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Emerging infectious diseases (EIDs) pose a significant threat to
human health, economic stability, and biodiversity. Despite this,
the mechanisms underlying disease emergence are still not fully
understood, and control measures rely heavily on mitigating the
impact of EIDs after they have emerged. Here, we highlight the
emergence of a zoonotic Henipavirus, Nipah virus, to demonstrate
the interdisciplinary and macroecological approaches necessary to
understand EID emergence. Previous work suggests that Nipah
virus emerged due to the interaction of the wildlife reservoir (Pter-
opus spp. fruit bats) with intensively managed livestock. The
emergence of this and other henipaviruses involves interactions
among a suite of anthropogenic environmental changes, socioeco-
nomic factors, and changes in demography that overlay and in-
teract with the distribution of these pathogens in their wildlife
reservoirs. Here, we demonstrate how ecological niche modeling
may be used to investigate the potential role of a changing climate
on the future risk for Henipavirus emergence. We show that the
distribution of Henipavirus reservoirs, and therefore henipavi-
ruses, will likely change under climate change scenarios, a funda-
mental precondition for disease emergence in humans. We assess
the variation among climate models to estimate where Henipavi-
rus host distribution is most likely to expand, contract, or remain
stable, presenting new risks for human health. We conclude that
there is substantial potential to use this modeling framework to
explore the distribution of wildlife hosts under a changing climate.
These approaches may directly inform current and future manage-
ment and surveillance strategies aiming to improve pathogen de-
tection and, ultimately, reduce emergence risk.

Emerging infectious diseases (EIDs) are a major threat to
global public health (1). Here, we define an EID according to

Jones et al. (2) and include all infectious diseases (i.e., caused by
prions, viruses, bacteria, or eukaryotic pathogens) that have re-
cently (within the past 60 y) (i) expanded their geographic range
[e.g., West Nile virus (WNV)], (ii) infected humans for the first
time [e.g., severe acute respiratory syndrome (SARS) coronavi-
rus], (iii) evolved into new strains (e.g., triple reassortant in-
fluenza A/H1N1), or (iv) increased their pathogenicity (e.g.,
hantavirus pulmonary syndrome). Diseases that have affected
humans historically but have recently increased in incidence or in
the size of their outbreaks are also considered emerging. The
impact of EIDs varies from those causing relatively few cases and
little mortality to those that spread over continental areas or
globally (e.g., Chikungunya virus, SARS) and those that cause
significant mortality (e.g., drug-resistant tuberculosis, HIV/
AIDS). With increasing dependence on international networks
of travel and trade for our globalized economy, EIDs that spread
through these networks may have a high economic impact (e.g.,
SARS, highly pathogenic avian influenza (3)]. For these reasons,
efforts to understand the causes of EIDs and to predict their
future emergence have become part of a global strategy for
addressing this public health threat (4). Previous analyses suggest
that demographic and anthropogenic environmental changes are

the key underlying causes or “drivers” of disease emergence (5–
7). These include ecological, political, and socioeconomic driv-
ers, such as climate change, urbanization, international travel
and trade, land use change and agricultural intensification, and
breakdown of public health measures. The anthropogenic nature
of EID drivers suggests that strategies to influence anthropo-
genic activities directly may minimize emergence or spread. For
example, prevention strategies might influence agricultural de-
velopment (e.g., better sanitation in backyard poultry pro-
duction), social behavior (e.g., improving hygiene or hunting
practices), or demographic changes (e.g., patterns of human
travel, trade, and migration). It is therefore useful to identify the
underlying causes of EIDs as part of a broad strategy to prevent
their emergence.

Interdisciplinary Studies of EID Drivers
Studies of the underlying causes of disease emergence might assist
in forecasting or predicting future emergence of novel pathogens
(8–11). However, these studies require interdisciplinary efforts
(12) and significant time, and are inherently difficult and costly.
One reason for this is that drivers of disease emergence usually
represent multidecadal temporal shifts in the underlying envi-
ronmental or demographic state. For example, WNV was first
identified in the New World in 1999, in Queens, New York, ad-
jacent to two international airports (13), and analyses suggest that
air travel is the most significant risk for future spread (14). It is
therefore reasonable to hypothesize that WNV emerged in the
Americas due to increasing air travel during the 20th century (15).
However, to test this, and to deduce when critical thresholds of
travel necessary for successful invasion occurred, would require
multidecadal data. These would include data on the expansion of
air travel networks and routes, on the capacity of airplanes to
transport mosquitoes, on the prevalence of pathogens in vectors
at all source countries, and on the capacity of vectors in the target
country to carry these pathogens, among others. Similarly, it has
been hypothesized that the pathogen responsible for pandemic
AIDS (HIV-1) was first introduced into humans through the
hunting and butchering of chimpanzees (16). There is substantial
molecular evidence for this, including the genetic similarity of
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simian immunodeficiency virus from chimpanzees (SIVCZ) point-
ing to initial spillover events during the early 20th century (17).
However, to test this hypothesis, and to identify why HIV/AIDS
emerged in people as a pandemic in the 20th century despite
many thousands of years of primate hunting in the region, would
require data on trends in bush-meat hunting, butchering, and
consumption in Central and West Africa during the past 150 y. It
would also require data on the sociological and demographic
changes in the region that lead to expanding human-to-human
transmission (18). A range of theories on what would turn an SIV
spillover event into stuttering chains of transmission and, ulti-
mately, a pandemic have been proposed, including vaccine pro-
duction (19), historically high incidence of genitourinary disease
(20), and travel and trade (19). Data on each of these would also
be required. Thus, understanding disease emergence is inherently
a multidisciplinary challenge.

Uncovering the Underlying Drivers of Nipah Virus
Emergence
The complex interdisciplinary nature of disease emergence can
be highlighted by the emergence of Nipah virus (NiV), a zoo-
notic paramyxovirus lethal to humans. NiV first emerged in
Malaysia in 1998 during an outbreak that caused more than 100
human deaths (21). This paramyxovirus has fruit bat (Pteropus
spp.) reservoirs, and the virus was first transmitted to domestic
pigs, in which it caused respiratory pathology and allowed
transmission to people via droplets. The initial spillover of NiV
occurred on a pig farm in which fruit trees were planted next to
pigsties as a source of additional revenue and to increase shade,
and it is thought that these trees attracted fruit bats. However,
given that pigs have been produced in Malaysia for many deca-
des, it has remained unclear until recently why NiV first spilled
over to people in the late 1990s. It was proposed that burning of
forest fires in Sumatra, linked to anthropogenic deforestation
during an El Niño southern oscillation (ENSO) event, forced bat
migration from Sumatra to Peninsular Malaysia and introduced
the virus into the index farm region (22). Sumatran forest fires
have been linked previously to coral die-offs (23), and they cause
regular haze events in the dry season in Peninsular Malaysia,
which were particularly intense during late 1997. To test this
hypothesis, the earliest known cases of human NiV cases were
identified and found to have occurred on the index farm months
before the ENSO-driven haze events (24). The pattern of in-
fection in fruit bats was examined over a 5-y period, and it was
shown that NiV antibodies were widespread, suggesting that the
virus was regularly transmitted among bats and that NiV was not
newly introduced (24). In addition, satellite telemetry showed
regular bat movement between Sumatra and Peninsular Malay-
sia (25), suggesting that the range distribution of the bat host,
and therefore NiV, as we argue below, historically included
Peninsular Malaysia.
Significant evidence now exists for an alternative hypothesis

that changes to the production of livestock drove the emergence
of NiV (24). To test this, multidecadal data on pig and mango
production from the Food and Agricultural Organization and the
Malaysian Ministry of Agriculture and detailed data from the
index farm on pig production before the outbreak were exam-
ined. Mathematical modeling of NiV transmission dynamics
within the index farm showed that the initial introduction of NiV
would have led to a large and rapid epizootic, increased pig
mortality, and herd immunity, driving the virus extinct within 1–2
mo. The history of the first five human cases in 1997 is consistent
with this evidence. However, human cases continued for over 18
mo, culminating in a full-scale outbreak. The model suggests that
NiV must have been reintroduced into the pig population to
persist for this period. Such reintroductions are plausible, given
that field surveys identified a fruit bat colony within 10 km of the
index farm (24). It appears that the initial introduction of NiV
created a “priming” effect that allowed a secondary introduction
to persist in what was then a partially immune population. As
pigs born after the initial event gradually lost their maternal

antibodies, they became susceptible and allowed NiV persistence
for periods similar to those observed at the index farm. The
emergence of NiV in Malaysia was thus the product of two
drivers. First, agricultural intensification, in the form of in-
creased commercial pig production and patterns of dual-use
agriculture, created a pathway for the repeated transmission of
NiV from fruit bat reservoirs to pigs. Second, the initial spillover
primed the pig population for persistence of the pathogen on
reintroduction, in turn, leading to increased transmission among
pigs and to humans. Once infected pigs were sold outside the
region, the opportunities for greater human exposure, infection,
and disease followed.
This case study illustrates the difficulty in testing complex hy-

potheses on disease emergence. It required empirical approaches
at different scales, from the laboratory to the field, and multi-
decadal data on hypothesized drivers of emergence, or proxies
for unavailable data. The study used mathematical modeling as a
framework for these empirical data to be used to test key hy-
potheses. Importantly, it required commitment of resources to
multidisciplinary teams for several years.
This type of case study has value not just in understanding why

a specific disease emerged but in providing a pathway to predict
and prevent future disease emergence. To push the science of
disease emergence forward, novel approaches to data collection,
analysis, and collaboration are required. In particular, studies
will need to use a causal inference approach to test complex
interactions, tipping points, and multiple drivers, and not just
simple hypotheses of single causation (26). Although mathe-
matical modeling is often critical to testing complex hypotheses,
most approaches involve making basic assumptions about host
and pathogen dynamics, how environmental changes affect
these, and how host ranges are directly coupled to pathogen
occurrence. Studies to elucidate the rules governing these
assumptions may significantly improve modeling strategies. Be-
cause disease emergence occurs over multiyear or multidecadal
periods, archival samples have proven valuable in some studies
(27, 28). These would need to be collected systematically and in
large enough numbers to give statistical power to identify the
presence or absence of diseases, particularly for those found at
low prevalence. In addition, samples collected for disease studies
often need specific preservation for diagnostic testing. Finally,
understanding disease emergence requires collaboration across
the biological, physical, and social sciences (29, 30). Drivers of
disease emergence are often directly related to anthropogenic
change; therefore, studies that analyze how changes in socio-
economic factors alter pathogen dynamics will be particularly
useful for understanding past disease risk and predicting future
disease risk. This approach has been used successfully to analyze
how travel and trade drive the risk of disease spread (14, 31–33),
but it has not yet been applied extensively to understand disease
emergence.

Climate Change as a Potential Driver of Disease Emergence
The NiV case study demonstrates how understanding the causes
of disease emergence requires analysis of long-term historical
datasets of host and pathogen dynamics and of the hypothesized
anthropogenic drivers. Climate change has been hypothesized as
an underlying driver of disease emergence in a number of cases,
including directly transmitted pathogens (e.g., hantavirus, Ebola
virus, NiV) and vector-borne or water-borne diseases, such as
malaria, dengue, and cholera (12, 34–38). Examining linkages
between climate change and biological phenomena is difficult,
and requires historical time-series data that do not usually exist
for emerging diseases. In some cases, these data are easily ac-
quired. For example, colonial studies of malaria cases have been
used to test whether emergence of malaria is influenced by cli-
mate change (39, 40), climate variability (41), drug resistance
(42), or other factors associated with socioeconomic develop-
ment (43). However, discerning causation from correlation has
proven difficult. Models of malaria distribution at larger spatial
and temporal scales suggest that, globally, malaria has receded
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over the past century (44, 45), and this recession is most signif-
icantly due to the success of public health interventions rather
than climate change (44).
These studies all rely on analyses of historical data on disease

occurrence. However, the link between climate change and dis-
ease may be better investigated using predictive models that aim
to forecast future disease emergence risk under climate change
scenarios. This approach has been adopted for vectors of some
diseases [e.g., malaria (Anopheles gambiae) (46)] and those with
an environmental reservoir [e.g., Bacillus anthracis (47)]. Vectors
often have a strong link to climate due to their requirement of
water bodies for reproduction, as well as the direct impact of
temperature changes on their growth rates, biting rates, and
population expansion. However, a recent analysis of one of the
most comprehensive databases of EIDs currently available in the
literature showed that only 22.7% (76 of 335) of EID events
identified from 1940 to 2006 were vector-borne, with 77.3% (259
of 335) being directly transmitted. Thus, applying climate models
to directly transmitted pathogens may provide a useful strategy

to predict future emergence risk. For directly transmitted
pathogens, climate change may affect the distribution of a
pathogen’s reservoir host (e.g., mice for hantavirus, frugivorous
bats for Ebola virus) or the host’s food source (e.g., grasses for
hantavirus reservoirs, fruiting trees for Ebola virus reservoirs).
Thus, assuming that pathogen and wildlife host distributions are
linked, predictive models may provide an improved under-
standing of potential climate change impacts on the distribution
of directly transmitted EIDs.

Correlative Ecological Niche Modeling as a Tool for Studying
Disease Emergence Under Climate Change
Ecological niche modeling (ENM) is a widely used tool to in-
vestigate the potential distributions of species under scenarios
of environmental change. This technique employs a range of dif-
ferent algorithms [generalized linear model, generalized additive
model, genetic algorithm for rule-set production, and MaxEnt;
reviewed in (48)] to estimate the relationships between point-lo-
cality data, such as museum collection records or field observations

Table 1. Examples of published studies with applications of ENM to pathogen distribution

Pathogen/disease/species Pathogen type Scale Algorithm Validation Time Ref.

Vibrio cholerae Free-living bacterium Central California Mantel Bootstrap Current (97)
Yersinia pestis Vector-borne bacterium Western Usambara

Mountains of Tanzania
GARP Jackknife Current (98)

H5N1 avian influenza Directly transmitted virus India, Bangladesh, Nepal,
and Pakistan

GARP Actual outbreak
locations

Current (99)

Coccidiomycosis Fungus with
environmental spores

Southern California,
Arizona, and Sonora

GARP Available
epidemiological
data

Current (100)

Bacillus anthracis Bacterium with
environmental spores

United States GARP AUC Current (101)

Triatoma brasiliensis Vector-borne protozoan Northeastern Brazil GARP Points sample from
test data

Current (102)

Campylobacter jejuni Enteric bacterium 100 km2 around Cheshire,
United Kingdom

GAM, UPGMA Simulation data from
the null model

Current (103)

Range of parasites Microparasites
(e.g., viruses, bacteria,
protozoa),
macroparasites
(helminths), and
ectoparasites
(arthropods)

North America Correlations N/A Current (104)

Bat-related pathogens N/A South America MaxEnt Jacknife, ROC, AUC Current (105)
West Nile encephalitis Vector-borne virus,

Culex pipiens
Illinois, Indiana, and Ohio GARP Independent datasets Current (106)

Chagas, Trypanosoma
cruzi

Vector-borne protozoan South America NODF Bootstrap Current (107)

H5N1 Directly transmitted virus West Africa GARP Binomial probabilities Current (108)
Filoviruses Directly transmitted virus Africa GARP N/A Current (55)
Chagas, Trypanosoma
cruzi

Vector-borne protozoan Mexico GARP None Current (56)

Leishmaniasis Vector-borne protozoan North America MaxEnt AUC Future (95)
Leishmaniasis Vector-borne protozoan,

Lutzomyia
South America GARP Bootstrap Future (109)

Leishmaniasis Vector-borne protozoan Spain Negative binomial
regression

Independent dataset Future (110)

Malaria Vector-borne protozoan Africa GARP Independent dataset Future (46)
Dengue Vector-borne virus Mexico GARP Actual case data Past (111)

Scales of studies varied from state or county levels (e.g., Illinois; Cheshire, United Kingdom) to continental scales (e.g., Africa). Few studies focused on the
effects of climate change on the distribution of directly transmitted pathogens, focusing instead on vector-borne or free-living pathogens. A combination of
key words was used to search the International Statistical Institute Web of Science: (environmental niche model* OR ecological niche model* OR species
distribution model* OR predictive habitat distribution model* OR climate envelope model* and disease* OR pathogen*); nearly 73% of ENM studies referred
to vectors or an environmental reservoir (vector* OR environ* reservoir* OR environ*), whereas only 27% of studies referenced a directly transmitted
pathogen without vectors or an environmental reservoir [host*NOT (vector* OR environ* reservoir* OR environ*)]. AUC, area under the curve; GAM,
Generalized Additive Model; GARP, Genetic Algorithm for Rule-set Production; N/A, Not Applicable; NODF, Nestedness overlap and decreasing fills; ROC,
receiver operating characteristic; UPGMA, Unweighted Pair Group Method with Arithmetic Mean.
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of species’ occurrences, and spatial information on factors that
constrain species distributions (e.g., climate, vegetation, other
biophysical attributes). This correlative method can use the re-
alized niche as represented by occurrence records to help char-
acterize the ecological or fundamental niche of the species (49).
The relationships derived can then be used for extrapolating
species distributions into different geographic regions or under
different climates (50, 51). This technique is now used widely in
the fields of ecology, evolutionary biology, conservation biology,
agricultural science, and public health (52). However, like any
statistical modeling approach, ENM requires careful consider-
ation of inputs (e.g., reliability and representativeness of occur-
rence records; sampling bias; quality of plausible spatial drivers,
such as environmental layers) and model assumptions (e.g., what
is being modeled, equilibrium assumptions, implicit inclusion of

species interactions, extrapolation beyond the training region) to
ensure that results are biologically plausible.
ENM was first used to make ecological predictions of the

distribution of wildlife species from occurrence data. This has
been applied to some wildlife diseases (53) and is increasingly
used to estimate the current distribution of human pathogens
[e.g., monkeypox (54)] based on climate, other environmental
parameters, and reported human cases of infection (55, 56).
These studies show how correlative models may also be used to
guide the collection of new information to improve predictions
iteratively. Nevertheless, in the case of monkeypox, one un-
resolved question relates to the role of the as yet unidentified
monkeypox virus reservoir (assumed to be wildlife, with one
confirmed positive record from a squirrel) and its relationship
with human cases of disease.

A

B

C

D E

Fig. 1. Conceptual model of our methods. (A) Models of a single species’ current bioclimate, based on Worldclim. (B) Projected future suitable bioclimate
based on 20 downscaled GCMs, where presence was defined as suitable by at least 50% of the GCMs. (C) Expansion/contraction maps based on the sub-
traction of the present from the future multi-GCM predictions. (D) All 13 species expansion/contraction maps were combined into three composite maps that
show habitat expansion, contraction, and stability. (E) Synthetic map across GCMs and species that shows habitat expansion, contraction, and stability.
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The predominance of ENM studies using vectors and reser-
voirs as proxies for pathogen spatial distributions may also be
explained by the relative paucity of clinical data on zoonotic
infections in people. For example, Chagas disease risk areas were
predicted based on the association of bioclimatic habitat for
Chagas vectors (Triatoma spp.) and their wildlife host, packrats
(Neotoma spp.) (56). Despite the dominance of directly trans-
mitted zoonotic EIDs in the emerging disease literature (2), the
geographic distribution of reservoir hosts has rarely been used to
model directly transmitted pathogen distributions (57) (Table 1).
Host distribution has typically been used indirectly in ENMs. For
example, the identities of potential mammal reservoir hosts for
Ebola and Marburg viruses in Africa were deduced by inter-
secting mammal distributions with an ENM of the two pathogens
based on occurrence records in humans and nonhuman primates
(55, 58). Because the distributions of pathogens are usually
strongly linked to the distribution of their hosts, efforts to fore-
cast future disease emergence should include a component that
investigates the potential expansion or contraction of host species
distributions. The past decade has seen a rapid expansion in the
availability of spatial data on species distributions, from global
databases such as the Global Biodiversity Information Facility, to
those focused on a taxonomic group or geographic region [e.g.,
VertNet (59)]. Time series analyses linking spatial data on bio-
diversity and climate have demonstrated realized geographic
shifts of up to 60 km per decade in response to climate change
from mammals in Yosemite (60) to moths in Borneo (61), among
others (62, 63). The magnitude of future range shifts by wildlife
in response to changing climates is likely to increase (64), pro-
viding new opportunities for pathogens from one species to make
contact with another. Although the outcomes of range shifts may
be less frequent species interactions in some cases, the wide
distribution of humans and livestock suggests that EID risk will,
on balance, increase as reservoir hosts make contact with human
or livestock populations for the first time. These interactions will
be complex, and the risk for disease emergence may be further
increased as human populations and livestock are displaced di-
rectly in response to climate change (10, 12, 65). Advancing
methods to investigate, and perhaps forecast, the magnitude and
direction of climate-induced range shifts could help prioritize
where preventative public health resources should be allocated.
These approaches will naturally be multidisciplinary and will
include projections on socioeconomic factors, such as migration,
trade routes, and livestock production trends.

Case Study: Predicting the Future Potential Distribution of
Emerging Henipavirus Reservoirs Due to Climate Change
In this case study, we use ENM to investigate how the distribu-
tion of bats known to be reservoirs of lethal emerging viruses
(Henipavirus spp.) may shift under modeled future climates, thus
altering the risk for disease emergence from this group. Two
species of viruses are known from this genus, NiV and Hendra
virus (HeV), and other likely members have been identified re-
cently in bats (66). We used the distribution of Henipavirus bat
reservoir hosts as a proxy for viral distribution and modeled the
bioclimatic range shifts of these hosts under numerous models
of potential future climate change. We believe this “proxy” ap-
proach is valid because (i) serological studies have reported
evidence of circulating henipaviruses in all Pteropus species in
which testing has been conducted using validated laboratory
assays (including 9 species in 10 countries across a large pro-
portion of the global range of the genus) (25, 67–69); (ii) the
species of bats known to harbor henipaviruses often overlap in
range, roost together, are highly mobile, and are often migratory
(25, 70, 71), suggesting ease of inter- and intraspecific viral
mixing; and (iii) henipaviruses occur at high seroprevalence (20–
60%), and data on PCR detections and isolations suggest that
they are ubiquitous within host species (25, 66, 68, 69, 72). Al-
though this does not prove that host and pathogen distributions
are entirely congruent, it is probable that they are very strongly
correlated. This approach does not produce a simple proxy for

future disease emergence events in humans because socioeco-
nomic and demographic factors influence emergence. Under
climate change, some of these factors will themselves shift in
magnitude and distribution. However, the presence of the
pathogen in a region is a prerequisite for these other factors to
drive emergence, and understanding potential shifts in Henipa-
virus host distributions is therefore critical to understanding fu-
ture risk under climate change scenarios.
To deal with observational data limitations and uncertainty in

current and future climatic layers, we used an ensemble-model-
ing approach to forecast the impacts of climate change on the
geographic distribution of Henipavirus hosts (73, 74) (Fig. 1). We
used georeferenced museum specimen data coupled with field-
collected global positioning system and satellite telemetry data to
model the current and future distribution of 13 species of bats
reported in the literature as reservoirs of either NiV or HeV (SI
Appendix, Table S1). The full details of the model parameters,
methods, calibration, caveats, and justification of our approach
are given in SI Appendix. Briefly, for each host species, we
obtained known specimen localities from museum sources and
filtered these for inconsistencies using International Union for
Conservation of Nature range distribution maps to generate an
occurrence dataset for bat Henipavirus reservoirs. Nineteen
bioclimatic variables at a resolution of 2.5 arcs per minute (∼5
km2) were used to generate current and future bioclimatic niches
(SI Appendix, Table S2). To explore future climatic conditions,
we used a single midcentury time slice (2050) and the In-
tergovernmental Panel on Climate Change A2 greenhouse gas
emissions scenario, which assumes “business as usual” continued
emissions throughout this century (75). The aim of this approach
was not to compare the influence of alternative emission sce-
narios on the future distribution of the bat Henipavirus reservoirs
but to demonstrate the utility of ENM for forecasting potential
range shifts of the hosts of directly transmitted pathogens.
All niche models were generated using MaxEnt v3.3.3e be-

cause of its established performance with presence-only data and
its built-in capacity to deal with multicolinearity in the environ-
mental variables. We created subsets of each species’ locality
observations using a spatially structured partitioning procedure
(SI Appendix, Fig. S1) to deal with autocorrelation and reported
the area under the curve to summarize model performance (SI
Appendix, Fig. S2). Each resulting simulation for the current
conditions was converted into a presence/absence map, which
was then evaluated using an independent field-derived dataset
of bat roosts and foraging location, NiV prevalence, and NiV
seroprevalence (SI Appendix, Table S3). The presence/absence
maps for each species were combined into a final current niche

Fig. 2. Synthetic generalization of the predicted expansion and contraction
potential climatic habitat for the midcentury A2 emission scenario based on
20 GCMs and 13 bat species. Because each species was modeled individually,
expansion is defined as the presence of at least one species and no change in
the other species and contraction was defined as the absence of at least one
species and no change in the other species.
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model representing the sum of all 100 iterations. Each one of the
final current bioclimatic niches for the bat species were then
projected into the midcentury using 20 alternative global circu-
lation models (GCMs) (SI Appendix, Table S4), converted to
presence/absence maps using the same threshold rule as the
current conditions models, and then combined into a single
output representing the sum of the presence/absence maps for
each of the 100 simulations for each of the 20 GCMs.
To produce a summary forecast of the potential future dis-

tribution of each Henipavirus bat host, we next combined the 20
future projections for each species into a single map, where
presence was defined as a pixel that was predicted to contain the
species in at least 50% of the 20 GCMs. Contrasting the current
modeled distribution and the midcentury projections, we calcu-
lated the expansion and contraction in the distribution of suit-
able bioclimatic habitat (SI Appendix, Figs. S3–S29). A synthesis
map integrating the results across all bat host species’ dis-
tributions yielded an ensemble estimate of midcentury climate
change-induced distributional expansion/contraction for the
Henipavirus bat host complex (Fig. 2).
Summing across all models, the ensemble forecast of suitable

bioclimatic distribution highlights regions of broad agreement
among climate models, describing areas of expansion (Fig. 3A),
contraction (Fig. 3B), and stability (Fig. 3C) in Henipavirus host
distributions. By midcentury, a significant increase in the geo-
graphic area of the potential habitat suitable for Henipavirus bat
host species is projected for parts of western Africa, western
India, and northern Australia, among other regions. Recently,

expansion of the range of Pteropus spp. has been reported in
Australia (76), and HeV cases have also recently expanded
southward along the eastern coast of Queensland and New South
Wales (77), tentatively suggesting that model predictions are
consistent with recent observations. The mechanisms by which
climate could be linked to the geographic distribution of fru-
givorous bat Henipavirus hosts are most likely related to their
food source. Frugivorous bats, particularly pteropodid bats, are
highly mobile, and their local and long-range movements are
driven by roost habitat and food resource availability (70, 78–80).
Local abundance of fruit bat species in Malaysia, for example,
has been shown to fluctuate with fruit availability (81). In
Southeast Asia, sporadic fruiting patterns of hardwood tree
species are affected by temperature, and cooler La Niña patterns
are required for fruiting bursts (82–84). Such associations be-
tween fruit bats and the resources on which they depend (and
that define their distributions) are implicitly captured in our
distribution models. El Niño-related droughts and forest fires,
which are increasing in frequency in Southeast Asia, could lead
to a reduction in annual rainforest fruit production, and there-
fore food resource availability for frugivorous species, including
Pteropus bats (85). Above all, die-offs of pteropid bats have been
reported in association with heat waves in these regions (86),
suggesting that these bats will need to track their optimal climate
niche to cooler latitudes or altitudes, thus expanding and/or
contracting their home ranges.
Our host range distribution projections have direct relevance

to efforts to control NiV, which is the cause of repeated outbreaks
of encephalitis in Bangladesh and India (87, 88), and HeV,
which has recently undergone an unprecedented series of spill-
over events in Australia (89). Expansion or shifts in the range of
pteropid bats due to warming temperatures could have an impact
on the circulation of Henipavirus and spillover risk in three main
ways. First, the current distribution of the hosts (and associated
pathogens) may shift geographically, altering emergence poten-
tial in the region. Second, decreased local food resources and/or
extreme weather events (e.g., heat waves) could place bat pop-
ulations under physiological stress, leading to immune suppression
and prolonged viral shedding, as well as increased viral incidence
within populations, as may be the case with HeV in Pteropus
scapulatus (90). Second, reduced food production in forest envi-
ronments may lead bats to seek cultivated fruit, which is con-
sistently available year-round. Preferential feeding on human-
cultivated fruit or other plant products, or simply the availability
of cultivated fruit in the absence of natural forage, may increase
the risk for viral spillover to people or livestock, as was seen with
NiV in Bangladesh (transmitted via date palm sap) and Malaysia
(transmitted via mangos fed to pigs) (21, 91).
Projections of Henipavirus reservoir range expansion produced

in the current study could be used to aid monitoring and pre-
vention efforts in those areas most at risk for future disease in-
troduction. These could include surveillance of bats at the edges
of their current distribution; diagnostic laboratory capacity
building in regions where new cases of the disease are expected;
and enhanced surveillance of hospitals for cases of encephalitis,
a primary symptom of Henipavirus infection in people (92, 93).

Strategies for Predicting Future Spread of EIDs
There are many uncertainties associated with ecological fore-
casting, and previous efforts to project future disease patterns
have been criticized as being too speculative to translate into
concrete, preventative public health actions (94). The use of
ENM inherently involves uncertainties associated with choices of
occurrence data, environmental variables, and modeling algo-
rithms. When the future geographic range of a target species
is modeled, many additional choices are made, including selec-
tion of environmental variables from among a large number of
GCMs, each with multiple runs under alternative greenhouse gas
emissions scenarios. Most efforts to forecast the future distri-
butions of vectors or reservoirs of infectious disease use only a
very small sampling of available simulations of future climates

Fig. 3. Potential climatic habitat expansion (A), contraction (B), and stability
(C) maps for the midcentury A2 emissions scenario based on agreement of
20 GCMs and 13 bat species.
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(46, 47, 95, 96). Usually, neither scientists nor managers know if
similar results would be produced if the target species were
modeled under a different set of data choices. This level of un-
certainty often prevents the application of the results of eco-
logical forecast models to public health decision making and risk
assessment. Here, we have demonstrated a statistically rigorous
ensemble-modeling approach focused on the potential for cli-
mate change to shift the host range and on the likely occurrence
(or lack thereof) of reservoir species able to support transmission
for the particular case study of henipaviruses.
In conclusion, we propose that strategies to deal with EIDs

proactively will require, along with continued public health in-
vestment, increased focus on (i) identifying the driving mecha-
nisms that underpin the emergence of each new EID and (ii)
predictive modeling of how these drivers will promote or shape
future EID emergence potential and/or risk. These approaches
are inherently multidisciplinary, and they are still in the early
stages of their development as disciplines. The former requires
extensive ecological studies that examine long-term trends in

environmental factors and how changes to these affect disease
ecology within reservoir hosts, vectors, and people. The latter
requires large datasets on environmental and ecological factors,
as well as on pathogen and host distributions. As the discipline of
emerging disease ecology develops, the challenge will become
one of how to insert these approaches more widely into the
toolbox available to agencies to predict and prevent pandemics.
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