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Chagas disease, caused by Trypanosoma cruzi, is an important cause of morbidity and mortality primarily
resulting from cardiac dysfunction, although T. cruziinfection results in inflammation and cell destructioniin
many organs. We found that T. cruzi (Brazil strain) infection of mice results in pancreatic inflammation and
parasitism within pancreatic B-cells with apparent sparing of o« cells and leads to the disruption of
pancreatic islet architecture, B-cell dysfunction, and surprisingly, hypoglycemia. Blood glucose and insulin
levels were reduced in infected mice during acute infection and insulin levels remained low into the chronic
phase. In response to the hypoglycemia, glucagon levels 30 days postinfection were elevated, indicating
normal a-cell function. Administration of L-arginine and a B-adrenergic receptor agonist (CL316, 243,
respectively) resulted in a diminished insulin response during the acute and chronic phases. Insulin granules
were docked, but the lack of insulin secretion suggested an inability of granules to fuse at the plasma
membrane of pancreatic B-cells. In the liver, there was a concomitant reduced expression of glucose-
6-phosphatase mRNA and glucose production from pyruvate (pyruvate tolerance test), demonstrating
defective hepatic gluconeogenesis as a cause for the T. cruzi-induced hypoglycemia, despite reduced
insulin, but elevated glucagon levels. The data establishes a complex, multi-tissue relationship between T.
cruziinfection, Chagas disease, and host glucose homeostasis. (Am J Pathol 2013, 182: 886—894; http://

dx.doi.org/10.1016/j.ajpath.2012.11.027)

Chagas disease or American trypanosomiasis, a neglected
tropical disease, is the result of a persistent infection with
Trypanosoma cruzi."* Not only does it remain an important
cause of morbidity and mortality in Latin America, but it
is now also a global disease due to immigration to non-
endemic areas.’ Furthermore, 7. cruzi causes opportunistic
infection in the setting of immunosuppression (eg, HIV/
AIDS).? Infection of humans and experimental animals
results in an intense inflammatory reaction accompanied by
an upregulation of inflammatory mediators.*” In the heart,
this results in acute myocarditis and some patients eventually
develop a chronic dilated cardiomyopathy accompanied by
arrhythmias, congestive heart failure, and stroke.> T, cruzi
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Chagas Disease and Glucose Homeostasis

infection also results in mega syndromes predominantly
observed in the gastrointestinal tract.”

In the 1980s, we became interested in the interface of host
glucose homeostasis and parasitic diseases and observed that
T. cruzi infection of mice pre-treated with streptozotocin,
which destroys the insulin producing pancreatic p-cells, dis-
played increased parasitemia.® We also demonstrated that
obese diabetic mice, null for the leptin receptor (db/db)’
infected with 7. cruzi displayed a high parasitemia and
increased mortality. It has been reported that acute 7. cruzi
infection of mice resulted in hypoglycemia, which in some
cases was predictive of increased mortality,&9 however, the
etiology of T.cruzi-associated hypoglycemia remains unclear.

There are also reports suggesting that diabetes may be more
prevalent in individuals with Chagas disease, but these are
based on small clinical case series'™'* and often there are
other confounding factors such as obesity, hyperlipidemia,
and poverty.'>~"7 The possibility that 7. cruzi infection could
contribute to the diabetic state is not surprising because
pathological examination of the pancreas obtained from
infected mice and humans revealed morphological and
physiological alterations.'® ! In addition, because of the
interrelationship between the adipocyte and glucose metab-
olism, we examined the contributions of adipose tissue and
the adipocyte in the pathogenesis of T. cruzi infection.®*%?*
In this regard, we established that adipose tissue and adipo-
cytes are important early targets, as well as a reservoir site for
the parasite.®*>** Infection of mice with 7. cruzi resulted in
inflammation of adipose tissue and an upregulation of
inflammatory mediators,®**?* suggesting that the adipocyte-
pancreatic axis (ie, the adipo-insular axis) could also be
impaired by T. cruzi infection.

The role of the pancreas in 7. cruzi infection has received
limited attention in Chagas disease pathogenesis.'®'"?!
Herein, we report that 7. cruzi-infection induces inflamma-
tion and parasitism of the pancreas, including the pancreatic
B-cell. Furthermore, physiological studies strongly suggest
that there is an impairment of both pancreatic function and
hepatic gluconeogenesis. Alterations in glucose homeostasis
in the setting of T. cruzi infection appear to be multifactorial
and complex.

Materials and Methods
Parasitology and Pathology

Six- to eight-week-old male CD-1 mice (Charles River,
Wilmington, MA) were infected with 5 x 10* trypomasti-
gotes of the Brazil strain of 7. cruzi. The parasitemia was
assessed by counting trypomastigotes in tail blood using
a hemocytometer. Pancreata and white adipose tissue ob-
tained from the epididymal fat pad were removed and pro-
cessed for either routine H&E staining, transmission
electron microscopy or immunohistochemical analysis or
immunofluorescence. In addition, the liver was removed for
quantitative real-time PCR (RT-qPCR) studies.
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Immunohistochemical Analysis of Adipose Tissue

Adipose tissue was fixed in 10% neutral buffered formalin and
embedded in paraffin wax. Sections (5 pm thick) were depar-
affinized and boiled at 95°C for 20 minutes in sodium citrate
solution (DAKO, Carpentaria, CA) for antigen retrieval.
Macrophage activity was assessed using a rabbit antibody to
ionized calcium-binding adaptor molecule-1 (Iba-1) (Wako
Chemicals, Richmond, VA). This polypeptide is selectively
expressed in cells of monocytic origin. Sections were incu-
bated overnight at 4°C with Iba-1 at a dilution of 1:300. A
standard avidin-biotin complex method (Vector Laboratories,
Burlingame, CA) was applied for the secondary antibody (anti-
rabbit) by using a 1:200 dilution and a 1-hour incubation.
Slides were developed using a peroxidase detection kit (Vector
Laboratories) and counterstained with H&E (Sigma-Aldrich,
St. Louis, MO) after immunolabeling.

Transmission Electron Microscopy

Pancreata were fixed with 2.5% glutaraldehyde in 0.1 M
sodium cacodylate buffer, postfixed with 1% osmium
tetroxide, followed by 1% uranyl acetate, dehydrated through
a graded series of ethanol and embedded in LX112 resin (Ladd
Research Industries, Burlington VT). Ultrathin sections were
cut on a Reichert Ultracut E, ultramicrotome (Reichert-Jung,
Vienna, Austria) stained with uranyl acetate, followed by lead
citrate, and viewed on a JEOL 1200EX transmission electron
microscope at 80 kv (Tokyo, Japan). Images were obtained by
transmission electron microscopy and analyzed using ImageJ
version 1.46 (NIH, Bethesda, MD). Secretory granule density
per unit area and relative distribution within cells was assessed
in infected and uninfected pancreatic B-cells. For granule
distribution measurements, the cortical region was defined by
a distance of 1 granule diameter, or approximately 350 nmol/L
from the plasma membrane.

Immunofluorescence of Pancreatic Tissue

Pancreata were dissected and fixed in 10% neutral buffered
formalin overnight, then processed by paraffin embedding and
sectioning (5 pm). For immunofluorescence, sections were
incubated with primary antibodies for 24 hours and subse-
quently labeled with fluorescenated secondary antibodies for 1
hour at room temperature. A guinea pig anti-swine insulin
antibody (1:500; DAKO) was used for insulin staining and
a rabbit anti-human glucagon antibody (1:250; Zymed, Grand
Island, NY) was used for glucagon staining. Images were then
taken on a Zeiss Axio Observer Wide-field Epi-fluorescence
microscope (Carl Zeiss, Jena, Germany) at x 20 magnification.
Specimens were obtained from uninfected control mice and
from mice 15, 30, and 100 days postinfection (dpi).

Physiological Studies

L-arginine, the B-adrenergic receptor agonist, CL316, 243,
and sodium pyruvate were all obtained from Sigma-Aldrich
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and were dissolved in PBS, pH 7.2. In these experiments,
infected and uninfected age-matched controls were used.
In all of the experiments, mice were fasted for 7 hours
before beginning the experimental protocols. In the control
group, mice were injected with PBS (pH 7.2). Insulin
levels were determined by enzyme-linked immunosorbent
assay according to the manufacturer’s protocol (ALPCO
Diagnostics, Salem, NH). Glucagon was determined by
radioimmunoassay according to the manufacturer’s protocol
(Millipore, St. Charles, MO). Blood glucose was measured
with a One Touch Ultra Glucometer (Life Scan Inc., Bur-
naby, BC, Canada).

L-Arginine Experiments

Injection of L-arginine stimulates the secretion of insulin
by pancreatic B—cells.25 Mice at 15, 30, and 100 dpi were
administered L-arginine by the i.p. route at a dose of 1 g/kg
of body weight and insulin levels in the peripheral blood
were determined 3 minutes after injection using the multi-
plex system. For controls, we used age- and sex-matched
mice.

Adipocyte B-3-Adrenergic Receptor Agonist
Experiments

The B-3-adrenergic receptor is found on the surface of
adipocytes and it is believed that activation of this receptor
results in the activation of the adipo-insular axis, thereby
resulting in increased secretion of insulin by the pancre-
as mediated, perhaps, by free fatty acids.’® We injected
1 mg/kg of body weight of the B-adrenergic receptor agonist
(CL316, 243 ip.) into the infected and uninfected age-
matched mice and insulin levels were determined 10 min-
utes later.

Gluconeogenesis

Infected and uninfected mice were injected with sodium
pyruvate (2 g/kg i.p.). Plasma glucose was determined at 0, 5,
15, 30, 60, 90, and 120 minutes after injection. We performed
real-time PCR for expression of glucose-6-phosphatase. The
primers used were: forward,5'-GGCGCAGCAGGTGTAT-
ACTA-3, reverse, 5'-~ATGCCTGACAAGACTCCAGC-3;
18S forward: 5'-AGGGTTCGATTCCCGGAGAGG-3/, re-
verse, 5'-CAACTTTAATATACGCTATTGG-3'. RT-qPCR
was performed as previously described by our laboratory.®

Statistical Analysis

Graphics and statistical analyses were performed using
GraphPad Prism version 5 (GraphPad Software, San Diego,
CA). Statistical analyses were performed on paired data and
two-tailed P values were obtained. The data are presented as
the means & SEM for all experiments. Significance was at
P < 0.05.
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Figure 1  Representative H&E stained sections of pancreata obtained
from control and T. cruzi-infected mice. The degree of inflammation and
parasitism of the pancreas was examined. A: Normal pancreas (20x). B:
Pancreas obtained from an infected mouse 15 days postinfection; note the
inflammation within the islet area (arrows) (20x). C: Infected pancreas;
note the inflammation (black arrows) and rare intracellular amastigotes in
an acinar cell (white arrow) (40x). D: Inflammation in the peripancreatic
fat (arrows).

Results
Parasitology

Infected CD-1 mice had an overall mortality of 60% by 40
dpi. The parasitemia peaked at 5 x 10> trypomastigotes/mL
30 to 35 dpi. Thereafter, the parasitemia waned and by 60
dpi there were no detectable parasites in the blood. Previ-
ously, we demonstrated that the surviving mice displayed
a dilated cardiomyopathy as determined by pathology and
cardiac imaging by 90 to 100 days postinfection.?’>°

Histopathology

The histopathology of the pancreas during the course of
infection was determined. At 15 dpi, there was intense in-
flammation surrounding the blood vessels and ducts and
destruction of the acinar cells of the pancreas (Figure 1A—C).
There were scattered amastigotes in acinar cells and mar-
ked inflammation and parasitism of the peri-pancreatic fat
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Figure 2  Representative white adipose tissue obtained from infected
and control mice. The alterations in adipose tissue at the early stage of
infection. A and B: Control mice (A) and T. cruzi-infected mice (B), 15 days
postinfection. There is infiltration Iba-1 positive cells (arrows) (macro-
phages) into the adipose tissue obtained from infected mice.

ajp.amjpathol.org m The American Journal of Pathology


http://ajp.amjpathol.org

Chagas Disease and Glucose Homeostasis

(Figure 1D). At 30 and 100 dpi, there was persistent inflam-
mation (data not shown). The examination of the adipose tissue
was consistent with our previous observations in that as early as
15 dpi onward there was inflammation and a marked infiltra-
tion of macrophages, which was determined by Iba-1 staining
(Figure 2).

Transmission Electron Microscopy of the Pancreas

Next we correlated the histopathological studies of the
pancreas with ultrastructural studies. During acute infection,
amastigotes were observed within the pancreatic B-cells
(Figure 3I). However, the a-cells were not parasitized and
the glucagon granules appeared to be intact (Figure 3I).
The integrity of insulin granules appeared morphologically
normal (Figure 3, A—D, and I). These observations were
based on the examination of at least 50 fields under low power
(5,000x). The total number of insulin granules was reduced in
pancreata obtained from mice 30 dpi compared with tissues
obtained from uninfected mice (Figure 3G). In the infected
pancreas, there was a significant increase in the number of
insulin granules localized within 1 granule diameter from the
plasma membrane compared with the uninfected pancreas
(Figure 3, E, F, and H). However, granule distributions 2
diameters away from the plasma membrane did not reach
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3E. . tH
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115 it
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control infected

Figure 3

statistically significant difference between the control and
infected mice (Figure 3H). These observations suggest
a defect late in the secretory pathway and the L-arginine
studies (see as follows) support an impaired release of gran-
ules involved in the first phase of insulin secretion.

Immunofluorescence of the Pancreas

Figure 4 illustrates representative immunofluorescence studies
of the islets in the pancreas that were stained for insulin and
glucagon. B-Cells can be recognized by the green insulin
staining, and the red glucagon staining identifies the o-cells.
Figure 4A shows the typical morphology of normal pancreatic
islets. There was a dramatic disruption of islet integrity at 15
dpi (Figure 4B). The disruption of islet integrity continued at
30 dpi. The glucagon-secreting o-cells were disorganized
(Figure 4C). These cells are usually located in the periphery of
mouse islets. There appeared to be partial recovery of islet
integrity at 100 dpi (Figure 4D).

Physiological Studies

Throughout the course of infection, basal serum insulin levels
were reduced as compared to uninfected control mice
(Figure 5A). As noted, there is a B-3-adrenergic receptor

Electron micrographs of control and infected islets 30 days postinfection. Correlation of histopathological studies of the pancreas with ultra-

structural studies. Electron micrographs (EM) of T. cruzi-infected or uninfected islets were analyzed for changes in granule number or distribution. Representative
images and the quantitative evaluations using ImageJ version 1.46 are shown. Granule numbers (A—D): The unique morphology of insulin granules, electron-
dense core surrounded by a halo and membrane, remained unchanged in both normal (A and C) and infected mice (B and D). C and D are magnified from the
insets (A and B, respectively). Secretory granule density per unit area was used as a measure of total insulin content and appeared minimally reduced with T. cruzi
infection (EM, A and B; quantitation, G). Controls 3.98 & 0.32 (SEM) (n = 8); infected 2.56 & 0.45 (SEM) (n = 14). (P < 0.05). Granule distribution (E and F):
Arrowheads pinpoint the plasma membrane. The cortical region was defined as a distance from the plasma membrane corresponding to 1 granule diameter (1 D), or
~350 nmol/L (EM, E and F; quantitation, H). One granule diameter, 0.80 & 0.16 (SEM), n = 14; infected 2.00 + 0.18 (SEM), (n = 20); P < 0.05. Two granule
diameters, control 1.46 4 0.20 (SEM), n = 14; infected = 1.15 £ 0.15 (SEM) n = 20. Increased secretory granule association with the cortical region (ie, docked
granule pool) is observed in infected B cells (EM, E and F; quantitation, H). Nests of parasites were observed in B-cells (I, white arrows, T. cruzi). Morphological
appearance of insulin B-granules (I, black arrows) and glucagon containing a-granules (I, arrowheads) seemed normal.
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Figure 4  Pancreatic islet morphology at different stages of infection. Immunohistochemical analysis of pancreatic islets. Insulin-stained B-cells are green,
and glucagon-stained a-cells are red. A: Classical morphology at baseline. B: There was a dramatic disruption of islet integrity at day 15 postinfection. C: The
disruption of islet integrity continued at day 30 postinfection. Note the disorganized structure of the a-cells on day 30, which are usually located in the
periphery of mouse islets. D: There appears to be partial recovery of islet integrity at day 100 postinfection.

population on the surface of the adipocyte that, when stimu-
lated, releases mediators resulting in the secretion of insulin
from the pancreatic B-cell. During both acute and chronic
infection, after the administration of the B-3-adrenergic
receptor agonist, the insulin response was significantly
reduced in infected mice at all time points tested compared
with uninfected controls (Figure 5B). The administration of
L-arginine results in the release of insulin from the pancreas.
In the current experiment, 3 minutes after L-arginine
administration, uninfected control mice displayed the ex-
pected increase in insulin levels. However, the insulin
response to L-arginine was significantly reduced at all time
points in the infected mice (Figure 5C). Based on the data, it is
strongly suggested that there is a defect in the secretion of
insulin in infected mice.

Insulin, Glucose, and Glucagon Levels

At 30 dpi, glucose and insulin levels were significantly
reduced in infected mice compared with uninfected mice
(Figures 5A and 6A). Furthermore, the glucagon levels were
elevated proportional to the reduction in glucose (Figure 6B)
and the insulin levels remained significantly reduced into the
chronic phase (Figure 5A). Thus, hypoglycemia appears not
to be the result of a defect in glucagon synthesis and
secretion.

A B

Gluconeogenesis

Glucagon stimulates the synthesis of glucose via hepatic
gluconeogenesis. To examine hepatic gluconeogenesis in the
setting of 7. cruzi infection, we used the pyruvate tolerance
test. This test was performed at 30 and 70 dpi. The results of
this test are shown in Figure 6C. When compared to the
expected pattern in the uninfected control mice, there was
a significant impairment of gluconeogenesis, as demonstrated
by the level of glucose production in the infected mice.
Similar results were observed 70 dpi. RT-qPCR analyses for
the expression of glucose-6-phosphatase, a critical enzyme in
the gluconeogenesis pathway, demonstrated a significant
reduction in mRNA expression of gluocose-6-posphatase in
the infected mice compared with uninfected controls
(Figure 6D), thus validating the pyruvate kinase tolerance
tests results, which indicated the impairment of hepatic
gluconeogenesis. All determinations were made on mice
fasted for at least 7 hours.

Discussion
T. cruzi infects many organs and thus it is not surprising that

alterations in glucose homeostasis are multifactorial. Acute
infection is accompanied by high parasitemia and intense
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after injection of beta-adrenergic agonist (Ar). Note the reduced insulin response after stimulation of the adipocyte B-adrenergic receptor in infected mice. C:
Insulin levels after injection of L-arginine (LR). Note the reduced insulin response after LR stimulation in infected mice. In all experiments: n = 4; P < 0.05.

All determinations were made on mice that were fasted for at least 7 hours.
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inflammation in many organs, including the pancreas and
adipose tissue. During this period, there is both hypoglycemia
and hypoinsulinemia, and hypoglycemia has been predictive
of increased mortality in some studies.®® The mechanism of
the hypoglycemia has been unclear and may be due to
a combination of a cytokine storm, resulting in reduced food
intake’ and/or enhanced glucose uptake by the parasite.
During chronic infection, the reduction in insulin persists, as
does infiltration of macrophages into adipose tissue.® Herein,
we observed inflammation and parasitism of the pancreas as
early as 15 dpi, a time characterized by the absence of
peripheral parasitemia. The infected mice were clinically well
and the inflammation persisted into the chronic phase.
Ultrastructural studies revealed amastigotes within pancreatic
B-cells, whereas the glucagon producing o-cells appeared
normal. These observations are consistent with the expected
increase in glucagon in response to the hypoglycemia.
Because the glucagon response was intact, we examined
effects of infection on hepatic gluconeogenesis. The results of
the pyruvate tolerance test strongly suggested an impairment
in that pathway, which was confirmed by an analysis of
glucose-6-phosphatase, an enzyme critical for that pathway.
By RT-gPCR, we could demonstrate a reduction in message
levels for this enzyme. Although a reduction in hepatic
mRNA levels for glucose-6-phospatase is not conclusive
proof of reduced gluconeogenesis, the combined results from
the pyruvate tolerance tests and the mRNA expression profile
provide support for an impaired hepatic glucose output. The
immunofluorescence studies using antibodies to insulin and
glucagon clearly indicated that infection caused a disruption
in the architecture of the islets.

The relationship of the adipocyte and the pancreas
(the adipo-insular axis) is only partially understood. We

The American Journal of Pathology m ajp.amjpathol.org

Figure 6 Glucose, glucagon, hepatic gluco-
neogenesis in control and infected mice 30 days
postinfection. A: Infected mice had an average
blood sugar of 70 mg/dL compared with 150 mg/dL
for control (P < 0.05) (n = 5 each group). B: In
response to the hypoglycemia and hypoinsulinemia,
there were increased glucagon levels in the sera of
infected mice (P < 0.05) (n = 3 each group). C:
Pyruvate tolerance test: infected and uninfected
mice 30 days postinfection were injected i.p. with
P 2 g/kg sodium pyruvate. Blood glucose was deter-
mined at 0, 5, 15, 30, 60, 90, and 120 minutes after
injection. There was a significant reduction in
glucose at every time point (P < 0.05) (n = 5 each
group). D: Pyruvate tolerance test: reduction of
mRNA expression of glucose-6-phosphatase in livers
of infected mice compared with livers obtained from
control mice. (P < 0.05) (n = 3 each group). All
determinations were made on mice that were fasted
for at least 7 hours.

Infected

Olnfected

demonstrated that in the adipose tissue in 7. cruzi-infected
mice, there was a marked increase in the inflammatory
response including an increase in macrophages, as shown by
Iba-1 staining (Figure 2) and an upregulation of cytokines
and chemokines.®?**°

Next we examined the adipo-insular axis and 7. cruzi
infection. The PB-3-adrenergic receptor is found on the
surface of the adipocyte,® and when activated, it ultimately
stimulates insulin secretion.”® The highly selective receptor
agonist (CL 316, 243) increases plasma insulin levels by 10-
to 100-fold within 15 minutes of administration. Mice
lacking this receptor fail to display B-3 agonist-stimulated
insulin secretions indicating that the receptor agonist-
mediated insulin release requires the expression of B-3
adrenergic receptors on the surface of white adipocytes. The
underlying pathways leading to increased release of insulin
on stimulation of the B-3 adrenergic receptors in adipose
tissue remain unclear. A prominent feature of this receptor
activation is stimulation of lipolysis resulting in a release of
free fatty acids from adipocytes.”® In this regard, we
recently demonstrated upregulation in lipolytic enzymes in
the adipose tissue of 7. cruzi infected mice.?” Because free
fatty acids can stimulate insulin release from B-cells both
in vivo and in vitro, it has been assumed but not proven that
the B-3 adrenergic agonist-induced effect on insulin release
is caused by a transient elevation of free fatty acids, thus
linking the adipocyte to the control of insulin secretion
from the B-cells. This effect remains a point of controversy
in that it has also been shown to be independent of the free
fatty acid release (P.E. Scherer, unpublished data). The
administration of the -3 adrenergic agonist, CL316, 243,
into mice during acute and chronic infection resulted in
impaired insulin secretion. The administration of L-arginine
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resulted in an increase in insulin secretion by the normal
pancreas.”” However, injection of CL316, 243 into acutely
and chronically infected mice caused a significant reduction
in insulin response. There was no significant difference in
total pancreatic insulin at 30 dpi between infected and
control mice (data not shown). Collectively, these data
indicate a defect in insulin secretion in 7. cruzi infected
mice.

To understand the mechanistic basis of the reduced
insulin secretion, we examined whether infection resulted in
changes in insulin granule number and/or distribution. The
stages of secretory granule (SG) exocytosis are docking,
priming, and fusion at the plasma membrane. Docking
describes the tethering of SGs with the plasma membrane in
close proximity of the exocytic site. Priming is an ATP-
dependent step that is not sufficient to achieve exocytosis.
After priming, the only requirement for SG fusion with the
plasma membrane is Ca®",*' > and Ca®" sensors regulate
SG release by preventing SG fusion until the arrival of
a Ca”" signal. Thus, the immediate and first phase of insulin
secretion entails the fusion of primed B-cell SG pre-docked
in the cortical region of the plasma membrane (the ready
releasable pool).*' > We observed that SGs were docked in
the cortical region of the infected but not uninfected [-cells.
Insulin secretion in response to L-arginine stimulation,
however, expected to release the ready releasable pool, was
attenuated in T. cruzi infected B-cells. There was also
a small a decrease of SG granules in the infected pancreata.
To our knowledge, these are the first observations sug-
gesting a late event in granule/plasma membrane fusion as
a mechanistic basis for reduced insulin secretion in 7. cruzi
infection.

Obesity, diabetes, and the metabolic syndrome are
becoming increasingly prevalent in the tropical world and
there are reports that they are being observed in individuals
with Chagas disease.’*™® For example, Saldanha et al’’
demonstrated alterations in insulin and glucose responses
after oral glucose tolerance tests in patients with Chagas
disease. Those patients with mega syndromes had increased
size of pancreatic islets and there was inflammation in the
pancreatic ganglia. Vieira and Hadler*® reported that patients
with chronic Chagas disease had severe fibrosis, which they
termed pancreatic cirrhosis. In Brazil, which ranks very high
(ie, fifth) for diabetes prevalence, recent calculations indicate
there could be as many as 300,000 people with both Chagas
disease and diabetes. In the United States of America and
Europe, there has been an increase in the recognition of
Chagas disease among Latin American immigrants and many
of these individuals suffer from obesity and diabetes.'® The
consequences of the interaction of Chagas disease, obesity,
and the diabetic state are poorly understood. These clinical
relationships need to be explored and our pre-clinical studies
may provide a guide.

dos Santos et al'® conducted studies of pancreatic function
in T. cruzi-infected hamsters and similar to our observations,
found lower than normal insulin levels in infected hamsters.
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The authors concluded that the reduction in insulin levels was
likely to be multifactorial. It should be noted that due to
variations in parasite strains and animal models used, a direct
comparison of these experimental approaches of T. cruzi
infection is difficult.

A variety of pathogens have been associated with alter-
ations in host glucose homeostasis and specifically in the
etiology of diabetes,**>® and T. cruzi infection is not unique
in causing alterations in glucose homeostasis. During bacte-
rial sepsis, for example, hyperglycemia is well-documented.
Many bacterial infections result in an increased demand
for insulin and, paradoxically, increased insulin release
may be accompanied by an increase in glucagon secre-
tion. These observations suggest that a robust pancreatic
output of both hormones in the early stages of certain
infections is possible.

As we have clearly demonstrated in the current studies,
there are several possible mechanisms to explain the inter-
relationship between 7. cruzi infection and glucose metab-
olism. 7. cruzi invades the brain, affecting the central
nervous system endocrine pathways,”® ®' which may
possibly perturb insulin secretion. Some or all of these
factors may result in 7. cruzi-infection-related diabetes. It is
important to conduct human observational studies in Cha-
gasic populations regarding the prevalence of diabetes, but
our experimental approaches provide an opportunity to
examine the role of 7. cruzi infection in the absence of other
confounding factors that may be found in human clinical
studies.
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