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Epithelial to mesenchymal transition (EMT) is a dynamic cellular process that is essential
for the development of metastatic disease. During EMT, a tumor cell with epithelial
characteristics transitions to a tumor cell with mesenchymal characteristics through
modulation of cell polarity and adhesion. Two hallmark EMT proteins, E-Cadherin and
Vimentin, are tightly controlled during EMT through multiple signal transduction pathways.
Epidermal growth factor (EGF) and transforming growth factorβ (TGFβ) promote EMT by
regulating a distinct set of transcription factors, including Snail and Twist. Snail, Twist, and
Slug are integral to the induction of EMT through direct regulation of genes involved in
cellular adhesion, migration, and invasion. This review highlights the current literature on
EMT in HNSCC. Understanding the role of EMT will provide insight to the pathogenesis of
disease progression and may lead to the development of novel anti-cancer therapeutics for
metastatic HNSCC.

Introduction
In 2011, it is estimated there will be over 11,460 deaths from head and neck squamous cell
carcinoma cancers (HNSCC) in the United States and over 300,000 deaths worldwide.1,2

Most HNSCC patients present with stage III/IV disease and have a 5-year survival rate
below 40%.3 HNSCC patients with metastatic disease have extremely poor prognosis and a
survival rate of less than 10%.3 Gene expression profiling studies have identified gene
signatures associated with NF-κB activation, epithelial to mesenchymal transition (EMT),
and cell adhesion deregulation as prominent genetic alterations in HNSCC development and/
or progression.4 EMT is a complex and reversible biological process, where an epithelial
tumor cell alters its polar, adhesive phenotype to a mesenchymal phenotype characterized by
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an increase in cell migration and invasion potential, cytoskeleton remodeling, and resistance
to apoptosis (Figure 1).5,6 In 2009, Kalluri and Weinberg designated EMT in cancer as type
3.6 This classification recognizes the fluidity and idiosyncrasies of EMT in cancer in
comparison to the more characterized fibroblast formation (type 2 EMT) and developmental
process transitions (type 1 EMT).6 A recent study reported that primary HNSCC tumors
expressing a hallmark EMT signature, low E-Cadherin and high Vimentin, has a two-fold
increase in the satellite’s average distance compared to primary HNSCC tumors without an
EMT signature.7 Therefore, a clear understanding of the EMT process is essential to identify
novel druggable targets for the development of therapeutic approaches to prevent disease
progression and metastasis in HNSCC.

Cytoskeletal, extracellular matrix, and adhesion molecules in EMT
Rearrangement of stress fibers, modulation of adhesion molecules and extracellular proteins
are key events in EMT for tumor cells (Figure 2).8 Epithelial cells are characterized by
stable cell-cell contacts and the formation of adherens junctions.5 These junctions and
contacts are predominantly E-Cadherin-dependent and connect to actin filaments through α-
or β-catenin.5 Loss of E-Cadherin and relocalization of β-catenin from the membrane to the
nucleus is frequently observed in tumor cells undergoing EMT.5,6,8 Another classical
marker of EMT, the intermediate filament Vimentin, is present in mesenchymal cells to
control cell motility.9 In primary HNSCC tumors, low E-Cadherin and high Vimentin is
associated with an increase in distant metastasis (Table 1).10 Primary HNSCC tumors with
the low E-Cadherin and high Vimentin signature have a 100% metastasis rate compared to a
44% metastasis rate for primary HNSCC tumors with an incomplete or null EMT
signature.10 This pivotal study supports the potential utility of E-Cadherin and Vimentin as a
dual predictive biomarker for metastasis in HNSCC.10

The Cadherin superfamily consists of transmembrane proteins involved in cell adhesion.11

E- and P-Cadherins are tumor suppressive and maintain epithelial cell adheren junctions
with catenins.11 Conversely, N-Cadherin is pro-oncogenic and enhance tumor cell invasion
and migration.11,12 Overexpression of Aurora-A, a mitotic serine/threonine kinase involved
in bipolar spindle formation, increases active MAPK resulting in a decrease in E-Cadherin
and β-catenin.13 A HNSCC cell line established from a lymph node metastasis had a spindle
morphology and a decrease in E-Cadherin and β-catenin. 14 Further examination of the
invasive HNSCC cell line indicated that promoter methylation may be the mechanism for E-
Cadherin silencing.14 Interestingly, heterogeneous promoter methylation of E-Cadherin was
observed in the invasive fronts of tumors from metastatic HNSCC patients.14 Regulation of
E-Cadherin by promoter methylation is known to occur in other epithelial carcinomas,
including gastric, hepatic, bladder, and lung cancer.5,15,16

There is emerging evidence that P-Cadherin suppresses EMT in HNSCC. During migration,
post translational cleavage causes P-Cadherin to be shortened from 100kDa to 50kDa,
resulting in decreased cell attachment.17,18 Full length P-Cadherin expression was decreased
or lost in tumor cells at the invasive front.17 Ectopic expression of full-length P-Cadherin in
HNSCC cells is sufficient to inactivate Snail and activate glycogen synthase kinase-3β
(GSK-3β) resulting in a reversion to the epithelial phenotype.17 Work in breast carcinoma
has also implicated a role for P-Cadherin in EMT and metastasis, however, the molecular
mechanism remains to be fully elucidated.19

A decrease in E-Cadherin is often associated with an increase in N-Cadherin in a process
called cadherin switching. Cadherin switching is associated with positive lymph nodes in
HNSCC.8,20,21 Moreover, cadherin switching was reported to correlate with metastasis in
spindle cell carcinoma of the head and neck (HNSpCC).22,23 HNSpCC is a rare biphasic
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tumor composed of a malignant spindle cell component and squamous cell carcinoma
cells.21–24 HNSpCC is of particular interest in the study of EMT due to the evidence of
pathogenesis from a stem cell undergoing EMT.24 Further illustration of the EMT-like
phenotype in HNSpCC is the loss of desmogleins and desmocollins, components of
desmosome which connects intermediate filaments in cell-cell contacts.21 Moreover, catenin
alterations, in particular lost of γ-catenin (plankoglobin), were observed in a majority of
HNSpCC tumor specimens. 23

Actin remodeling is a crucial event for the progression of EMT.25,26 Guaninenucleotide-
binding protein α12 (Gα12) subunit modulates G coupled protein receptor (GPCR) signaling
to facilitate cell migration through IQGAP1.26 Transcriptome analysis in Gα12-deficient
cells revealed Actin reorganization as a critical step in cell motility in EMT.26 Independent
knockdowns of both Gα12 and IQGAP1 caused a decrease in F-actin, migration, and
invasion, along with loss of cell-cell adhesion and polarity.26 Knockdown of the Actin
bundling protein Fascin, commonly associated with cell protrusions, resulted in a decrease
in migration, adhesion, and invasion.27 HNSCC, which usually overexpress Fascin, showed
a decrease Twist expression when treated with Fascin siRNA.27 These observations indicate
that Fascin may be an essential regulator of EMT in HNSCC.27

Laminins are basement membrane components that are trimers of polypeptide chains.28

Laminins are secreted by the cell to facilitate the formation of a basement membrane, which
is α chain dependent.29 Laminin 511, consisting of the α5 chain, is expressed in epithelial
basement membranes. In contrast, Laminin 411, containing the α4 chain, is expressed in
mesenchymal-originated cells.29 In Snail-induced EMT cells, laminin α4 was detected
whereas laminin α5 was not present.29 Snail binds to the promoters of laminin α5 and
laminin α4 to conversely regulate these two laminins during EMT.29 Interestingly, EMT
tumor cells express integrin α6β1, the receptor for laminin 411.29 Taken together, these
studies suggest that EMT is facilitated through selective regulation of basement membrane
components, namely the switch from laminin 511 to laminin 411.29

Transcriptional factors in EMT
The transcription factors Slug, Snail, and Twist are known to bind to the E-box regulatory
regions of E-Cadherin.30, 31,32 All three are the most recognized transcription factors
associated with EMT, mainly due to their repression of E-Cadherin.6,8 In salivary adenoid
cystic carcinoma, Slug expression correlated with advanced stage, invasion, recurrence, and
distant metastasis.33 A intriguing study showed that Slug controls group migration and not
individual tumor cell migration in HNSCC cells.34 In comparison to stage- and site-matched
HNSCC tumors, HNSpCC tumors were observed to have elevated expression of Slug and
Snail.23, 24 Furthermore, an inverse correlation between Snail and γ-catenin was observed in
HNSpCC suggesting that γ-catenin may be a downstream target of Snail.23 In pharyngeal
squamous cell carcinoma, Twist was expressed in 35% of primary tumors and interestingly,
in 40% of accompanying stroma.34 An association between stromal expression of Twist and
increased tumor stage was observed, while tumor expression correlated to lymph node
metastasis.34 Moreover, Twist and Snail expression only correlated in stromal cells and not
in tumor cells suggesting that EMT may reprogram tumor cells into cancer associated
fibroblasts.34

Lysyl-Oxidase-Like 2 (LOXl2), a matrix remodeling enzyme, is upregulated in HNSCC and
reported to stabilize Snail, through blocking GSK-3β-mediated phosphorylation, leading to
E-Cadherin repression.35,36 Interestingly, 60% of the genes affected by LOXl2 are related to
epidermal differentiation.36 Suppression of LOX12 resulted in an increase in E-Cadherin
and a decrease in cell invasion.36 In addition to LOXl2, STAT3 has been shown to promote
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EMT and enhance Snail and Twist levels.37,38 A recent study showed that Snail and Twist
induced CD44high/CD24low stem-cell like cells in breast carcinoma.39 In HNSCC, inhibition
of STAT3 with Cucurbitacin 1 resulted in a decrease in Snail and Twist and attenuated the
ability of CD44+ALDH1+ HNSCC cancer stem cells (CSCs) to metastasize in vivo.40 These
results provide initial evidence linking STAT3 to EMT transcription factors, Snail and
Twist, in the regulation of CSCs in HNSCC (Figure 3A).

AKT is known to induce morphological changes associated with EMT, loss of cell-cell
adhesion, and increased motility and invasion.41 Inhibition of AKT by blocking the PH
domain with phosphatidlylinositol ether lipid analogues (PIA) resulted in a decrease in Snail
and Twist expression and reversion of tumor cells back to an epithelial phenotype with high
E-Cadherin and low Vimentin.42 Transcription factor B lymphoma Mo-MLV insertion
region 1 homolog (Bmi1) is known to suppress INK4A and cooperate with c-Myc to
promote HNSCC.43 Recently, Bmi1 was found to bind to the promoter of AKT inhibitor
Phosphatase and tensin homolog (PTEN).43 Promotion of AKT activity by Bmi1 promotes
EMT by blocking GSK-3β-mediated degradation of Snail.43 Interestingly, Bmi1 binds to the
E-Cadherin promoter but is dependent on Snail for E-Cadherin repression (Figure 3B).
These observations support Bmi1 as a player in EMT through activation of AKT,
stabilization of Snail, and repression of E-Cadherin in HNSCC.

Growth Factor and Receptor Signaling in EMT
Transforming growth factorβ1 (TGFβ1) is increased in HNSCC and exposure to TGFβ is
sufficient to induce a mesenchymal morphology in HNSCC cell lines (Figure 4A).44,45

There is evidence to propose a novel EMT mechanism in which TGFβ1 upregulates matrix
metalloprotease 9 (MMP9) through Snail/Ets-1-dependent transcriptional regulation.44

MMPs are gelatinases that are capable of degrading the extracellular matrix components, as
well as, regulating pathways and growth factors from the extracellular matrix (ECM).46

Accumulating research has shown the importance of MMPs in EMT, in particular breast,
cervical, prostate, lung, and bronchial carcinomas.46,47 Also, TGFβ1 has been shown to
regulate Slug through the ERK1/2 pathway and independent of Ets-1. 48 Similar to Snail,
TGFβ1 was shown to promote a Slug-mediated increase in MMP9 expression.48

Alternatively, TGFβ1 can promote EMT through modulation of the SMAD signaling
pathway. TGFβ1 signals through SMAD2/3 and MLCK to regulate MMP9 post-
transcriptionally in HNSCC.49 SMAD6 competes with SMAD4 to inactivate SMAD
signaling complexes, while SMAD7 blocks TGFβR phosphorylation.50 SMAD6 and 7 are
known collectively as the anti-SMADs, acting antagonistically on TGFβ signaling.50 In
HNSCC patient tumors, high expression of SMAD6 and low expression of SMAD2
correlated with better survival, whereas, low levels of SMAD7 correlated with decreased
survival.51 Taken together, these studies demonstrate that TGFβ1 promotes EMT through
multiple mechanisms in HNSCC.48

Epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, is of particular interest
in HNSCC considering EGFR is almost universally overexpressed in this patient
population.52,53 In several solid malignancies, including HNSCC, activation of EGFR has
been shown to decrease cell adhesion leading to an increase in tumor cell invasion and
migration (Figure 4B).54,55 In HNSCC cells with high endogenous EGFR, treatment with
epidermal growth factor (EGF) enhanced cell motility, invasion velocity, and number of
invasive cells.56 Additionally, an increase in the phosphorylation levels of EGFR, AKT, and
ERK1/2 is observed following EGF exposure.56 Moreover, degradation of E-Cadherin into
sE-Cadherin via MMP9 was shown following EGFR activation.56 In contrast, another group
reported that total E-Cadherin was unchanged, however, E-Cadherin was re-localized from
the membrane to the perinuclear area following EGF-induced EMT in HNSCC.57 It was
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reported that EGFR modulates cell adhesion through regulation of desmosomes, cellular
structure that joins adjacent cells together.58 Inhibition of EGFR enhanced the levels of
Desmoglein-2 (Dsg2) and Desmoplakin (Dsp), two desmosomal proteins, and E-Cadherin at
cell borders.58 Conversely, activation of EGFR increased tyrosine phosphorylation and
degradation of Dsg2 and Dsp resulting in reduced cellular adhesion.58 It was suggested that
degradation of Dsg2 may be a result of EGFR-mediated MMP9 activation since Dsg2 is a
known substrate of MMPs.58

A recent report demonstrated that EGF and TGFβ1 can cooperatively promote EMT in
HNSCC. Stimulation of HNSCC cells with EGF and TGFβ1 induced a mesenchymal
phenotype and modulated the expression of a cadre of EMT-associated proteins.59

Specifically, Vimentin and Snail were increased whereas E-Cadherin was decreased.59

Other proteins identified, such as CD44v6, have been shown to be involved in EMT in other
carcinomas but have yet to be linked to HNSCC.59 An fascinating observation is that the
expression of EMT-associated genes was regulated with a distinct temporal resolution
suggesting that an early and late EMT program may be a possibility.59 Additional work is
needed to explore this intriguing finding in order to enhance our understanding of the
dynamic EMT process in HNSCC.

Vascular endothelial growth factor receptor (VEGFR) and Wnt regulates EMT in various
solid malignancies.5 However, there is scant literature linking VEGFR- and Wnt-mediated
EMT in HNSCC. VEGFR and its ligand vascular endothelial growth factor (VEGF) are
well-recognized as essential players in angiogenesis. Treatment with VEGF in pancreatic,
breast, and colorectal carcinoma cell lines lead to induction of EMT with an increase of
Snail, Twist, and Slug expression.53 In HNSCC patient samples, VEGF is correlated with
invasion depth and increased risk of positive lymph nodes.60 In addition to VEGF, the Wnt
signaling pathway has been linked to disease progression.61 Wnt-5a has been shown to
increase Slug and Snail in breast carcinoma and reported to increase tumor cell invasion in
numerous carcinomas.61,62 In HNSCC, Wnt-5b enhanced tumor cell invasion and migration,
but not proliferation, suggesting that Wnt-5b may regulate EMT.61 Overexpression of
Wnt-5b in HNSCC cells was reported to enhance MMP10 expression.62 Interestingly,
MMP10 is correlated with increased invasion, tumor stage, and lymph node metastasis in
HNSCC patients.62 There is evidence to support the notion that Wnt-5b signals through
MEF2A to regulate MMP10 in HNSCC, a mechanism that is similar to the TGFβ1-mediated
MMP10 activation pathway in breast carcinoma.62,63

There is data to implicate neurothrophinreceptor B (TrkB), a tyrosine kinase receptor, as a
regulator of EMT in HNSCC. TrkB has been shown to promote disease progression in
various carcinomas.64 Examination of HNSCC patient samples revealed increased
expression of TrkB and its ligand BDNF.64 Treatment with BDNF in TrkB expressing
HNSCC cell lines resulted in enhanced tumor cell motility and invasion.64 Conversely,
suppression of TrkB decreased Twist and N-Cadherin levels and promoted mesenchymal to
epithelial transition (MET).64 Inhibition of AKT blocks BDNF/TrkB-mediated tumor cell
invasion and migration indicating that AKT is downstream of the BDNF/TrkB pathway.64

Interestingly, co-culture of SCC25 HNSCC cells with fibroblasts resulted in an increase in
Vimentin and TrkB levels in the SCC25 cells and an increase in the TrkB ligand, BNDF, in
the fibroblasts.65 These observations suggest that the stromal cell-tumor cell interaction may
efficiently activate the BDNF-TrkB signaling cascade through a paracrine manner in
HNSCC. Together, these results provide emerging evidence that the TrkB modulates EMT
in HNSCC.
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Hypoxia and inflammation in EMT
Hypoxia, or oxygen deprivation, occurs in tumors due to inadequate vasculature to allow
sufficient oxygen diffusion.66 HIF-1α, a key hypoxia-regulated gene, is an important
contributor to metastasis and has been shown to induce EMT.67 HNSCC cells with high
HIF-1α was demonstrated to exhibit the hallmark EMT phenotype and modulate the
expression of EMT-associated genes.67 HIF-1α was shown to bind to the HRE proximal
promoter element of Twist to enhance Twist expression.67 Co-expression of HIF-1α, Snail,
and Twist in primary HNSCC tumors was associated with poor progression-free and overall
survival.67 In a separate study, elevated HIF-1α was demonstrated to correlate with worst
disease-free and overall survival confirming the importance of HIF-1α as a key regulator of
disease progression in HNSCC.68 Recent work revealed that Twist regulates Bmi1 to
promote EMT under hypoxic conditions.69 Twist was reported to directly enhance Bmi1
expression through Bmi1 promoter occupancy.69 In addition, Twist and Bmi1 act
cooperatively to repress E-Cadherin and p16INK4a to promote EMT in HNSCC.69 Also,
HIF-1α controls MMP17 promoter activity through activation of Slug in HNSCC cells
under hypoxic conditions.70 Genetic knockdown of MMP17 blocked cell invasion in vitro
and metastasis in vivo.70 Moreover, elevated MMP17 is associated with poor prognosis in
HNSCC patients.70 These results indicate that HIF-1α regulates hypoxia-induced EMT
through several independent mechanisms in HNSCC.

Inflammatory cytokines, such as GM-CSF, IL-1α, IL-6, and IL-8, are known to correlate
with increased metastasis in HNSCC.71 A regulatory loop involving IL-6-induced EMT and
Snail has been reported in breast carcinoma.72 Recently, IL-6 was reported to enhance Snail
levels via the STAT3 pathway to promote EMT in HNSCC cells.73 Another mechanism for
IL-6-mediated EMT is through modulation of Twist stability. Casein kinase 2 (CK2), an
IL-6 target, stabilizes Twist through a post-translational phosphorylation event.40 Similarly
to IL-6, IL-1β regulates EMT through several pathways. Treatment of HNSCC cells with
IL-1β decreased E-Cadherin and increased Zeb1 expression.74 IL-1β increased binding of
Zeb1 to the Ebox element on the promoter of E-Cadherin to silence E-cadherin expression.74

IL-1β has also been shown to regulate E-Cadherin through COX2-dependent upregulation of
Snail.75

Conclusion
HNSCC patients with distant metastasis have a mortality rate of approximately 90%.3 EMT
is a cellular process that is intimately linked to metastasis and understanding EMT biology
will be essential to improve patient outcome. Downregulation of E-cadherin, upregulation of
Vimentin, relocalization of β-catenin, and rearrangement of the cytoskeleton are some of the
most critical cellular events during EMT. Extensive research has focused on elucidating the
signal transduction pathways co-opted by tumor cells to facilitate the dynamic EMT
program. Transcription factors Snail and Twist are well characterized as the most influential
factors on E-cadherin repression and EMT induction. Moreover, growth factor receptor
signaling, including EGFR and TGFβR, controls numerous aspects of the EMT process, in
part through modulation of Snail and Twist. Despite the extensive research reported on
signaling networks responsible for EMT, much remains to be understood regarding this
complex and dynamic cellular process.

Mesenchymal to epithelial transition (MET) is the reverse process of EMT to transition a
cell that has acquired mesenchymal characteristics back to a cell with epithelial
characteristics. In contrast to the extensive literature on EMT in tumorigenesis, there has
been limited work to delineate the role and requirement of MET in disease progression and
metastasis. It is postulated that a tumor cell with EMT features must transition back to an
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epithelial tumor phenotype to proliferate and colonize at distant organ sites; however, there
is scant experimental evidence to confirm this hypothesis. Thus, further research is
warranted to better understand the MET process in order to provide additional insights into
the metastatic tumor cell program in HNSCC.

There are several limitations in the EMT literature that needs to be addressed to better define
the EMT process in HNSCC. First, HNSCC covers numerous subsites, including
nasopharyngeal, oropharynx, oral, and larynx. Each subsite may have unique characteristics
and thus may regulate EMT through overlapping and distinct mechanisms. Second, most of
the studies did not determine or report on human papillomavirus (HPV) status. HPV is
known to promote tumorigenesis through a unique mechanism, however, the influence of
HPV on EMT remains to be elucidated.77 Along with the many etiological differences of
HNSCC, the EMT program may have nuances that have been largely ignored. Emerging
evidence reveal that early and late stage EMT have different molecular profiles suggesting
that the utilization of hallmark EMT markers E-Cadherin and Vimentin may be insufficient
to capture the dynamic EMT process.54,59 In addition, sub-cellular localization of markers
has been shown to be a better indicator of EMT.10,14,59,78 A potential possibility is that sub-
cellular localization may be an indicator of early EMT whereas total levels may be an
indicator of late EMT. Additional work to clarify these potential issues will better delineate
the mechanisms that regulate the dynamic EMT program in HNSCC. Enhance
understanding of the complex signaling networks essential for EMT may reveal novel
druggable targets for the development of anti-cancer therapeutics for managing metastatic
HNSCC.
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Figure 1. Epithelial-to-Mesenchymal Transition
Epithelial cancer cells with a polar, adhesive phenotype are induced into cells with a
mesenchymal phenotype characterized by increased invasive, motility, and survival.
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Figure 2. Cytoskeletal, extracellular matrix, and adhesion molecules in EMT
A key indicator of EMT is the rearrangement of stress fibers, a change in adhesion
molecules, and extracellular proteins. In a cell undergoing EMT, β-catenin is transported
from the cell membrane to the nucleus. E-Cadherin expression can be repressed by
hypermethylation, Actin is reorganized, and Vimentin/N-Cadherin expression is increased.
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Figure 3. Snail and Twist in EMT
(A) Phosphorylated AKT increases Snail, Twist, NF-κB, and Vimentin. HA-bound CD44
activates STAT3 which leads to the upregulation of Twist and Snail. Twist and Snail
occupies E-Cadherin promoter to repress E-Cadherin transcription. (B) Bmi1 repressess
PTEN allowing AKT to inhibit Snail degradation by GSK-3β. Bmi1 cooperates with Snail
to inhibit E-Cadherin.
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Figure 4. TGFβ and EGF in EMT
(A) TGFβ post-transcriptionally regulates MMP9 through SMAD2/3 and MLCK to promote
EMT. Transcriptional regulation of MMP9 by TGFβ is mediated through the Snail/Ets1 and
MEK1/2-ERK1/2-Slug pathways. (B) EGF activates Erk1/2 and AKT pathways to promote
EMT. EGF activates the EGFR to increase MMP9 resulting in degradation of E-Cadherin
into sE-Cadherin. Also, the EGF/EGFR signaling pathway regulates the degradation of
desmosomes.
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Table 1

Select EMT-Associated Biomarkers in HNSCC

Reference Biomarker # Patients OS/PFS N+/M

Nijkamp, 2012 E-Cadherin 26 p=0.001 (PFS) p=0.004 (M)

Jouppila-Matto, 2011 Twist + Snail 109 p=0.043 (OS) NS

Song, 2009 Bmil 75 p=0.019(OS) NS

Yang, 2008 HIF-1α

147

p<0.001 (PFS)

NDTwist p<0.001 (PFS)

Snail p<0.001 (PFS)

Yang, 2010 Twist + Bmil 132 p<0.001 (OS) ND
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