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Abstract
Obesity, high-fat diets, and subsequent type 2 diabetes (T2DM) are associated with cognitive
impairment. Moreover, T2DM increases the risk of Alzheimer’s disease (AD) and leads to
abnormal elevation of brain beta-amyloid levels, one of the hallmarks of AD. The psychoactive
alkaloid caffeine has been shown to have therapeutic potential in AD but the central impact of
caffeine has not been well-studied in the context of a high-fat diet. Here we investigated the
impact of caffeine administration on metabolism and cognitive performance, both in control rats
and in rats placed on a high-fat diet. The effects of caffeine were significant: caffeine both (i)
prevented the weight-gain associated with the high-fat diet and (ii) prevented cognitive
impairment. Caffeine did not alter hippocampal metabolism or insulin signaling, likely because
the high-fat-fed animals did not develop full-blown diabetes; however, caffeine did prevent or
reverse a decrease in hippocampal brain-derived neurotrophic factor (BDNF) seen in high-fat-fed
animals. These data confirm that caffeine may serve as a neuroprotective agent against cognitive
impairment caused by obesity and/or a high-fat diet. Increased hippocampal BDNF following
caffeine administration could explain, at least in part, the effects of caffeine on cognition and
metabolism.

1. INTRODUCTION
Human obesity continues to increase [1], associated with consumption of high-fat diets; both
obesity and high fat consumption are linked to cognitive impairment [2-12] and causal
factors for the current type 2 diabetes mellitus (T2DM) pandemic [13]. T2DM is a metabolic
disorder characterized by hyperglycemia, hyperinsulinemia and subsequent insulin
resistance [14] as well as by cognitive impairment and, specifically, hippocampal
dysfunction [12, 15-22] so that high dietary fat has multiple associations with cognitive
impairment. Caffeine, the most popular psychoactive drug in the US [23] with 80% of the
American population consuming this stimulant [24], has recently received attention as a
potential therapeutic agent to prevent and/or ameliorate T2DM [25-29], including a recent
spatial memory study using very high levels of caffeine given to aged, mutant mice [30].
However, studies of the effect of caffeine on brain insulin signalling have not been
consistent and have often been performed in vitro [23, 25, 31-35]. Of note, caffeine has also
been shown to offer protection against neurodegenerative conditions such as Alzheimer’s
disease (AD), for which T2DM is a major risk factor [7, 31, 36-43], as well as e.g.
Parkinson’s disease, by mechanisms that include stimulation of insulin signalling [32, 44,
45]; however, the impact of caffeine in ameliorating the impact of a high-fat diet per se has
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been less studied. Impairment of central insulin signalling is a likely cause of cognitive
impairment associated with obesity, a high-fat diet, and/or T2DM [22, 46] and we recently
showed such signalling to be a critical, mandatory component of hippocampal memory
processes [47].

Here, we investigated in vivo the cognitive and brain-metabolic effects of caffeine
administration both alone and in the context of a potentially diabetogenic high-fat diet, with
hippocampal microdialysis both at baseline and during cognitive (hippocampally-dependent,
spatial working memory) testing. Unlike our previous work and that of others [47-49], in
this study the high-fat diet did not induce a hyperglycemic, diabetic state, although plasma
insulin levels were elevated. Likely as a result of this, no effect of caffeine treatment on
hippocampal glucose metabolism or insulin signalling was seen, despite prevention of both
weight gain and cognitive impairment associated with the high-fat diet by caffeine, and
reversal of the elevation in plasma insulin. Interestingly, however, we identified a possible
novel effector mechanism for caffeine, as hippocampal BDNF (which has previously been
linked to enhanced mnemonic processing [50-52]) was increased by caffeine treatment.

2. METHODS
2.1 Animals

32 male Sprague–Dawley rats (Charles River, Wilmington MA) were pair housed with food
and water ad lib, on a 12-hr light–dark schedule (lights on at 07:00 hr). All procedures were
approved by the University at Albany Animal Care and Use Committee (IACUC). Rats
entered the facility at 4 weeks and at 5 weeks were pseudorandomly assigned to one of four
groups: high fat diet )control, high fat diet with caffeine, regular chow diet with caffeine, or
regular chow diet control, n=8 each. The high-fat diet was research Diets D12266B, as used
previously [22, 49]. All animals received either caffeine (20 mg/kg) or saline (volume-
matched), i.p., once weekly. Each animal was handled every day for a minimum of 5 min to
prevent handling or treatment stress.

2.2 Surgery
At 17 weeks of age, standard sterile stereotaxic procedures [22, 53-55] under isoflurane
anesthesia were used to implant a microdialysis guide cannula (outer diameter 0.8 mm;
BASi Microdialysis) aimed at the left dorsal lateral hippocampus. The nose bar was set at
4.6 mm above the interaural line and coordinates were +5.6 mm posterior from bregma, +4.6
mm lateral from the midline, and -3.0 mm ventral from the dura mater. Rats were allowed to
recover for 1 week prior to testing, and handled extensively each day.

2.3 Microdialysis
Methods as published previously [22, 53-55]. The probe membrane projected 4mm beyond
the guide cannula and thus sampled across several regions of the hippocampal formation.
Probe insertion was timed to give optimum measurement conditions and to avoid glial
scarring at the probe site. Each animal was used only once. Rats were allowed to move
freely throughout, minimizing any effect of restraint stress. The microdialysis probes were
perfused with an artificial extracellular fluid (aECF; 132 mM NaCl, 4.3 mM KCl, 0.9 mM
MgCl2, 0.7 mM CaCl2, 10 mM Na2HPO4, 620 nM NaH2PO4, 1.25 mM D-glucose, pH 7.4
[54]) at a flow rate of 1.5 μL/min. To avoid either supply or drainage of glucose from ECF,
the microdialysis perfusate contained 1.25 mM glucose, the basal level in the hippocampal
ECF [54, 56]. Samples were collected every 20 min after equilibration and frozen
immediately for later analysis (using a CMA600, CMA/Microdialysis). Concentration in the
samples was corrected for in vivo probe recovery using the slope of a hippocampal ECF
zero-net-flux plot under the same experimental conditions.
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2.4 Spontaneous alternation testing
Also as previously published [47, 53, 57]. Rats are placed into a novel control chamber of
clear Plexiglas for baseline measurements, with baseline for ECF glucose, lactate and
pyruvate determined for each rat by averaging the values in the three 20 min samples
immediately before testing and defined as 100%. After the baseline period, rats were placed
into the center of a four-arm maze, made of black Plexiglas, and allowed to explore freely
for 20 min, then placed back in the control box. Samples were collected continuously before,
during, and after the test period. When allowed to explore freely, rats spontaneously
alternate between maze arms, using spatial working memory to retain knowledge of arms
previously visited. This spontaneous alternation has been extensively used as a working
memory task in our laboratory and others [57-67]. The measure of memory used was
percentage 4 out of 5 alternation: an alternation is counted when the rat visits all four arms
within a span of five arm choices and is converted to a percentage by dividing the number of
alternations by the total possible number of alternations: chance performance level is 44%.
The maze task was given in the same room to ensure identical cue availabilities across each
group, and testing was conducted during the mid light-phase.

2.5 Histology
After testing, rats were immediately euthanized. Trunk blood was collected for later
analysis. Brains were extracted and immediately frozen at −80°C; hippocampi were
extracted and weighed, then homogenised and separated for analysis of total and plasma
membrane proteins as published [68].

2.6 Western blotting
Equal amounts (20μg) of each sample were separated into sample buffer with 95% laemmli
sample buffer (BIO-RAD) and 5% 2-beta mercaptoethanol (Sigma). The samples were
loaded into 10% mini-protean TGX gels (BIO-RAD) at 240V for 45 min. Wet transfer of
proteins from gel to PVDF membranes was run at 350 mA (constant) for 1 hour. The
membrane was washed in TBS with 0.1% Tween-20 (TBST) and then blocked for 1 h at
room temperature in 5% nonfat dry milk in TBST. Primary antibodies were diluted in TBST
(GluT4 [Millipore] 1:1000, GluT3 [abcam] 1:3000, pAkt [cell signaling] 1:5000, and Akt
[cell signaling] 1:5000) and left overnight in the membranes. After wash, membranes were
incubated in biotinylated secondary antibodies [Thermo] diluted 1:20,000 in TBST on
shaker for 1 hour at room temp. After wash membranes were incubated in HRP streptavidin
[Pierce] at a final concentration of 1:10,000 in TBST with 1% milk blocking buffer on
shaker for 1 hour at room temperature. After final washes, membranes were mixed in a
chemiluminescent substrate of super signal west pico stable peroxide solution and luminal
enhancer solution in a 1:1 ratio and signals were detected on film using high sensitivity
chemiluminescence. All gels were transferred simultaneously, immunoblotted in the same
solutions, and exposed to film in parallel. Exposures in the linear range of the film were
analyzed by densitometry. Films were imaged by transillumination on a Chemi-Doc XRS
scanner (BIO-RAD) driven by QuantityOne-4.6.1 software. Images were acquired at 16 bit
pixel depth, and linear gamma was maintained throughout. Quantification used ImageQuant
TLv2005 and local background was subtracted for each band.

2.7 Enzyme linked immunosorbent assay
For hippocampal BDNF quantification, equal amounts (120μg) of each hippocampal sample
were mixed 1:2 with diluent and run in duplicate to measure BDNF. Samples and standards
were loaded in ChemiKine BDNF strips (Millipore), the plate was sealed and incubated at
4°C overnight. Diluted biotinylated mouse anti-BDNF monoclonal antibody was added and
incubated at room temperature for 3 hours, followed by, diluted HRP-streptavidin for 1 hour
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and warm TMB/E substrate for 15 min, washing thoroughly between each. Stop solution
was added and the plate was read immediately at 450nm. Samples were processed without
acid pretreatment, for measurement of mature BDNF.

For blood insulin measurement, 10uL of blood serum was loaded in duplicate onto strips
coated with mouse monoclonal anti-rat insulin (Millipore), mixed with 80uL of detection
antibody and 10uL of assay buffer, and incubated at room temperature for 2 hours. Diluted
HRP-streptavidin was added for 1 hour, then warm TMB/E substrate for 15 min, washing
before each, before stopping the reaction and reading the plates.

2.8 Statistical Analysis
All tests were conducted in either SPSSv18 or GraphPad Prism5 using one-way analysis of
variance (ANOVA) with individual cohort differences determined by Bonferroni multiple
comparison post hoc. Ns for behavioral measures were 6-7. Data from a single animal with a
misplaced cannula were not included in the ECF glucose dataset.

3. RESULTS
3.1 Caffeine prevented weight gain associated with a high fat diet

As expected, animals fed a high-fat diet gained significantly more weight than their chow-
fed counterparts (Figure 2). However, this difference in weight gain was entirely prevented
by caffeine administration: animals receiving both the high-fat diet and caffeine treatment
did not differ in weight from chow-fed controls. Caffeine treatment did not significantly
alter weight gain in animals fed a regular chow diet.

3.2 Caffeine prevented spatial memory impairment associated with the high fat diet
Consistent with previous findings [47], high-fat-fed animals had impaired spatial working
memory compared to their chow-fed counterparts (49.0 +/− 4.7% vs. 66.6 +/− 1.6%,
t(12)=3.51, p< .05). Caffeine administration did not affect performance in chow-fed animals.
However, spatial memory in animals on the high-fat diet who also received caffeine was
enhanced compared to that in animals receiving the high-fat diet alone [70.8 +/− 3.6% vs.
49.0 +/− 4.7%, t(11) = 3.56, p <.05], with caffeine fully preventing the diet-induced
impairment and restoring spatial memory to the same level seen in the chow-fed control
animals (Figure 3A). Neither diet nor caffeine treatment affected motor activity or
motivation to perform the task, assessed by total number of arms entered during the 20 min
task period (Figure 3B).

3.3 Caffeine did not affect hippocampal insulin signalling proteins
We had hypothesised that caffeine might prevent an impairment in hippocampal insulin
signalling in high-fat-fed animals, given that impaired insulin signalling was seen in a
similarly-treated group in our previous work [47]. However, consistent with the failure in
this study to induce diabetes or alter plasma glucose, the high-fat fed group showed no
decrease in hippocampal insulin signalling: neither diet nor caffeine treatment affected
hippocampal Akt phosphorylation (Figure 4A-B) nor hippocampal GluT4 translocation
(Figure 4C-D). There was (as expected) also no effect on the constitutive glucose transporter
GluT3 (data not shown). The fact that the high-fat-fed animals were cognitively impaired
but showed no decrease in Akt phosphorylation or GluT4 translocation supports the
suggestion [2, 6, 11, 12, 69] that obesity-linked cognitive impairment may occur even before
impairment to hippocampal insulin signalling.
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3.4 Plasma insulin, but not plasma glucose nor hippocampal glucose, was elevated by the
high-fat diet; this increase was prevented by caffeine treatment

Consistent with our hypothesis that caffeine might attenuate the impact of a high-fat diet,
high-fat-fed animals had significantly elevated plasma insulin (2.94 +/− 0.50 ng/ml,
compared to 1.20 +/− 0.17 in the control-fed animals, t(14)=3.29, p<.05), and this elevation
was prevented by caffeine administration (high-fat-caffeine animals had plasma insulin of
1.46 +/− 0.29 ng/ml: comparison to high-fat animals t(14)=2.54, p<.05). Plasma insulin in
high-fat-caffeine animals was not different from that of control animals (t(14)=0.77, p =
n.s.), and caffeine treatment did not affect plasma insulin in animals on control chow
(t(14)=0.07, p = n.s.). However, in contrast to our previous work [47], the high-fat diet did
not lead to hyperglycemia, with no group differing from control animals in plasma glucose
(all p = n.s., data not shown), which we interpret as a failure to induce diabetes; the
hyperinsulinemia observed in this group suggests a pre-diabetic state. Unexpectedly, but
consistent with the lack of effect of treatment on insulin signalling (including GluT4
translocation) or plasma glucose, neither caffeine treatment nor the high-fat diet had any
effect on hippocampal glucose, lactate, or pyruvate levels either before, during, or following
testing, nor on plasma glucose (data not shown).

3.5 Caffeine treatment prevents or reverses the reduction in hippocampal BDNF seen in
high-fat-fed animals

A lead candidate mechanism by which caffeine has been suggested to modulate
hippocampal processing, including long-term potentiation and memory performance, is via
elevation in local brain-derived neurotrophic factor (BDNF) [70-75]. The high-fat diet
reduced hippocampal BDNF compared to that of chow-fed animals (t(13) = 2.4, p< .05,
Figure 5); high-fat-caffeine treated animals had hippocampal BDNF levels not different
from those of chow-fed controls. Caffeine treatment did not significantly alter hippocampal
BNDF in chow-fed animals.

4. DISCUSSION
Here, we show that not only did caffeine administration prevent hippocampally-mediated
cognitive impairment associated with a high-fat diet, but the caffeine treatment also
prevented weight gain. No effect on either weight or memory was seen with caffeine
treatment in the chow-fed control animals, suggesting a specific interaction with the effects
of the high-fat diet; similarly, a significant effect of caffeine on hippocampal BDNF was
seen only in the context of a high-fat diet. The fact that neither diet nor caffeine treatment
affected motor activity, as measured by number of arms entered during the alternation
testing, suggests that effects of diet and caffeine on weight were likely due to metabolic
alterations. Because detailed food intake and home-cage activity measurements were not
taken, however, the mechanism by which caffeine acts to prevent weight gain associated
with the high-fat diet will require further study: we cannot exclude potential effects on either
caloric consumption or expenditure (or both). Caffeine can affect neural activity via several
routes: in addition to effects on BDNF shown here and effects on e.g. insulin signalling,
caffeine can for instance increase neural excitability via antagonism of adenosine and
regulate blood supply; much additional work will be required to fully characterise the central
effects of caffeine.

Unlike our previous work [76], here the high-fat diet did not induce diabetes nor impair
hippocampal insulin signalling or metabolism, suggesting that at least some of the cognitive
impairments associated with a high- and/or saturated-fat diet are likely to occur prior to any
metabolic impairment, as others have also suggested [11, 69, 77, 78]. Our data are consistent
with the possibility that obesity per se may be linked to cognitive impairment, and that
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reduction in body mass (whether by caffeine consumption or other intervention) may
attenuate that impairment. We identified a potential effector for the impairment associated
with high fat consumption, which caused a decrease in hippocampal BDNF (a neurotrophin
well-established to be important for memory processing), that was prevented by caffeine
treatment, a novel result. One speculative possibility for BDNF’s mechanism of action
might center on inflammation: one of insulin’s less-studied roles is as an anti-inflammatory
agent [79], and both T2DM and AD are characterised in their early stages by increased
central inflammation; caffeine may inhibit proinflammatory cytokines [80] concomitant with
increases in BDNF [81]. The choice of BDNF as a candidate effector molecule to measure
was driven by literature suggestions of a link between caffeine and BDNF, but there is again
scope for further study of additional neurotrophins and additional potential effector
pathways. Recent data [82] suggest that chronic caffeine consumption may prevent age-
related cognitive decline while increasing hippocampal CA1 dendritic connections;
conversely, studies of caffeine as a synaptic potentiator have identified specific effects in the
relatively less-studied CA2 region of the hippocampus [83], so that caffeine may affect
multiple hippocampal subfields in modulating cognitive performance. Our data suggest that
further study of caffeine’s effects on the hippocampus is merited, especially in the context of
obesity and/or a high-fat diet. Here, we extend the literature on caffeine as a cognitive
enhancer, and support the possibility of caffeine use as a therapeutic intervention not only
for T2DM and AD but also in patients with poor diet and/or obesity prior to development of
either of those frank disease states. Additionally, given the widespread human consumption
of caffeine, it is interesting to speculate whether current obesity rates might be even higher
in the absence of such caffeine intake.
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Highlights

• Caffeine prevented both weight-gain and cognitive impairment associated with a
high-fat diet

• Unexpectedly, these effects were not associated with any change in brain insulin
signalling

• Caffeine prevented or reversed a decrease in hippocampal BDNF seen in high-
fat-fed animals
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Figure 1.
Compositions of high-fat diet (D12266B) and chow diet (D12489B).
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Figure 2.
Average group weights. Animals underwent surgery immediately following weighing in the
10th week, and were tested after the week 11 weighing. Error bars = SEM. HFD animals
gained significantly more weight, so that they were significantly heavier after 11 weeks on
the diet [t(14) = 3.72, p<.05 vs chow-fed animals] whereas caffeine prevented this weight
gain [t(14) = 2.92, p <.05 for comparison of high-fat and high-fat-caffeine groups]. HFD =
high fat diet, HFDC = high fat diet plus caffeine, CD = control diet and CDC = control diet
plus caffeine.
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Figure 3.
(A) Percent alternation performance. Error bars = SEM. (B) Mean arm entries during maze
performance. Error bars = SEM. HFD animals had significantly worse alternation
performance than either control animals or animals receiving both a high-fat diet and
caffeine treatment, but there were no differences in number of arms entered.
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Figure 4.
A. Mean density ratio of hippocampal pAkt (Ser473) to total Akt. Ratios were normalised to
beta-actin. B. Mean density ratio of plasma membrane GluT4 to total GluT4. (C & D)
Representative blots for Akt and GluT4, respectively.
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Figure 5.
Mean hippocampal BDNF protein. Error bars = SEM
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