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The field of psychiatric genetics is highly interdisciplinary, with roots in human genetics,
psychiatry, statistics, and epidemiology. A primary goal in psychiatric genetics is to clarify
how genes influence psychiatric illnesses—that is, the pathway from genotype to
phenotype.1 Such knowledge about the etiology and pathogenesis of illnesses should
provide a basis for improving treatment and prevention. While genetic epidemiological
studies have confirmed that clinically defined psychiatric disorders are familial and
heritable, identifying the actual susceptibility genes involved has been a difficult, often
frustrating endeavor. One explanation for this difficulty has been that the syndromes defined
by the Diagnostic and Statistical Manual of Mental Disorders comprise heterogeneous
phenotypes and were defined by expert consensus, making them suboptimal as phenotypes
for genetic analyses. In addition, evidence to date suggests that common psychiatric
illnesses are complex disorders that reflect the influence of many genes of individually small
effect. This combination of phenotypic and genetic complexity has led some to conclude
that the discovery of susceptibility genes will be a difficult proposition. In this context, some
investigators have advocated the use of endophenotypes (also called intermediate
phenotypes) in genetic studies.2 The idea is that by defining neurobiological (e.g.,
neuroimaging) or psychological (e.g., temperament and personality) traits that are more
direct expressions of gene effects, we might reduce heterogeneity and improve effect sizes
in a way that would facilitate the search for susceptibility genes.

But the situation has changed. Over the past two years, advances in genomic and statistical
methods, coupled with the availability of large sample sizes, have created a new opportunity
for gene discovery that has proven remarkably effective for identifying susceptibility genes
for complex diseases. Genomewide association studies (GWAS) using DNA microarray
(“gene chip”) technology have successfully identified loci influencing a broad range of
medical disorders, including autoimmune, cardiovascular, metabolic, and neoplastic
diseases.3 These methods have begun to be applied to psychiatric illness, and early results
are promising. Several specific variants have now been associated with bipolar disorder4,5
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(BPD), schizophrenia6,7 (SCZ), and autism.8 Notably, these findings were achieved using
DSM-defined disorder phenotypes rather than endophenotypes. These developments do not
necessarily mean that the endophenotype strategy for gene mapping is flawed. For one thing,
the intensity and cost of “endophenotyping” is high, so that GWAS using large samples have
not yet appeared. We believe, however, that the GWAS era provides a new and important
role for endophenotypes: the functional characterization of newly discovered genetic
variants that increase the risk of disease (or what are commonly referred to as “disease risk
variants”).

Finding a statistically significant association between a genetic polymorphism and a clinical
disorder is only the first step in understanding the role that genetic variants play in disease
pathogenesis. The next step is to understand the functional effect of such variants and how
they act to produce disease. As we argue below, we believe that endophenotypes can play an
essential role in this project.

PSYCHIATRIC GENETICS: CHALLENGES AND COMPLEXITIES
Early psychiatric genetic research focused on whether and to what degree genetic factors
influence psychiatric disorders. Family, twin, and adoption studies have consistently shown
that major psychiatric illnesses like SCZ and BPD are familial and among the most heritable
disorders in medicine.1

The evidence that genes influence risk for SCZ and BPD has motivated molecular genetic
research aimed at identifying the specific genetic basis of these disorders.9 Until recently,
these efforts have relied on linkage analysis (which examines the cotransmission of illness
and genetic markers within families to map disease genes to specific chromosomal
locations) or candidate gene–based association analysis (which requires specifying genes of
interest based on a hypothesized biological link with a disorder and then examining whether
variants in those genes are more common among affected versus unaffected individuals).10

Progress in mapping risk genes for SCZ and BPD, as well as for other psychiatric illnesses,
has been slow.9,11 Recent evidence suggests that this difficulty can be explained by the
complexity of these disorders, which likely involve a combination of common small-effect
polygenes and rare moderate-effect variants.12 That is, genetic risks may be the result of
many relatively common variations in the genome, each conferring modest effects (e.g.,
relative risks in the range of 1.1–1.5)3,4,6 along with multiple rare, but more highly
penetrant, mutations or structural variations (e.g. duplications, deletions, or other copy-
number variations).13,14 In this article, we use SCZ and BPD as especially instructive
examples since a large number of molecular genetics studies have been carried out in these
illnesses.

Beyond this genetic complexity, psychiatric disorders like SCZ and BPD are phenotypically
complex. While the constellations of symptoms used as diagnostic criteria in the most recent
Diagnostic and Statistical Manual of Mental Disorders (4th ed.) have been useful for clinical
practice, it is unlikely that they are the optimal phenotype definitions for genetic analyses.
Valid phenotype definition is a prerequisite to successful genetic studies. The diagnoses
enumerated in DSM-IV, however, are descriptive syndromes and categorical in nature.
Within each diagnostic category, individuals may be phenotypically and genetically
heterogeneous. Clinical boundaries between diagnoses are often blurred. One of the most
unexpected and important dividends of psychiatric genetic research has been the growing
evidence that genetic influences transcend the DSM categories. For example, evidence from
family, twin, and molecular genetic studies suggests that genetic influences on SCZ and
BPD overlap.15,16
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“ENDOPHENOTYPES” IN PSYCHIATRIC GENETICS
To address uncertainties about phenotype definition, the use of endophenotypes in genetic
analyses has been proposed as an alternative strategy to more directly assay the effect of
disease risk variants and thus accelerate gene identification. Endophenotypes are heritable,
disease-associated neurophysiological, cognitive, or neurobiological traits that are believed
to be in the etiological pathway (i.e., intermediate) between risk genotype and the clinical
syndrome but to be more proximally related to the genetic substrate than is the higher-order
construct of a “disorder.”2,17,18

Over the past decade, a large number of studies have tried to define intermediate
endophenotypes for psychiatric disorders. In SCZ and BPD, results suggest that a number of
neurocognitive processes and brain functions are robustly impaired in patients with these
illnesses and in their unaffected relatives—including attention, learning, memory, language,
sensory-input processing, inhibition, and emotional perception and regulation (see text
box).52–54 Direct assessment of the neurocognitive processes and brain functions associated
with illnesses may provide phenotypes that are more strongly influenced by disease-related
susceptibility variants, thereby enhancing the power of genetic-association studies.2,17,18

This alternative gene-mapping strategy has had some success. The Collaborative Study on
the Genetics of Alcoholism (COGA) project55 and genetic studies of SCZ using the
neurophysiological P50 sensory-gating endophenotype56 (see below) are two examples.
Linkage analyses of the COGA project using neurophysiological endophenotypes in
addition to clinical diagnoses have strongly implicated two genes—GABRA2 and CHRM2
—with alcohol dependence.55 The P50 sensory-gating endophenotype for SCZ has been
linked with a genetic marker at the α-7 nicotinic receptor subunit gene CHRNA7 that was
not initially seen when the categorical phenotype of SCZ was used.56 Recently, this gene
region was implicated in two large-scale, genomewide surveys of copy-number variants
deletions in patients with SCZ13 and related psychosis.14

Illustrated Classes of Endophenotypes Relevant to Psychiatric Diseases

Alzheimer’s disease

 Neurocognitive measures of memory performance19

 Reduced brain electrophysiological EEG activity20

Attention-deficit/hyperactivity disorder

 Structural brain imaging: reduced right prefrontal gray matter and left occipital gray and white matter21

 Functional brain imaging: prefrontal cortex and cerebellum deficits22

 Neuropsychological measures of inhibition23 and processing speed24

Autism

 Neuropsychological measures of social cognition25,26

Anxiety disorder

 Functional brain imaging: greater amygdala and insula activation to emotional faces27

 Temperament traits: negative affectivity/neuroticism, positive affectivity, behavioral inhibition, effortful
control28,29

 Neuropsychological measures of attentional bias toward stimuli relating to threats and negative emotions28

Bipolar disorder

 Structural brain imaging: alterations in gray and white matter30,54

 Neurophysiology: auditory P300; P50 sensory gating31,32,69

 Neuropsychological measures of executive function, verbal learning and memory,33 facial-emotion
processing,34 deficits in ventral prefrontal cortex– related inhibitory processes,35 attention36

 Temperament traits: affective temperament37
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Major depression

 Neuropsychological measures of cognitive function38

 Temperament trait: neuroticism28,39

 Clinical characteristics: number of episodes, duration of episodes, high levels of impairment, recurrent
thoughts of death or suicide40

Obsessive-compulsive disorder

 Structure brain-imaging: structural variation in brain systems related to motor inhibitory control;41 white
matter abnormalities in parietal and frontal regions42

 Neuropsychological and functional MRI measures of cognitive flexibility and motor inhibition43

Schizophrenia

 Structural brain imaging: smaller intracranial volumes,44 frontal and temporal gray matter reductions,45

hippocampal volume reduction46

 Neurophysiology: auditory P300, sensory-gating, eye-movement deficits31,47,70,80

 Functional brain imaging: dorsolateral prefrontal cortex dysfunction18

 Neuropsychological measures of attention, executive function, working memory, processing speed47

 Clinical features: thought disorder,48 schizotypal personality disorder49

Substance-related disorders

 Neurophysiology: resting EEG, visual P300 event-related potential50,51

GENOMEWIDE ASSOCIATION STUDIES
Within the past two years, the advent of GWAS has begun to have a major impact on our
understanding of the genetics of complex diseases.3 Instead of focusing on candidate gene–
based association analysis, GWAS methods survey the whole genome using up to one
million or more genetic markers (typically single nucleotide polymorphisms). The ultimate
aim of the GWAS design is “to capture all common genetic variation across the genome and
to relate this variation to disease risk.”57 This strategy has been made possible through a
combination of advances in technology (microarray genotyping), population genetics (the
cataloguing of genetic variation through the International HapMap project), and advances in
statistical methods.

GWAS has provided a powerful tool for identifying common modest-risk variants and has
already proven effective in many areas of medicine.3 Very large samples of cases and
controls (on the order of thousands or even tens of thousands) are typically required. A
critical advantage of GWAS strategy is that it provides a systematic and relatively unbiased
screening of the entire human genome that can lead to the discovery of previously
unsuspected susceptibility variants.58 This type of screening is especially valuable in the
case of psychiatric disorders for which our understanding of pathogenesis remains limited.59

In the past year, compelling results from large case-control samples have emerged using this
strategy for BPD and SCZ.60 The recently established Psychiatric GWAS Consortium
(PGC: https://pgc.unc.edu/pgc/index.php)61 is combining GWAS data across multiple
studies to identify convincing genotype-phenotype associations for major psychiatric
disorders (including BPD, SCZ, attention-deficit/hyperactivity disorder, autism, and major
depressive disorder). Statistical power of the PGC meta-analyses will be superior to any
prior study in psychiatric genetics, offering hope that many common disease risk variants
will be uncovered in the next few years.

Identification of validated susceptibility variants is a crucial step, but it is only the first step.
Once statistical evidence of associations between disease risk variants and psychotic
diseases is established, the work of defining the functional effects of these variants becomes
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critically important.12,62 Association analyses by GWAS can identify susceptibility genes
but do not address how risk variants affect alterations in brain function that characterizes the
disease. Dissecting the effects of risk genes on distinct domains of brain function can
provide essential biological insights into the mechanisms by which these genes may produce
illness.

ENDOPHENOTYPES AS A TOOL FOR CHARACTERIZING RISK GENES
As we noted above, the primary application of the endophenotype strategy to date has been
to facilitate the identification of risk genes for particular diseases. However, the success of
large-scale GWAS studies suggests another important role for endophenotypes—namely, to
characterize how risk variants are related to neurobiological and neurophysiological
phenotypes that underlie psychiatric disorders. That is, the application of endophenotypes
can move the focus of research from the realm of gene discovery to the realm of functional
characterization. Follow-up association analyses of risk alleles with one or more
endophenotypes offer a strategy for elucidating the neurobiological or pathophysiological
characteristics of risk variants and the mechanisms by which specific variants contribute to
disease.

For example, GWAS analyses have revealed that variations in the ANK3 (ankyrin G) and
CACNA1C (alpha 1C subunit of the L-type voltage-gated calcium channel) genes are
associated with susceptibility to BPD.4,5 Although these results are among the most
statistically strong to date, neither of these genes was previously even considered as a
candidate risk gene, and their role in the neurobiology and neurophysiology of BPD remains
unclear. One resource for characterizing such effects is well-validated endophenotypic
measures of brain dysfunction in mood and psychotic disorders. We suggest that
“endophenotype mapping” of susceptibility genes for BPD and SCZ may help elucidate the
specific domains of brain function influenced by the relevant disease risk variants. As noted
above, a substantial effort has been made in the past two decades to characterize
neurophysiological and psychological endophenotypes for BPD and SCZ. In
neurophysiology, evidence indicates that a number of cognitive processes and brain
functions are robustly impaired in patients with psychotic illnesses. For example, altered
P50 sensory-gating responses, reduced amplitude and delayed latency in auditory P300
event-related potentials, and reduced neural oscillations in the gamma frequency band are
robust findings in patients with SCZ and common in BPD.63–67 Twin and family studies
have indicated that these neurophysiological alterations in the brain are heritable traits.68–71

In addition, these traits appear to capture dissociable components of neurocognitive
function:72 auditory P50 suppression is an index of sensory gating and inhibitory
mechanisms;73 P300 amplitude and latency reflect attention-directed information
processing;74 and gamma band response appears to reflect cortico-cortical neuronal
communication, synchronization, and integration processes.75 Because the cognitive
domains of these (and other) endophenotypes have been well characterized, they provide a
resource for mapping confirmed disease risk alleles onto specific brain functions. In
addition, they allow us to examine whether a disease risk variant is related to single or
multiple (pleiotropic) cognitive processes that underlie psychiatric diseases. In other words,
association analyses of multiple endophenotypes could clarify which risk variants have
effects that transcend different cognitive and affective processes, and which variations
contribute uniquely to specific brain functions.

In addition to indexing the function of specific brain processes, endophenotype mapping
could also help illuminate the neurobiological mechanisms or neural circuits by which novel
risk genes exert their pathogenic effects. For many endophenotypes, the underlying
mechanisms and brain circuits have been well studied by drug challenge investigations,
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animal models, and genetic quantitative trait linkages.2,17,18,53 Findings emerging from
these studies have implicated various neurobiological mechanisms in the etiology of
psychotic and affective disorders. For example, dopaminergic hypofunction has been linked
to working-memory deficits of the dorsolateral prefrontal cortex in SCZ18 and to abnormal
temporaparietal P300 amplitude;76 dysregulation between glutamate receptor–mediated
excitation and the GABAergic neuron–mediated inhibition feedback loop is proposed as one
of the neurobiological mechanisms responsible for abnormal gamma oscillations in
SCZ;77,78 and disturbances in hippocampal cholinergic circuits are considered one of the
main contributory mechanisms to P50 gating deficits in SCZ and BPD.79,80 Thus, evidence
of associations between novel disease risk genes such as ANK3 or CACNA1C and
endophenotypes would suggest a possible connection between risk genes and the biological
mechanisms that are known to mediate altered endophenotypes.

Finally, we suggest that endophenotype mapping of disease risk genes could inform the
evolution of psychiatric nosology. It has been argued that the canonical diagnosis
classification system of DSM-IV does not reflect the underlying etiology of psychiatric
disorders.15,81 For example, growing evidence from family, twin, and molecular genetic
studies suggests that genetic influences on mood and psychotic disorders transcend DSM-
based categories.15 Psychosis is a core feature of SCZ and is common in BPD; many
patients with SCZ exhibit symptoms of depression and mania;82 schizoaffective disorder,
which has prominent symptoms of both psychosis and mood disorder, occurs at similarly
increased rates in SCZ83 and BPD84 families; and molecular genetic studies have
highlighted a number of candidate loci and genes influencing both SCZ and BPD.15,85,86

These findings have led some investigators to propose that SCZ and BPD share some risk
genes and that these shared genes predispose individuals to psychosis in general.15,81,87 We
suggest that endophenotype mapping may shed light on such questions. At the clinical level,
studying multiple endophenotypic traits within a patient sample may help identify
homogeneous bio-cognitive subtypes across diagnostic categories by classifying patients
based on similar neuropsychological/cognitive functional-deficit profiles (e.g., deficits in
frontal working memory, executive functioning, inhibitory control, and selective attention).
These profiles, in turn, can be examined in relation to formal diagnoses, clinical phenotypes,
genetic loading, and other variables that may optimize the usefulness of these classifications.
Evidence that endophenotypes are associated with susceptibility genes specific to either SCZ
or BPD would suggest that the diagnostic categories reflect distinctive etiologies, whereas
evidence of association across disorders would suggest an overlapping pathogenesis. Thus,
endophenotypes in this context could be used to test the validity of the clinical classification
of the disorders.

CONCLUSION
The search for the genetic causes of psychotic illnesses has been a focus of psychiatric
genetics research. GWAS has provided a powerful tool for gene identification, and progress
in gene discovery is accelerating rapidly. The functional characterization of newly
discovered risk variants now becomes a key project for psychiatric genetics. Successes in
susceptibility gene identification have created a new and important role for endophenotypes
studies, moving beyond the realm of gene identification to the realm of functional
characterization of risk variants and etiological profiling of psychiatric disorders. As the
number of validated disease genes increases and as our understanding of the
neurophysiology underlying endophenotypes improves, these new uses for endophenotypes
should become increasingly important. The processes of elucidating the functional effects of
disease risk variants will provide essential insights into the mechanisms by which these
genes may produce illness—and, as a consequence, into the means for improving treatment
and prevention.
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