of Dr. Joan Brugge and were
derived from the MCF-10A human mammary epithelial cells to express the pbabe vector
alone (pbabe), or the normal (neuN) or transforming (neuT) versions of the rat Her 2/Neu
oncogene 4, 48. All the cells were cultured in DMEM/F-12 50/50 media (Mediatech,
Herndon, VA) supplemented with horse serum (2%, GIBCO/Invitrogen, Carlsbad, CA),
cholera toxin (0.1µg/mL, Calbiochem, La Jolla, CA), insulin (10µg/mL, GIBCO/Invitrogen,
Carlsbad, CA), hydrocortisone (0.5µg/mL, Sigma, St. Louis, MO) and EGF (20ng/mL,
GIBCO/Invitrogen, Carlsbad, CA) as described by protocol in work by Debnath and
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coworkers 16. The cells were maintained in a humidified atmosphere supplemented with 5%
CO2 and were split every 3 to 4 days.

Cell motility assay
The migration of cells was followed under random motility conditions without the presence
of any externally added chemo-attractant gradients. All the three cell types were plated
overnight at a low density of approximately 5000 cells per cm2 of growth area on tissue-
culture plastic. The media was changed to Leibovitz’s L-15 (GIBCO/Invitrogen, Carlsbad,
CA) medium (because of an absence of CO2 buffering in the microscope chamber)
supplemented with horse serum (2%), cholera toxin (0.1µg/mL), insulin (10µg/mL),
hydrocortisone (0.5µg/mL) and EGF (20ng/mL).

The cells were monitored using the phase-contrast optics in a Nikon Eclipse TE2000-E
microscope equipped with temperature-controlled, humidified chamber and a motorized x-y
stage for several samples. Cellular images were captured on a Hamamatsu Orca-ER camera
using Metamorph (Molecular Devices Corporation, Sunnyvale, CA) for data acquisition and
analysis. The cells were followed with a magnification of 40x (1 pixel ≡ 0.163 µm) and a
sampling time interval of 0.5 minutes. Figure 1 shows a frame of MCF-10A-neuT cells
viewed at different resolutions of 10x (1 pixel ≡ 0.647 µm) and 40x (1 pixel ≡ 0.167 µm).
All the cells were equilibrated in the humidified, temperature controlled (37 °C) microscope
chamber for an hour before data collection. The cells were followed for at least two hours in
all the experiments. At least five sets of experiments were performed and on an average four
movies were taken per well. We used a shorter time period of 2 hours for a smaller sampling
time interval of 0.5 minutes because of the constraints imposed by the available
experimental set-up for data storage. We reduced the total time of the video-microscopy to 2
hours to opt for the more frequent sampling of data. Experiments have also been performed
using this apparatus over longer periods with less frequent sampling; however, we do not
use this experimental data for analysis in this paper.

Trajectory data
Each cell was manually tracked by following the cell nucleus. Only single cells that never
interacted with other cells were considered for the analysis. The cells were plated at low
density to avoid interacting cell populations. Cells that remained stationary, or moved
outside the viewing area, or that underwent cell division during the course of the experiment
were excluded from the tracking procedure. A heuristic rule was used to further screen the
data to be used for the analysis. A cell that did not cover considerable distance (at least 30
µm along one axis) was considered atypical, and thus not included in our analysis.
Approximately, 50% of total tracked cells for each cell type fit this heuristic criterion. To
address the impact of sampling frequency, the 0.5 minute data obtained using 40x was re-
analyzed as 2.5 minute data by considering every fifth data point. This means that each
trajectory at 0.5 minutes generates 5 trajectories at 2.5 minutes: one trajectory using the 1st,
6th, 11th, … positions, one using the 2nd, 7th, 12th, … positions, etc. In order to address the
impact of resolution, we extracted 10x data from 40x data, which we refer to as‘10x
extracted data’. For this, the pixels at 40x are converted to the values they would have at 10x
followed by computing the co-ordinates of the cell at 10x (by using the calibration at 10x
(1pixel ≡ 0.647 µm)). That is, 16 pixels at 40x collapse to a single pixel at 10x.

Bimodal analysis
The individual cell paths from the motility assay were first plotted as windrose (the origins
of the trajectories are shifted to (0,0)) 52 plots on a constant plot area (200 µm X 200 µm).
Example cell trajectories used in the analysis are shown in Figs. 2 a, b and c. The cell paths
with repeated circular tracks were ignored as these cells were found to undergo division.
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The method employed to determine the direction change (φ) at each frame (time point)
required for the ‘bimodal analysis’ is illustrated in Fig. 2d. The direction change at each
frame is defined as the difference in forward direction and the backward direction. At each
frame, the change in direction of motion was determined by finding the forward direction
and backward direction. The forward direction is determined from the slope of a vector
formed from the current frame to the successive frame while the backward direction is given
by the slope of a vector from the prior frame to the current frame. A two-point linear
regression was used to determine each slope. A negative direction change represents a
clockwise motion and vice-versa. The analysis of the two-dimensional (x-y) data gives a
direction change (φ) range from −π to + π

Since the time between observations is fixed, the change of φ between one frame and the
next is essentially the same as the angular speed (the time-rate of change in direction of
motion) that was computed by Berg and co-workers in the run-tumble analysis of bacterial
migration7. The rules for scoring the start and an end of a directional phase were similar to
the ones used in the run-and-tumble analysis of bacterial paths and have been elaborately
stated for the analysis of the three-dimensional tracking data for E. coli8. The following
algorithm was used to locate the directional and re-orientation modes in a cellular trajectory.
Specifically, the start of the directional mode was scored at any frame J if the quantity φ was
less than an empirical cut off value, say, φcut for frames J, J+1 and J+2 each. The end of the
directional mode (start of the re-orientation mode) was scored at any frame J under two
circumstances: a) if φ > φcut for both frames J and J+1 or b) if φ > φcut for frame J only,
provided that the value of φ for vectors formed by data points J, J+2 in forward direction and
J, J−2 in the backward direction is greater than φcut. We call this as r3 criterion since the φ
value at three successive frames determine a directional mode. Analogously, we can also
define an r2 criterion, in which the φ value at two successive frames determine the start of a
directional mode, and an r1 criterion in which the φ value at a single frame was examined to
score the start of a directional mode.

A cut-off value of φcut = 35° was used in the run-tumble analysis of bacteria8. A visual
inspection of several cellular trajectories of the three MCF-10A cell types revealed that a
cut-off value of φcut 45° for φ was appropriate for locating the transition between two mode
types in the cellular trajectories. A value less than this cut-off (such as φcut = 35°) would
pick up fluctuations in the cell path as the start of a directional mode as indicated (by the
square inset) in an example trajectory (Fig. 3a). The same trajectory (a neuT cell path) with
φcut = 45° is shown in Fig. 3b. This cut-off value is heuristic in nature and may or may not
be applicable for other cell types. A good starting point to empirically determine the value of
φ cut is 35° as this is the value by which bacteria would change its direction due to Brownian
motion8.

The turn angle in a cell trajectory is the angle change between successive directional modes.
A procedure similar to the one described above to calculate φ was used to determine the turn
angle with the exception that, instead of performing two-point linear regression to determine
the slope (and hence direction) along a directional mode, a multi-point linear regression was
performed utilizing all the data points constituting a directional mode.

Statistical Analysis
The statistical significance was verified using SPSS, version 16 (SPSS, Inc., Chicago, IL).
The Shapiro-Wilks test for normality (α= 0.05) was applied to all data sets for distribution
analysis. The Kolmogorov-Smirnov two-sample non-parametric test was subsequently
applied to data to check for significant differences (α= 0.05) across means of various groups
(i.e., by pixel size, sampling interval) for all measurements. While reporting the mean values
(speed, directional-mode times and re-orientation-mode times), the mean of each cell was
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weighted equally7, and the standard deviation (error bars in all Figs. and Tables) is the
standard deviation in the mean. At least 5 independent experiments were carried out for each
cell type. The persistence index ψ value does not have any error bars as this value was

calculated using equation 1  where h(φ) is the turn angle distribution for
a population of specific cell type computed from data from all independent experiments. The
value of ψ was one value representing a population type hence it does not have a p-value.

RESULTS
The d/t ratios for the two modes of MCF-10A cell migration were calculated to verify the
presence of the directionally persistent (mode I) and re-orientation (mode II) phases. These
ratios have been referred to as the directionality ratios in literature 40. The quantity ‘d’ is the
shortest linear distance from start to the end of a particular mode I or mode II, while ‘t’ is
the total distance traversed by the cell from start to the end of that particular mode I or II
(Fig. 4). The mean d/t ratio obtained during the mode I phase (analogous to runs) was found
to be higher (p <0.001 for all cell types, pbabe (n=214), neuN (n=187) and neuT (n=169))
than the mean d/t ratio during the mode II phase (analogous to tumbles) confirming the
existence of two alternating modes in eukaryotic cell migration.

A point of difference between the proposed bimodal framework for a mammalian cell versus
the run-tumble framework for a bacterium is the timescale of the reorientation- mode (mode
II), which is analogous to the tumble time of a bacterium. The time spent in the tumble
phase in a bacterial trajectory is on the order of 0.1 seconds, compared to a run that lasts for
seconds or longer. On the other hand, we find that the reorientation- mode in a mammalian
cell trajectory can last for several minutes. A bacterial tumble could be considered
essentially instantaneous unlike the re-orientation phase in a cellular trajectory where the re-
orientation-mode can last as long as directional-mode. The turn frequency for bacteria is
simply the number of tumbles made by the bacteria divided by the total time. The turn
frequency for a mammalian cell is defined as the total number of re-orientation-modes
divided by the total time spent in the directional-modes. For a single cell, this definition is
reciprocal of mean directional-mode time for the cell.

 where  are the mean
directional-mode time and mean turn frequency of the ith cell, respectively, N total number
of cells in a cell type and the brackets denote average value of quantities for a given cell
type.

A representative distribution of direction change at each sampling point, that is, φ values
obtained using the bimodal analysis (described in the methods section) is shown in Fig. 5.
For the two-dimensional system under consideration, the range of φ lies between −π to +π
as mentioned earlier. For a 3-D tracking data, this range would be between 0 to π7. The
direction at each time point would be characterized by two types of angles in 3- D. In a 3-D
in vivo setup, the influence of the ECM (extra-cellular matrix) overlaid on the cells would
come into picture. It can be expected that the frequency of re-orientations may be altered in
3-D. The algorithm described in the methods section was used to locate the two modes along
a cell path in multiple cell trajectories. Using a cut-off φ, that is, φcut = 45°, and applying the
‘r3 criteria’ described in methods section, the start and end of a mode I for each of the
directional-modes in a cell trajectory can be located. We find that there was approximately
equal occurrence of a cell-entering mode II via any of the two described mode II criteria.
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After locating the direction along each mode I using multi-point regression, the “mode I to
mode I” turn angle distribution for each cell type can be determined by making a histogram
of turn angles for a given cell type. One such turn angle distribution (neuT cells), which
essentially represents the change in direction between successive directional modes in a
mammalian cell trajectory, is shown in Fig. 5. Representative directional-mode time and re-
orientation-mode time distributions (pbabe cells) are displayed in Fig. 6. It can be seen that
the smallest directional-mode time is of the order of 1.5 minutes as constrained by the
criterion for location of this mode while the reorientation-mode lasts at least for 0.5 minutes
in accordance with the second reorientation criterion listed in the methods section. The
highest probability of directional-mode and re-orientation-mode times for the pbabe cells
was around 2 minutes.

All the distributions are discrete probability distributions determined from the frequency
distribution of the variables. The cell trajectory data at a sampling time interval (Δtexp) of
0.5 minutes and 40x magnification were used to construct the distributions shown in Figs. 5,
6 and 7. All the results shown here were obtained using r3 criteria and a φcut = 45°. The
location of the two alternating modes using bimodal analysis and hence directional-mode
time, re-orientation-mode time and turn angle distributions are sensitive to the criterion and
the value of φcut used for the bimodal analysis.

Figure 7a compares the turn angle distributions for the three different cell types while the
directional-mode time and re-orientation-mode time distributions are plotted in Fig. 7b and
7c respectively. The cumulative distribution functions of these turn angle distributions can
be fitted and used to perform cellular dynamics simulations of the different cell types and
elucidate the differences in the cell lines.

The turn angle distribution h(φ), of a bacterium could be used to calculate (equation 1) the
persistence index (ψ) (defined as the mean of cosine of deviation in a cell path which is
same as the mean cosine of the turn angle distribution 39) since the bacterial tumbles are
instantaneous and bacterial motion can be generalized as a velocity-jump process with no
relaxation time 39. A value of ψ close to 1 indicates high persistence while a value close to 0
indicates random behavior. The PRW model (equation 2) occasionally used to fit mean
squared displacement (d2(t)) of mammalian cells using the parameters of persistence time
(P) and random motility coefficient (µ), for a system with n dimensions, is based on
negligible re-orientation/tumbling time which may not be true in the migration of
mammalian cells such as the MCF-10A cells as has been shown in the results. Equation 3
connects the random motility coefficient µ, to P and mean speed S. The persistence time is
related to the persistence index, ψ in this model by equation 4 where <τ> is the mean
directional-mode time. We have used equation 1 to calculate ψ just to elucidate the effect of
various conditions such as the sampling interval and resolution and we realize that
MCF-10A random migration is a velocity jump process with a finite resting phase39.

(1)

(2)

(3)

(4)
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Using the r3 criteria and a φcut = 45°, the total number of mode Is and mode IIs, the mean
directional-mode time and re-orientation-mode time was determined for each cell in a given
cell type. The results of the bimodal analysis of cell path data obtained using an
experimental time-step of 0.5 minutes and 40x magnification are shown in Table 1. The
various parameters such as the mean directional-mode time, re-orientation-mode time, mean
speed and persistence index, were calculated. The parameters obtained for the control pbabe,
pre-malignant neuN and invasive neuT cells are listed together.

This analysis was repeated by extracting data with Δtexp = 2.5 minute from the 0.5 minute
data. The number of data trajectories available with the 2.5 minute data extracted from the
0.5 minute data would be five times more but the number of frames (data points) in each
trajectory would reduce by 5 times. For instance, for the tracking time of 2 hours, the 0.5
minute data with 15 data trajectories from 15 cells and 240 frames each would convert to 2.5
minute data with 75 data trajectories from 15 cells and 48 frames each. Similarly, 1 minute
Δtexp data can be extracted from 0.5 minute data by considering every other data point. The
various parameters obtained from 2.5 minute data analysis are listed in Table 1. Figure 8
shows an example cell trajectory of the same data with different Δtexp such as 0.5, 1 and 2.5
minute.

The effect of the resolution at which the images of migrating cells are recorded was studied
by comparing data at two different magnifications, namely, 40x (1 pixel≡0.163 µm) and 10x
(1 pixel≡0.647 µm) where 10x data was extracted from the acquired 40x data. The φ
distribution, turn angle distribution, directional-mode time and re-orientation-mode time
distributions for pbabe cell type determined at different resolutions or pixel sizes and at a
constant Δtexp = 0.5 minute are shown in Figs. 9 a, b, c and d. The same effect at a Δtexp =
2.5 minute is illustrated in Figs 9 e, f, g and h. The influence of pixel size on various
parameters obtained from ‘bimodal analysis’ was studied by comparing the results from data
analysis at different magnifications (Table 1). The statistical significance of such
comparisons for the different cell types is shown in Table 2.

The influence of sampling interval of data collection on the distributions keeping the pixel
size constant is studied in Fig. 10. The parameters calculated at different Δtexp but same
pixel sizes are compared (Table 1). The results obtained from 0.5 minute data are compared
with that of 2.5 minute data at constant magnification of 40x for statistical significance
(Table 2). This comparison becomes especially important when extracting short time
dynamics such as directional-mode time and re-orientation-mode time dynamics. One can
realize that the sampling interval of data collection should be small enough (at least smaller
than the mean time for the directional and the less persistent modes) to capture the bimodal
framework of the mammalian cells.

DISCUSSION
Empirical factors for ‘bimodal’ analysis

The two empirical factors in the bimodal analysis are the criterion (example r3, r2, r1 as
described in methods section) and the cut-off value of φ used (φcut) to locate the two
alternating modes in the cell path. One can realize that a less stringent criterion defining a
directional-mode such as the r1 criterion (see supplementary material, Fig. S2) compared to
a more stringent r3 criterion would decrease the observed mean directional-mode time. The
values of these two empirical factors need to be chosen by visualizing several trajectories of
the cells under consideration. The φcut = 45°, was chosen empirically as a cut-off value that
best succeeded in flagging the re-orientation phase on the nucleus track of the cells. The
bright-field images of cells that we collected are likely to be insufficient to relate the cut-off
value to any molecular mechanism. However, it could be speculated that this cut-off may
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relate to actin-myosin pathway. This cut-off might represent a turn made by the cell due to
pronounced actin activity in a specific direction in the leading lamellipodium. A value less
than this cut-off may pick up fluctuations in the cell path arising from more minor
cytoskeletal re-arrangements, such as smaller lamellopodia. The r3 criterion used here to
locate the beginning and end of a re-orientation phase is similar to the one used to flag the
bacterial tumbles7.The data acquisition conditions used to determine the cut-off, φcut 45°,
was most frequent sampling (0.5 minutes) and spatial resolution of 40x. We have tested the
applicability of the criteria established to locate bacterial runs and tumbles to the
mammalian cells. We find that the same framework works for mammalian cells provided
that the cells are tracked frequently using a small sampling interval (0.5 minute). The
application of this criterion to a different temporal resolution (say, 10 minute) might still
identify the cellular turns recorded at this large sampling interval, but details of cellular turns
during the 10 minutes will be lost.

Influence of pixel size
a) Distributions—The net observed position of a cell (by manually tracking the nucleus of
a cell) as it moves, is affected by the pixel information available. When a cell moves from
one position to another in time, it moves from one grid point to another in a 2-dimensional
space formed by several small square grids. The length of the square grid depends on the
pixel size calibration of the image. Under these circumstances, the value of direction change
would be biased at certain angles (0, 45, −45, 90, −90, 180, −180, 135) because of division
of space into square grids of the length of 1 pixel. This would be applicable under the
circumstance that the cell moves by 1 pixel in each frame. This limitation of available pixel
size leads to the increased probability of certain angles in the φ distribution. We call this as
the ‘pixelation effect’ that leads to spikes at certain positions. It was seen that, collecting the
data at higher resolution (lower pixel size in µm) could minimize this effect and relatively
smoothen the φ distribution (Figs. 9a and e). The pixelation effect is more pronounced at
Δtexp = 0.5 minute as the cells moves by 1 pixel unlike at Δtexp = 2.5 minutes.

A comparison of directional and re-orientation time distributions obtained from data at
different resolutions at a given Δtexp, such as 0.5 minute or 2.5 minutes revealed that there
was negligible influence of resolution (Figs. 9c, d, g and h). The distributions obtained from
extracted 10x data have similar trend as the 40x distributions. The turn angle distribution
from 40x is expected to have more pixel information compared to 10x because of pixelation
effect in the φ distribution at lower resolution. Hence, the spatial resolution has a subtle
influence on the turn angle distribution obtained (Figs 9b and f).

b) Parameters—There was no statistically significant effect of pixel size on mean
directional time and reorientation times for all cell types (Table 2, p>0.05). The mean speed
for all the cell types was found to be similar at both resolutions. The p-values from
Kolmogorov-Smirnov test for comparison of mean speed at different resolutions were <
0.001 (significant) for all cell types even though the mean values are very similar. So, we
ran Mann-Whitney test to confirm this and compared speed at different resolutions which
gave p-values > 0.05 (not significant). Overall, there was negligible impact of resolution on
the various parameters and distributions obtained.

Influence of sampling interval, Δtexp

a) Distributions—The turn angle distribution obtained with 0.5 minute data appears less
noisy and more spread out compared with the distribution from 2.5 minute data (Fig. 10a).
This can be explained because of more directional modes being located on a given cell
trajectory with sampling time interval of 0.5 minute compared with a cell trajectory with 2.5
minute sampling time interval. For instance, the average number of directional modes in a
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0.5 minute data path is 10 compared to 3 in a 2.5 minute data. Thus, the availability of more
data points to average over in the case of turn angle distribution from 0.5 minute data. The
same logic holds true for the directional time and re-orientation time distributions (Figs 10b
and c). Using the more frequently sampled data (0.5 minute), the detailed cellular turns at
this smaller time scale can be detected whereas they would not be with sparsely sampled 2.5
minute data. Because more turns are flagged, this results in smaller mean directional-mode
and re-orientation-mode times with a 0.5 minute sampling interval. This shows the impact of
using smaller sampling interval while collecting migration data for applying bimodal
analysis.

b) Parameters—The influence of sampling interval Δtexp used for the data collection on
cell parameters such as mean speed has been previously investigated 24. The net
displacement of a cell over a time interval, t, would be larger if the sampling time interval at
which the cell position is recorded during the course of experiment becomes smaller. The
mean speed variation with Δtexp for pbabe cells is illustrated in Fig. 11. The squared
difference in the measured speed at 0.5 minute sampling interval and speed at any higher
sampling interval (Δtexp >0.5 minute) reduces as Δtexp approaches 0.5 minutes. The
measured speed would increase as the sampling time interval is decreased. This
experimental observation has been confirmed using simulations and has been discussed in
details in the supplementary material (see Fig. S3 in the supplementary material).

For the bimodal analysis of the cell trajectory data, the rate at which the data was collected
can play a very critical role. This is evident from the comparisons of mean directional-mode
times calculated from 0.5 and 2.5 minute data (Table 1). One can see that by using the same
empirical factors for locating both mode I and mode II, the mean directional-mode time for
pbabe cells was found to be ~3 minutes (using 0.5 minute data) and ~18 minutes (using 2.5
minute data) at 40x. Frequently sampled data can capture the re-orientations made by a
mammalian cell on a smaller time scale, which may not involve locomotion of a cell body
length. This information might be lost with sparsely sampled data. We speculate that the
description obtained from smaller sampling interval could be useful in getting some insight
in the cytoskeletal re-arrangement arising due to more pronounced actin machinery in a
specific direction. We find a statistically significant effect of sampling interval used on the
values of directional-mode time, re-orientation-mode time and cell speed obtained (p≪0.05).
Thus, we find that the impact of sampling time interval is more significant compared to the
resolution (Table 2).

The single cell dynamics extracted here for the random migration of these epithelial cells
will form the basis of performing cellular level simulations of these cells. The accuracy of
the bimodal analysis technique can be assessed by identifying the reorientation phase from a
known artificially created cell trajectory using cellular dynamics simulation based on the
bimodal model and parameters extracted from bimodal analysis (see Fig. S1 in
supplementary information). A greater insight into the migration of cancer cells both in the
absence and presence of attractant gradients will clarify the sensing mechanism (see
Appendix) and the effect on turn angle distributions of these eukaryotic cells, and provide
the basis for incorporating individual eukaryotic cell motion into cell-based models for
tissue, such as the Anderson model for tumor growth2.

Random motility coefficient, persistence and invasiveness
Figure 12 shows the experimental mean squared displacement of the three cell types versus
time on a log-log scale. We can see that the displacement lies between the slope 2 (the
‘ballistic regime’) and slope 1 (the ‘diffusive regime’). This indicates that the two-hour
experimental tracking time is not long enough for the cell motion to enter the diffusive
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regime, so that the random motility coefficient cannot be estimated for the relatively slow-
moving MCF-10A cells and warrants the tracking of these cells for several hours to days in
not so conducive conditions for cells. This problem can be circumvented by performing
‘cellular-dynamics’ simulations long enough to reach the diffusive regime, and will be the
subject of a future publication.

We have estimated the value of persistence indices for the various MCF-10A cell types
using equation 3 just for the sake of getting some insight of the effect of increasing level of
Her-2 expression that is, increasing invasiveness. We find that our highest resolution data
(smallest sampling interval and highest spatial resolution) show an increasing persistence
with increasing level of Her-2 expression from pbabe, neuN and neuT cells. This is
consistent with the hallmark of cell migration in invasive tumors 17 and in cells with over
expressed levels of Her-2 receptor which showed higher directional persistence in wound
closure kind of assay 35.

CONCLUSIONS
The bimodal analysis of mammalian cell migration paths reveals that cellular reorientation
modes could last longer than directional modes. The scenario in bacterial migration is
different where the tumbles are almost instantaneous. It is also clear that the sampling
interval Δtexp of observation during time-lapse microscopy should be chosen to be small
enough (< 1 minute for the cell/substrate combination studied here) to capture the directional
and re-orientation framework in a mammalian cell migration path using bimodal analysis.
Note, however, that some properties (such as the random motility coefficient) do not depend
on the sampling frequency while others, such as the cell speed and turn angle distribution,
are impacted by the sampling time interval of observation.

The experimental tracking data of MCF-10A cells chemotaxing in the presence of a
chemokine such as EGF could be analyzed with the bimodal analysis to get individual
cellular parameters of chemotaxis. We can then hope to extend the ‘cellular dynamics’
simulation strategy developed for bacterial migration to the random migration and
chemotaxis of the mammary epithelial cells using the individual cellular parameters
developed from the bimodal analysis. This simulation strategy can also be modified to
incorporate cell-cell adhesion, haptotaxis and other cell migration strategies to simulate cell
migration more accurately. These simulations can be performed in diffusive regime to get an
estimate of the cancer cell parameters such as the random motility coefficient and then
chemotaxis coefficient, which can then be fed, into an existing tissue scale model of tumor
invasion1, 2. This methodology can also be incorporated into the existing tumor models of
cancer invasion to develop more realistic mathematical models of tumor that can help in
accurate prognosis and treatment of cancer1, 2, 42. However, our important conclusion for
this work is that the often-used random motility expressions for mammalian cell motion
(based on assuming diffusive motion) are invalid over the time steps (order of few minutes1)
typically used in modeling mammalian cell motility. The bimodal model correctly takes into
account the time spent and the motion involved between directional runs, and so will lead to
more appropriate quantification of the random motility of the cells, more accurately relating
single-cell motion to macroscopic, population-level properties. Thus, it provides the basis
for improved simulations of single-cell motion required in cell-based models of cancer
growth.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix
A key finding in bacterial chemotaxis is that the turn angle distribution is unaffected by the
presence of a chemoattractant, while the run time distribution is modulated (bacteria extend
their run times when moving in directions of increasing chemoattractant concentration)7,
thus resulting in biased movement towards increasing chemoattractant concentration.
Moreover, by demonstrating that the same run time increases were induced by a spatially
homogeneous but time-varying chemoattractant concentration, Berg 10 showed that E. coli
were responding to the substantial derivative of the chemoattractant concentration (Dc/Dt,
where c is the attractant concentration), so that the chemosensing mechanism in bacteria is
related to the time rate of change in bound receptors on the cell surface. This rules out the
possibility that in E. coli the chemosensory mechanism is based on the differences in the
number of bound receptors over the cell surface (i.e., a direct sensing of the chemoattractant
gradient by spatial comparison). A mathematical analysis of chemosensing by Berg and
Purcell9 shows that despite the small cell size (~ 1 µm) spatial sensing of a chemoattractant
gradient is possible for E. coli; specifically, taking into account fluctuations in
chemoattractant concentration on the spatial scale of a cell, Berg and Purcell derived

expressions for the minimum time required for temporal sensing, , and for spatial

sensing, , given by

(1)

(2)

where a is the radius of the cell, D is the self-diffusion coefficient of the chemoattractant, N
is the number of receptors on the cell surface, s is the cell-receptor radius, c̄ is the
equilibrium concentration of the chemoattractant, c1/2 is the dissociation constant for the
receptor-chemoattractant binding and x is the direction in which the chemoattractant
gradient exists. For temporal gradients created by the movement of the cell, (1/c̄)(∂c̄/∂t)=(v/
c̄)(∂c̄/∂x), where v is the cell speed. For typical values of these parameters for E. coli

responding to an aspartate gradient, Berg and Purcell found  (depending

on magnitude of chemoattractant gradient) and for spatial sensing, . Since the
run lengths of flagellated bacteria are typically of the order of 1 s and longer, this analysis
suggests that a bacterium could use either temporal or spatial sensing; however, because the
swimming motion of a bacterium causes the cell body to rotate, the resulting disturbance to
the surrounding liquid medium would create fluctuations in the chemoattractant gradient
much larger than the gradient itself, thus ruling out the spatial sensing mechanism. To
perform a similar analysis for eukaryotic cells, we use the experimental conditions of Sai et
al.47 for the study of chemotaxis of HL60 cells stably expressing CXCR2 receptor in a
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microfluidic-device-generated-gradients of CXCL8 chemokine. For these cells in this
chemotaxis assay,

a = 7.5µm, D = 10−6cm2/s, c̄ = 1.25nM, c1/2 = 1.5 nM,

(1/c̄)(∂c̄/∂t)=(v/c̄)(∂c̄/∂x)=2 × 10−4s−1.

Taking Ns/(Ns+πa) = 0.5 (a typical value), and using these values in equations (1) and (2),

we find that  and . We note that the larger size of these cells
(compared to bacteria) results in the time threshold for spatial sensing being less that that for
temporal sensing; this is the reverse of the situation for bacteria, in which the time threshold
for spatial sensing is greater than that for temporal sensing. From the bimodal analysis of the
MCF-10A cells reported here, we find that the mean directional-mode time duration of these
cancer cells ranges in several minutes compared to bacterial run times of seconds. Hence
both temporal and spatial sensing mechanisms remain feasible for these eukaryotic cells.
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Figure 1.
MCF-10A-neuT cells a) 10x resolution (1pixel≡0.647 µm) and b) 40x resolution (1
pixel≡0.167µm).
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Figure 2.
Example cell paths of MCF-10A-pbabe (a), neuN (b) and neuT (c) cells used for bimodal
analysis re-plotted as windrose plots. The data was collected with 40x magnification every
0.5 minutes. d) The direction change (φ) calculated at each frame in a cell path. The
direction was determined by fitting slope using two-point linear regression.

Potdar et al. Page 17

Ann Biomed Eng. Author manuscript; available in PMC 2013 March 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
The directional-mode (mode I) and re-orientation-mode (mode II) located in a neuT cell
trajectory using a) φcut = 35°, b) φcut = 45°. The ‘r3 criteria’ was used for locating the
directional-modes in each case.

Potdar et al. Page 18

Ann Biomed Eng. Author manuscript; available in PMC 2013 March 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
The mean d/t ratios for the cells located during the two phases indicating the presence of the
mode I and mode II phases in a cell path (pbabe (p <0.001, n=214), neuN (p<0.001, n=187)
and neuT (p<0.001, n=169) using Kolmogorov-Smirnov nonparametric test).
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Figure 5.
The discrete probability distribution of direction changes at each time step (distribution of φ
values) and direction changes from end of one directional phase to the start of another (turn
angle distribution) obtained using a bin size of 10 degrees for neuT cells tracked using Δtexp
= 0.5 minutes and 40x magnification for 2 hours.
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Figure 6.
The discrete probability distributions of directional-mode times and re-orientation-mode
times obtained using a bin size of 0.5 minutes for pbabe cells tracked using Δtexp = 0.5
minutes and 40x magnification for 2 hours.
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Figure 7.
The discrete a) turn angle probability distributions for pbabe, neuN and neuT cells obtained
using a bin size of 10 degrees for cells b) directional-mode time probability distributions of
pbabe, neuN and neuT cells using bin size of 0.5 minute and c) reorientation-mode time
probability distributions of pbabe, neuN and neuT cells using bin size of 0.5 minute tracked
using Δtexp = 0.5 minutes and 40x magnification for 2 hours.
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Figure 8.
An example cell trajectory if the data were collected at 0.5, 1 and 2.5 minute of Δtexp.
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Figure 9.
Effect of pixel size at Δtexp = 0.5 minutes on a) φ distribution, b) turn angle distribution, c)
directional-mode time distribution and d) re-orientation-mode time distribution and at Δtexp
= 2.5 minutes on e) φ distribution, f) turn angle distribution, g) directional-mode time
distribution and h) re-orientation-mode time distribution.
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Figure 10.
Effect of different Δtexp on a) turn angle distribution b) directional-mode time distribution c)
re-orientation-mode time distribution at 40x resolution.
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Figure 11.
Influence of sampling time interval of observation on mean cell speed in pbabe cells.
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Figure 12.
Experimental mean squared displacement versus time for the three cell types.
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Table 2

Statistical significance for effect of pixel size and sampling interval, Δtexp on various parameters using
Kolmogorov-Smirnov nonparametric test. A p-value <0.05 indicates significant difference.

Condition Parameter
p-values (n13,n24)

pbabe neuN neuT

Constant Δtexp (2.5 minute),
compare 40x and extracted 10x

Mean directional-mode time1 0.943 (102,106) 0.548 (68,78) 0.990 (108,106)

Mean re-orientation-mode time11 (102,106) 0.741(68,78) 0.989 (108,106)

Mean speed2 < 0.001 (3525,3525) <0.001(3525,3525) < 0.001 (2820,2820)

Constant pixel (40x), compare 0.5
and 2.5 minute, Δtexp

Mean directional-mode time1 < 0.001 (214,102) < 0.001 (187,68) < 0.001 (169,108)

Mean re-orientation-mode time1 < 0.001 (214,102) < 0.001 (187,68) < 0.001 (169,108)

Mean speed2 < 0.001 (3585,3585) < 0.001 (3585,3585) < 0.001 (2868,2868)

1
minute

2
µm /minute

3
sample size at 40x (constant Δtexp) or sample size at 0.5 minute (constant pixel)

4
sample size at extracted 10x (constant Δtexp) or sample size at 2.5 minutes (constant pixel)
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