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Abstract

Though it is widely appreciated that complex structural, functional and morphological

relationships exist between distinct areas of the human cerebral cortex, the extent to which such

relationships coincide remains insufficiently appreciated. Here we determine the extent to which

correlations between brain regions are modulated by either structural, connectomic or network-

theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI)

and diffusion tensor imaging (DTI) volumes acquired from N = 110 healthy human adults. To

identify the linear relationships between all available pairs of regions, we use canonical correlation

analysis to test whether a statistically significant correlation exists between each pair of cortical

parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this,

we investigate (1) how each group of canonical variables (whether structural, connectomic or

network-theoretic) contributes to the overall correlation and, additionally, (2) whether each

individual variable makes a significant contribution to the test of the omnibus null hypothesis

according to which no correlation between regions exists across subjects. We find that, although

region-to-region correlations are extensively modulated by structural and connectomic measures,

there are appreciable differences in how these two groups of measures drive inter-regional

correlation patterns. Additionally, our results indicate that the network-theoretic properties of the

cortex are strong modulators of region-to-region covariance. Our findings are useful for

understanding the structural and connectomic relationship between various parts of the brain, and

can inform theoretical and computational models of cortical information processing.

Keywords

neuroimaging; MRI; DTI; connectivity; correlation

*Corresponding author: andrei.irimia@loni.ucla.edu. Phone: (01) 310-206-2101; Fax: (01) 310-206-5518.

Disclosure statement
The authors have no conflicts of interest to disclose.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2014 April 29.

Published in final edited form as:
Neuroimage. 2013 February 1; 0: 489–499. doi:10.1016/j.neuroimage.2012.10.066.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Introduction

It is widely appreciated that complex structural, functional and morphological relationships

exist between distinct areas of the human cerebral cortex. Among the most telling of these

relationships is that of structural connectivity, where distinct gyral and sulcal gray matter

(GM) structures are physically connected by white matter (WM) tracts. Structural

connectivity patterns aid one in understanding how different areas of the brain process

inputs, exchange information, and respond to either exogenous or endogenous stimuli. For

this reason, the study of connectivity patterns in the brain is an active topic of scientific

investigation (Eguiluz, Chialvo et al. 2005; Achard, Salvador et al. 2006; Bassett and

Bullmore 2006; De Luca, Beckmann et al. 2006; Honey, Kotter et al. 2007; Greicius,

Supekar et al. 2009; Hagmann, Cammoun et al. 2010). In addition to structural connectivity,

however, various areas of the brain can also share intricate relationships as a consequence of

genetic, developmental and environmental factors which can alter the structural and

functional relationships between brain regions (Lerch, Worsley et al. 2006; He, Chen et al.

2007; Chen, He et al. 2008). At the macroscopic scale, the most obvious structural

delineation scheme for the cortex involves dividing the cerebral surface into gyri and sulci,

given that the morphometric, areal and volumetric properties of these structures can be

resolved using currently available neuroimaging methodologies. Thus, to understand how

different parts of the brain can interact with each other, it is very helpful to elucidate the

extent to which the structural properties of gyri and sulci (such as their cortical thickness,

area, curvature, etc.) co-vary across subjects (He, Chen et al. 2007).

In addition to the structure of covariance between the anatomic and connectivity properties

of different brain regions, it is also useful and enlightening to investigate the individual

place of each brain region within the full ensemble of brain connections (Gong, He et al.

2009). In the context of network theory, brain regions and WM fibers can be conceptualized

as nodes and edges, respectively, and local network topology can be explored by quantifying

the relative prominence of various nodes at the local or at the global level (Chen, He et al.

2008). By studying the covariance patterns of network properties between different nodes

across subjects, one can identify the roles of various brain regions within their overarching

networks, as quantified using graph-theoretic measures such as degree, betweenness

centrality, local efficiency, etc.

In this article, we seek to determine the extent to which the patterns of correlation between

brain regions are modulated by structural, connectomic and/or network-theoretic properties.

Starting from a structural neuroimaging data set of magnetic resonance imaging (MRI) and

diffusion tensor imaging (DTI) volumes acquired from N = 110 healthy human adults, we

use automated image processing methods to segment and parcel the brain of each subject

into 165 regions and to compute the structural, connectomic and network-theoretic

properties of each region. To identify the co-linear relationships between all available pairs

of regions, we use canonical correlation analysis to test whether a statistically significant

correlation exists between each pair of cortical parcels as quantified via structural,

connectomic or network-theoretic measures. In addition to this, we investigate (1) how each

group of canonical variables (whether structural, connectomic or network-theoretic)

contributes to the overall correlation and, additionally, (2) whether each individual variable
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makes a unique contribution to the test of the omnibus null hypothesis according to which

no correlation between regions exists across subjects. Our findings are useful for

understanding the structural and connectomic relationship between various parts of the

brain, provide an overarching picture of brain connectedness, and can inform theoretical and

computational models of cortical information processing.

Methods

Subjects

T1-weighted MRI volumes from N = 110 healthy, right-handed human subjects aged 25 to

36 were obtained from the Integrated Data Archive (IDA; http://ida.loni.ucla.edu) of the

Laboratory of Neuro Imaging (LONI) at the University of California, Los Angeles. Data

were obtained from a variety of projects in which subjects provided their informed written

consent as required by the Declaration of Helsinki, U.S. 45 CFR 46, and with the approval

of local ethics committees at their respective research institutions. All subjects were healthy

normal controls with no neurological pathology or history of psychiatric illnesses. Data sets

deposited in the LONI IDA are fully anonymized for the purposes of sharing, re-use, and re-

purposing, and linked coding or keys to subject identity are not maintained. Consequently,

in accordance with the U.S. Health Insurance Portability and Accountability Act (HIPAA;

http://www.hhs.gov/ocr/privacy), our study does not involve human subjects’ materials.

Image processing

The LONI Pipeline environment (http://pipeline.loni.ucla.edu) was used for all major image

processing operations, including bias field correction, skull stripping, image alignment, etc.

This program is a graphical environment for the construction, execution and validation of

neuroimaging data analysis and facilitates automated data format conversion while

providing a large library of computational tools (MacKenzie-Graham, Payan et al. 2008;

Dinov, Van Horn et al. 2009; Dinov, Lozev et al. 2010). DTI data were analyzed in native

subject space using second-order Runge-Kutta tractography in the Diffusion Toolkit

component of the TrackVis (http://trackvis.org) software package for white matter fiber tract

reconstruction. The 3D Slicer (http://slicer.org) program, an openly available software

platform from the National Alliance for Medical Image Computing (NA-MIC; http://

www.na-mic.org) for visualization. Segmentation and regional parcellation were performed

using FreeSurfer (Dale, Fischl et al. 1999; Fischl, Sereno et al. 1999; Fischl, Salat et al.

2002) following methodology described in (Destrieux, Fischl et al. 2010). For each

hemisphere, 74 cortical structures were identified in addition to 7 subcortical structures and

to the cerebellum. One midline structure (the brain stem) was also included, for a total of

165 parcels for the entire brain. The cortex was divided into 7 lobes, with the number of

parcels in each being equal to 21 (frontal, Fro), 8 (insula, Ins), 8 (limbic, Lim), 11 (temporal,

Tem), 11 (parietal, Par), 15 (occipital, Occ). Cortical surface area, GM volume, mean

curvature and mean thickness were extracted for each parcellated region.

Connectivity calculation and representation

To compute connectivity between regions for each subject, the location of each fiber tract

end-point extremity within the brain was identified, while the GM volume associated with

Irimia and Van Horn Page 3

Neuroimage. Author manuscript; available in PMC 2014 April 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://ida.loni.ucla.edu
http://www.hhs.gov/ocr/privacy
http://pipeline.loni.ucla.edu
http://trackvis.org
http://slicer.org
http://www.na-mic.org
http://www.na-mic.org


every parcel was also delineated. For those fibers which both originated as well as

terminated within any two distinct parcels of the 165 available, each fiber extremity was

associated with the appropriate parcel. For each such fiber, the corresponding entry in the

connectivity matrix of the subject’s brain was appropriately updated to reflect an increment

in fiber count (Hagmann, Cammoun et al. 2008; Hagmann, Cammoun et al. 2010). To

compute relative connectivity density, each subject’s connectivity matrix was normalized

over the total number of fibers within that subject. The average length of the fibers

connecting every pair of regions was also recorded, as was the average fractional anisotropy

(FA) of each fiber line as reconstructed via second-order Runge-Kutta tractography (Basser,

Pajevic et al. 2000). Processing workflows to compute inter-regional connectivity matrices

were constructed using purpose-built software.

Connectogram design

Connectivity was represented circularly using a framework based on Circos software

(Krzywinski, Schein et al. 2009). Parcellated regions were displayed as a circle of radially

aligned elements (a ‘connectogram’) representing the left and right hemispheres positioned

symmetrically on the corresponding side of the vertical axis. Parcellated regions were

assigned unique RGB colors as shown in Figure 3, and all RGB codes are provided in

(Irimia 2012). Arrangement of parcellations within each lobe of the connectogram was

performed in the order of their locations along the antero-posterior axis of the cortical

surface associated with the published FS normal population atlas (Destrieux, Fischl et al.

2010). Cortical lobes were assigned unique color schemes: black to red to yellow (Fro),

charlotte to turquoise to forest green (Ins), primrose to lavender rose (Lim), etc. Subcortical

structures were colored light gray to black. An unambiguous abbreviation scheme was

created to label each parcellation. Within the outermost circle which represents cortical

parcellations, five circular heat maps were created to encode one of the five structural

measures associated with the corresponding parcellation. Proceeding towards the center of

the circle, these measures are total GM volume, total area of the surface associated with

parcellation, mean cortical thickness, mean curvature and connectivity per unit volume. This

latter measure was calculated as the density of fibers with endings within that parcellation

divided by the parcellation’s total GM volume. The value of each structural measure was

encoded as a color using a color scheme mapping that ranged from the minimum to the

maximum of the data set. Specifically, the cortical thickness t with values in the interval

[tmin, tmax] was normalized as t1 = (t − tmin)/(tmax − tmin). The value of t1 was associated

with a unique color; for example, nuances at the extremities of the color map correspond to

tmin and tmax, as required. For the brain stem, cerebellum and subcortical structures, values

for area, thickness and curvature were unavailable from FS and their appropriate heat map

entries were drawn in white. The methodology for generating connectograms is described is

described in detail elsewhere (Irimia 2012).

Network metrics

Nodes here are denoted by parcellated regions and edges are represented by fiber tracts.

Network metrics were computed for each subject and included measures of global and local

influence and segregation. As metrics of influence, the degree, betweenness centrality and

participation coefficient of each node were computed. The node degree is the number of
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edges connected to a node and its calculation has fundamental impact upon many network

measures; moreover, node degree distributions are highly informative of network

architecture (Rubinov and Sporns 2010). The betweenness centrality of a node, on the other

hand, is the fraction of all shortest paths in the network that pass through the node (Freeman

1978). Finally, the participation coefficient is a measure that assesses the diversity of

connections between network partitions; for example, nodes of high degree that have a

variety of connections with different network partitions have a high participation coefficient

(Guimera and Amaral 2005). As measures of segregation, the clustering coefficient, local

efficiency and eccentricity of each node were calculated. The first of these measures the

density of connections between a node’s neighbors (Watts and Strogatz 1998), whereas the

local efficiency of a node is the average of the inverse entries in the connectivity matrix

computed on the neighborhood of the node (Latora and Marchiori 2001). The eccentricity of

a node is the length of the shortest path between that node and the most distant node in the

network.

Statistical analysis

We sought to identify the linear relationships between all available pairs of network nodes

(i.e. cortical parcels) in the context of a canonical correlation model (Rencher 2002). For

each subject s = 1, …, N, let C(s) represent the connectivity density matrix of subject s as

determined using the methods previously described, and let cij(s) represent the entry in C(s)

that is indexed by i and j, i.e. the connectivity density of the connection between vertices vi

and vj. Similarly, let L(s) represent the average fiber length matrix and lij be the average

length of WM fibers linking vi to vj. For each pair of vertices, the variables included in the

canonical correlation analysis were either structural, connectomic or network-theoretic. The

structural variables included were cortical area, curvature and thickness. The connectomic

variables included were (1) the sum of connectivity densities for the connections linking

each node to all its neighbors, i.e. Σk cik for node vi and Σk cjk for node vj, as well as (2) the

sum of physical lengths associated with these connections, i.e. Σk lik for node vi and Σk ljk
for node vj. Finally, the network-theoretic variables included for each node were the

measures of influence (degree, betweenness centrality, participation coefficient), integration

(characteristic path length), and segregation (clustering coefficient, local efficiency,

eccentricity) previously described, for a total of p = 12 variables included in the analysis

(three structural, two connectomic, and seven network-theoretic variables). Subsequently,

for each pair of nodes vi and vj, two matrices X(vi) and Y(vi) were created, where X contains

the values of canonical variables associated with node vi, and Y contains the values of

variables associated with node vi (hence forward, the dependence of X and Y upon vi and vj

shall be assumed and consequently no longer stated explicitly). X is of dimensions q × N and

Y is of dimensions p × N, where p = q = 12 for the omnibus analysis and N = 110 in our

case. Indices along the first dimension in each of X and Y indicate entries associated with

each of the p = q = 12 canonical variables, whereas indices along the second dimension

indicate the values assumed by each of these variables in subject s, where s = 1, …, 110.

Thus,
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and

and similarly for Y. For each pair of nodes vi and vj, these matrices were used to perform a

canonical correlation analysis, i.e. to test the sequence of 12 null hypotheses 

that the 1st through 12th correlations are all zero against the corresponding alternative

hypotheses. Explicitly, let x1, …, xq and y1, …, yp be the two sets of canonical variables

whose correlative relationships are being investigated. The overall sample covariance matrix

can be written as

where Syy, Sxx, Syx and Sxy are blocks denoting the covariance matrices for the groups of

variables indicated by the corresponding subscripts, e.g. Sxy is the covariance matrix of x1,

…, xq and y1, …, yp. One can define an R2-like measure of association between the two sets

of canonical variables as

where the variables  are the eigenvalues of  (see also Chapter 11 in

(Rencher 2002)); these eigenvalues are also canonical correlations which provide

meaningful measures of association between the underlying variables (p. 362 in (Rencher

2002)). Under the null hypothesis H0, there is no linear relationship between the xi’s and the

yi’s, and H0 is equivalent to the statement that all canonical correlations  are non-

significant. This hypothesis can be tested by means of Wilks’ Λ (likelihood ratio) statistic

which is distributed as Λp,q,n−q−1. The null hypothesis is rejected if Λ ≤ Λα,p,q,n−q−1. In the

case of the canonical correlation analysis for the omnibus model, p = q = 12 and Wilks’ Λ

can be transformed to an approximate F-statistic, which can allow the null hypothesis to be
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tested against the theoretical F-distribution (cf. pp. 162–164 in (Rencher 2002) for details)

having appropriate degrees-of-freedom. Specifically, with vH = q and vE = n − q − 1, one

can define

and the null hypothesis can be tested based on the value of the approximate F statistic given

by

with df1 and df2 degrees of freedom. In this study, the omnibus null hypothesis was rejected

at a significance level of α = 10−15 subject to the Bonferroni correction for multiple

comparisons.

By means of the multivariate approach described above, the null hypothesis was tested as to

whether a statistically significant correlation existed between each pair of cortical parcels, as

quantified by means of a multivariate feature vector which included structural, connectomic

and network-theoretic measures.

In addition to assessing the omnibus hypothesis between each region pair, another set of

interesting questions refer to how each individual canonical variable contributes to the

overall correlation or, more precisely, whether each individual variable makes a significant

contribution to the test of the null hypothesis. To investigate this, a lower-order-design

(LOD, also known as ‘leave-one-out’) canonical correlation analysis (pp. 231–232 in

(Rencher 2002)) was implemented. In this approach, exactly one of the 12 variables was

removed at a time from the full canonical correlation model, and null hypotheses were tested

on the 12 reduced models using the same approach as in the case of the omnibus hypothesis.

This was done to determine whether the canonical variable being removed made a

significant contribution to the test of the null hypothesis H0 above and beyond the 11

variables already available. To test this hypothesis and thereby compare each reduced model

to the full model, partial Λ and F statistics were calculated (p. 232 in (Rencher 2002)), and

the test of the significance of each variable in the presence of the other 11 variables was

performed. Specifically, the partial Λ statistic is given by
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where Λf is the lambda statistic associated with the full model with Nf = 12 variables, and Λr

is the lambda statistic associated with the reduced model of Nr = 11 variables. ΛLOD is

distributed as Λ1,vH,vE−Nr, where the number of error degrees of freedom, vE − Nr, has been

adjusted for the Nr = 11 variables in the reduced model (p. 232 in (Rencher 2002)). ΛLOD

has an exact F-transformation of the form

which is distributed as FvH,vE−Nr and allows one to determine whether the canonical variable

being removed makes a significant contribution to the test of the null hypothesis H0 above

and beyond the 11 variables already available. From among those pairs of regions that are

significantly correlated according to the full canonical correlation analysis, we thus

identified—by means of this LOD approach—those subsets of cortical region pairs whose

structural, connectomic or network-theoretic correlations are significantly modulated by

each individual canonical variable. For each of these subsets of connections as well as for

the omnibus analysis, connectograms were generated to evaluate and compare the patterns

of correlation between all cortical regions.

Results

Figure 1 displays the results of the omnibus canonical correlation performed on all 12

descriptive variables (3 structural, 2 connectomic, and 7 network-theoretic measures). In

addition, the connectograms for the three reduced canonical correlation models are also

displayed for comparison. In each of these three models, exactly one of the three groups of

descriptive variables is omitted; for example, the structure connectogram illustrates the

effect caused by removing all three structural descriptive variables from the canonical

correlation model. It should be noted that, in Figures 1–4, the thresholds being used to

display connections are αth = 10−10 and αth = 10−5 for larger and smaller connectograms,

respectively. The LOD canonical model was calculated only for those pairs of parcels for

which α had been found to be lower than αth = 10−10 in the omnibus model. For this reason,

if a links is present in each small connectogram, a link must also exist in the large

connectogram. This was found to be optimal for allowing the reader to discern patterns of

covariance without displaying too many connections at the same time.

As explained in the previous section, wedges on the outermost ring of the connectogram

depict the colors of each cortical parcel, using anatomically-defined color and abbreviation

schemes described in detail elsewhere (Irimia 2012). Within the outermost circle which

represents cortical parcellations, each of the five circular heat maps encodes one of the five

structural measures associated with the corresponding parcellation. Proceeding towards the

center of the circle, these measures are total GM volume, total area of the surface associated

with parcellation, mean cortical thickness, mean curvature and connectivity per unit volume.

A link is drawn between two parcels if and only if the coefficient of determination R2 for the

two regions is significant, and the opacity of the link is directly proportional to the value of
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R2. For example, a link which is almost transparent reflects a low value of the coefficient of

determination, whereas a link which is completely opaque reflects a high value of R2.

The omnibus analysis connectogram reveals the presence of appreciable correlation between

brain regions as quantified via structural, connectomic and network-theoretic properties,

both inter- and intra-hemispherically. Notably, although many cortico-cortical correlations

are found to be appreciable, the strongest values of the canonical correlation of

determination R2 are found between non-neocortical regions. In addition to the latter,

however, R2 is also appreciable for certain pairs of neocortical regions, both inter-

hemispherically (left to right superior frontal gyrus, precentral gyrus, central sulcus), intra-

hemispherically (superior occipital gyrus to superior occipital sulcus, bilaterally), and within

a single hemisphere (left middle frontal sulcus to left superior frontal sulcus, and right

middle anterior cingulate cortex to right middle posterior cingulate cortex). An additional

insight offered by Figure 1 is the fact that structural and network-theoretic descriptive

variables modulate region-to-region correlations to a greater extent than connectomic

measures do, which clearly contradicts the view that cortical correlations of structural

properties can be treated as surrogates of connectomic correlations.

In contrast to Figure 1 (which summarizes the results of the omnibus canonical correlation

analysis), Figures 2–4 display the results of the 12 LOD canonical correlation analyses,

whereby the extent to which each canonical variable contributes to the overall correlation is

quantified. This is summarized in three separate figures, with the effects of removing each

structural, connectomic and network-theoretic variable from the full model being illustrated

in Figures 2, 3 and 4, respectively. In each of these figures, the larger connectogram being

displayed shows the effect of removing the entire group of descriptive variables being

investigated; thus, the larger connectograms in Figures 2–4 are identical to the smaller

connectograms in Figure 1. By contrast, the smaller connectograms in each of Figures 2–4

illustrate the effect of removing exactly one variable from the full canonical correlation

model.

The small connectogram on the left hand side (LHS) in Figure 2 shows that regional area

modulates an abundance of correlative relationships between frontal lobe and non-

neocortical structures, especially bilateral ones in cases such as the precentral gyrus, middle

frontal gyrus, superior frontal gyrus, and superior circular insular sulcus. Additionally, the

left and right precunei are two structures whose strong correlative relationship is

significantly modulated by their cortical areas. Compared to area, however, cortical

thickness appears to be a much more important factor in determining the covariational

structure of the brain. Thus, from the standpoint of thickness, the brain appears to be very

correlated both intra- and inter-hemispherically, notable examples of this being the bilateral

correlations between the superior occipital gyrus and sulcus, which are appreciably

modulated by the cortical thickness of these structures. By contrast, most structures whose

correlation is significantly dictated by curvature are inter-hemispheric and bilaterally

symmetric, such as between the left and right superior frontal gyri, precentral gyri, anterior

cingulate cortices, supramarginal gyri as well as other structures.
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Figure 3 summarizes the dependence of structural correlations upon one of two connectomic

measures, namely connectivity density and fiber length, respectively. As expected from the

normal human brain, correlation patterns modulated by connectivity density are bilaterally

symmetric (i.e. symmetric with respect to the longitudinal fissure) both inter- and intra-

hemispherically. Inter-hemispheric correlations that are modulated significantly by density

are those between the left and right recti gyri, superior temporal gyri, as well as between

insular sulci. Left-hemisphere correlations include (1) frontomarginal cortex to temporal

lobe structures, (2) the anterior longitudinal sulcus to the transverse temporal sulcus, and (3)

the superior occipital gyrus to the superior occipital sulcus. Other correlations modulated by

connectivity density are between occipital and temporal structures (bilaterally), insular and

temporal structures (also bilaterally), and between non-neocortical structures. On the other

hand, correlations modulated by fiber length are mostly inter-hemispheric, between frontal

structures (left to right precentral gyrus, left to right subcentral gyrus/sulcus), limbic

structures (left to right cingulate structures, such as the anterior cingulate gyrus/sulcus, the

marginal part of the cingulate sulcus, and the posterior dorsal cingulate gyrus). Other inter-

hemispheric correlations are between parietal structures (such as between submarginal gyri,

superior parietal lobules, and angular gyri), whereas intra-hemispheric correlations

modulated by fiber length are between (1) limbic and parietal structures, and between (2)

frontal and parietal parcels (bilaterally in both cases).

Figure 4 illustrates the fact that two network-theoretic properties of the brain (eccentricity

and nodal degree) are important modulators of the correlative relationships between various

cortical and subcortical structures. By contrast, betweenness centrality, local efficiency as

well as the clustering and participation coefficients were not found to contribute to

correlation patterns appreciably (see also Supplementary Material). For the most part,

community structure was found to modulate intra-hemispheric correlations in a bilaterally

symmetric way (between all combinations of lobes), with the notable exceptions of some

inter-hemispheric correlations (between limbic lobe structures, and parieto-limbic

correlations). Similarly, eccentricity significantly influences the correlation patterns that

exist within each hemisphere, especially with regard to parieto-limbic and temporo-insular

relationships. Finally, nodal degree affects a wide variety of correlations between all cortical

lobes, both intra- and inter-hemispherically.

Discussion

An important relationship between brain function and structure is the fact that functional

specialization can lead to anatomic change (Lerch, Worsley et al. 2006), e.g. in the case of

trained musicians who feature enlarged sensorimotor, premotor and parietal areas (Schlaug

2001). Because functional changes such as these can prompt or modulate structural changes

in the brain, one can expect that the manner in which the anatomic features of certain brain

areas are correlated across individuals may partly reflect functional interactions between

these areas. Conversely, because genotypic factors modulate, to a large extent, whether and

how different parts of the brain develop across individuals, it can be hypothesized that

correlations in cortical area, thickness or in other properties as induced by genetic factors

can influence the degree and extent of proficiency achieved by the individual in areas such

as analytic processing speed, spatial acuity, artistic talent, etc. Consequently, to determine
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the extent to which brain structure constrains function and vice versa, it is essential to

investigate how anatomic features are correlated across brain regions, as well as whether the

existence of such correlations is partly due to WM connectivity between regions or to the

type of network connections between them. To do so for the healthy adult population is

necessary in order to establish a reference space of correlative relationships which apply to

the human brain, and to identify the characteristics of a population which can be used as a

normative sample in comparative statistical studies of neurological and psychiatric disease.

Importantly, a useful feature of our approach which can make it particularly appealing to

other researchers is the fact that the methodologies we employed here (3D Slicer, from

www.slicer.org; the LONI pipeline, from http://pipeline.loni.ucla.edu; and Circos, from

http://circos.ca) are freely available and systematically well documented in our previous

publications (MacKenzie-Graham, Payan et al. 2008; Dinov, Van Horn et al. 2009; Dinov,

Lozev et al. 2010; Irimia 2012).

The fact that correlative relationships exist between various regions of the brain has been

recognized for some time (Lerch, Worsley et al. 2006; He, Chen et al. 2007). Lerch and

colleagues (2006), for example, found that association cortex (Brodmann Area 44) is

structurally correlated with other brain areas in a manner which is very similar to that in

which this former region is connected to other brain areas via WM tracts. Because cortical

thickness reflects the size, number and spatial distribution of cells in the nervous system, it

is a particularly attractive measure for investigating the network properties of the cortex, as

demonstrated by Evans et al. (2008). Correlative relationships between brain regions have

been alternatively attributed to mutually trophic effects mediated by axonal connections

(Ferrer, Blanco et al. 1995), tissue type similarities (Cohen, Lombardo et al. 2008), heredity

(Schmitt, Lenroot et al. 2008), and/or environment-related plasticity (Mechelli, Friston et al.

2005). In particular, the study by Mechelli et al. attempted to identify topographical

principles governing structural variability across individuals, and hypothesized that different

regions’ GM density (i.e. regional GM volume normalized with respect to the entire brain)

co-vary symmetrically with respect to the longitudinal fissure. These authors found that, for

a few selected regions, GM density in one hemisphere is generally a good predictor of GM

density in the homotopic regions of the contralateral hemisphere. Recently, He et al. (2007)

parcellated the human cortex into 54 regions and investigated which pairs of cortical regions

showed statistically significant associations in cortical thickness. They found that the 15

pairs with the highest correlations in thickness were associated with WM fiber tracts that

had been mapped by neuroanatomists. Although these authors initially speculated that

morphometry-based cortico-cortical correlates provide approximate reflection of the true

anatomical connections among neuronal elements, a subsequent study by the same group

(Gong, He et al. 2012) found that cortical thickness correlations reflect underlying WM

connectivity only to a moderate extent, namely that only 35–40% of cortical thickness

correlations are associated with underlying WM connections between the correlated regions

in question.

In this study, we applied a connectomic approach to identify not only whether correlative

relationships between any pair of brain regions exist, but also whether such relationships are

related to anatomic, connectomic or network-theoretic factors. For this reason, our study is

significant because it is the first one to determine and quantify systematically if and how
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structural features are shared by brain regions due to WM connectivity or due to the nature

of network connections between them (as quantified using graph theory metrics). In

addition, for each correlative relationship which is due to structure, connectomics or

network properties, we determined whether the correlation is due to area, thickness or

curvature (for correlations modulated by structure), by connectivity density or fiber length

(for correlations modulated by connectomics), or by one of seven graph-theoretic measures

(for correlations modulated by network properties). Thus, an important reason for which our

study is useful is because it reveals and quantifies, for the first time, the interplay between

these former three sets of factors in determining how brain regions share common features.

Another reason for its importance is the fact that we hereby establish a reference space of

brain feature correlations which is based on a normative sample of healthy adults. This

reference space can be used to study how brain correlations are altered in disease, and its use

may lead to improved understanding of how brain structure, function and circuitry are

affected by various pathologies, including dementia, psychiatric diseases, and in conditions

of neurological concern such as traumatic brain injury.

Our investigation is motivated primarily by the fact that studies of cortical thickness

correlations have provided insight into a variety of clinical conditions. For instance, He et al.

(2008) found that Alzheimer’s Disease (AD) patients exhibit decreased thickness

correlations bilaterally between parietal regions, as well as increased inter-correlations

between temporal and parietal cortices. Lerch et al. (2008) used a leave-one-out multivariate

discriminant analysis to confirm that cortical thickness could be used to accurately predict

AD diagnosis and proposed their framework as a valuable method for improving diagnostic

accuracy. In another study, van Haren et al. (2011) found that the brain of schizophrenics

exhibits appreciable thinning in frontal and temporal areas and that such thinning is

correlated with outcome and with the pharmacological therapeutic regimen of patients. In

temporal lobe epilepsy (Bernhardt, Worsley et al. 2008; Bernhardt, Rozen et al. 2009;

Bernhardt, Chen et al. 2011), graph-theoretic analysis of cortical thickness correlation

networks has revealed disrupted small-world organization including features such as altered

connectivity between hubs, increased path length and clustering, as well as higher

vulnerability to targeted attacks. In autism, structural differences from controls have been

observed in cortical areas involved in social cognition, communication, and repetitive

behaviors (Hyde, Samson et al. 2010). Consequently, it can be expected that network

properties are, in some senses, specific to various clinical populations, and that such

differences may even have prognostic clinical value.

The presence of a significant canonical correlation between any pair of cortical regions, as

represented in Figures 1–4, denotes the existence of a statistically significant modulatory

relationship between these regions. Furthermore, the presence of a link in a connectogram

implies that a significant value of R2 is associated with the canonical correlation between the

connectomic variables for the two cortical regions involved. For example, the presence of a

link in the curvature connectogram of Figure 2 implies that curvature is a critical feature in

determining the significance of the canonical correlation, and that its removal from the

feature vectors of the two regions (as done via the LOD model) causes the canonical

correlation to become statistically insignificant. The implication is that the two regions
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whose feature vectors are being compared share curvature as a significantly correlated

feature, and that one region’s change in curvature from one subject to the next is associated

with a corresponding significant change in the curvature of the other region. The same

argument applies to any of the other 11 canonical variables whenever a link is present in that

variable’s connectogram for some pair of regions; this implies that our study systematically

reveals and quantifies a variety of relationships between brain regions in the healthy adult

brain, and that the features shared by cortical areas include not only structural properties, but

also connectomic and network-theoretical properties. In particular, the existence of

significant correlations based on the latter two types of features implies that cortical regions

can share not only structural properties, but also WM connectivity patterns and graph-

theoretical properties, which may bear relevance to future studies of structural and

functional connectivity.

In some respects, studies of brain network properties inferred via DTI tractography have

been compared favorably to analyses of cortical thickness correlation (Gong, He et al.

2009), and have revealed prominent network features such as small worldness and ‘rich

club’ structure (He, Wang et al. 2009). Furthermore, it has been found that many topological

properties of structural brain networks can be extracted from network analysis of structural

correlation matrices using a variety of measures (He and Evans 2010). Our present study

confirms the previous conclusion of Gong et al. according to which thickness correlations do

reflect the underlying fiber connection to some extent, although the former should not

simply be taken as a proxy measure of the latter. Additionally, we find that this is the case

not only for cortical thickness correlations, but also for the other structural, connectomic and

network-theoretic measures considered in our study. Specifically, whereas correlation

between regions—as computed based on our 12 computed properties—may occasionally be

strong, the large differences we find between the correlational patterns associated with each

of these 12 properties indicate that WM connectivity is not the (sole) reason for the

existence of correlative relationships between brain regions. For this reason, we propose that

the term ‘connectivity’ should be reserved for denoting physical connectivity as mediated by

WM fibers, and not to correlative relationships. An important consequence of this

conceptual distinction is that, since statistical correlations between regions do not generally

imply physical connectivity between them, it may not be entirely valid to use network

metrics computed from correlation-based adjacency matrices in order to infer the

information-theoretic properties of the brain. In (Gong, He et al. 2012), for example,

significant differences were found in the locations of hub regions in correlative vs.

connectivity networks, though some consistent agreement was also found in this respect;

similarly, the local efficiencies of nodes in the two network types (correlative vs.

connectivity-derived) were found by Gong et al. to be weakly and insignificantly correlated

(r = −0.11, p = 0.32). Similarly, in (Chen, He et al. 2008), the authors investigate the

intrinsic modular structure of human brain networks derived from thickness measurements

and speculate that interregional correlations in thickness might arise from interactions

between underlying neuronal substrates through their anatomical connections. Chen et al.

also compute the vertex properties of nodes associated with primary motor cortex and the

edge properties of connections between this structure, on the one hand, and parietal,

temporal and frontal association cortices, on the other hand. They conclude that the high
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betweenness centrality of these nodes is possibly due to their importance in managing

information flow across the network. Nevertheless, since networks derived from thickness

correlations differ markedly from those derived from WM connectivity, it is not expectable

that the inferred properties of these two network types can be assumed to be identical or

even similar. Specifically, since correlation network properties do not reflect the presence of

physical connections that carry information between regions, it may not be entirely valid to

claim that the high betweenness centrality of a node as computed from a correlation network

is due to increased information flow management by that node. The primary reason for this

is because, whereas WM connections can physically transmit information between regions,

correlation networks are statistical constructs which reflect connectivity information only to

a very limited extent.

One disadvantage of our study is the fact that current DTI tractography algorithms are not

entirely satisfactory from the standpoint of their ability to map WM connections accurately

and precisely throughout the brain. For example, crossing and kissing fibers are poorly

resolved by many tractography algorithms, including the one used here. Furthermore, the

presence of phenomena such as scanner noise and subject motion implies that existing WM

connections can be missed while other (nonexistent) connections may be inadvertently

created. Furthermore, as in the study of Gong et al. (Gong, He et al. 2012), cortical thickness

cannot be defined for non-cerebral structures, which implies that the role played by the latter

in modulating the thickness of cortical regions cannot be assessed using our current method.

It is also useful to note that the topic of structural covariance in the human cortex can and

has been investigated using related statistical techniques, such as partial correlation by Joshi

et al. (2010). In these authors’ study, however, only partial correlations of GM volumes

were considered in the analysis, whereas in our case the measures included were not only

volumetric, but also morphometric, connectomic and network-theoretic. Additionally, our

study includes an analysis of 165 parcels compared to the 33 parcels of Joshi et al.

Finally, it is important to note that, as Wu et al. (2012) noted previously, the network

properties of the cortex change as a function of age, particularly with respect to measures

such as the connector ratio between modules as well as the topological distribution of inter-

modular connections. This finding has been confirmed for both structural and thickness

correlation networks, and age-dependent changes in brain network topology have been

quantified in both (Chen, He et al. 2011). Consequently, two limitations of our study are that

(1) temporal dynamics of brain networks are not captured here, and additionally that (2) our

results quantify brain structure over a population sample with an age range of 25–36 years.

Thus, since some age-dependent variability in brain structure is bound to exist within our

population, the approach implemented here cannot be used to tease out brain structure at

some given age value within the interval from 25 to 36 years due to the fact that brain

structure variability due to age is confounded here with variability due to other factors (e.g.

genetic differences). Nevertheless, our study does offer a representative view of how inter-

regional correlations in the adult brain are modulated by brain structure and network

properties even though the influence of age upon structure is not resolved here.
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Conclusion

We have found that cortical structure and connectivity patterns modulate inter-regional brain

correlations differently, and that network-theoretic cortex properties strongly modulate

region-to-region covariance. Nevertheless, the inter-regional covariance patterns associated

with each of these three types of measures was found to differ appreciably, which appears to

contradict the hypothesis that structural correlations are surrogates of connectomic

correlations. Consequently, more research into teasing out the properties of structural

correlation patterns from those of connectivity networks is required in order to fully clarify

the extent to which inter-regional relationships as computed based on correlative brain

network translate into analogous relationships driven by physical WM connectivity.
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DTI diffusion tensor imaging

FA fractional anisotropy

Fro frontal

GM gray matter
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IDA integrated data archive

Ins insula

Lim limbic

LOD lower order design

LONI Laboratory of Neuro Imaging

MRI magnetic resonance imaging

Par parietal

Tem temporal

Occ occipital

WM white matter
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Research Highlights

• structure and connectivity modulate inter-regional brain correlations differently

• network-theoretic cortex properties strongly modulate region-to-region

covariance

• findings can inform computational models of cortical information processing
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Figure 1.
Results of canonical correlation analysis. The presence of a link indicates that significant

canonical correlation exists between the two regions connected by that link, as quantified via

a multivariate feature vector (see text for details). For the large connectogram, the canonical

correlation was performed on all 11 descriptive variables (3 structural, 2 connectomic, and 6

network-theoretic measures), whereas a reduced canonical correlation model was used to

obtain the results displayed in each of the three small connectograms. In each of these three

models, exactly one of the three groups of descriptive variables is omitted; thus, the

structure connectogram illustrates the effect caused by removing all three structural

descriptive variables (area, cortical thickness and curvature) from the full canonical

correlation model. The threshold being used to display connections is α = 10−10 and α =

10−5 for the large and small connectograms, respectively. Each color map is linear, with a

range from the minimum value being displayed (vmin, corresponding to zero on the circular

map) to the maximum value (vmax, corresponding to unity). For example, the color

associated with the value of 0.45 on any of the color maps corresponds to vmin + 0.45 (vmax

− vmin).
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Figure 2.
Results of LOD canonical correlation analyses investigating the effect of removing

structural measures from the omnibus model in Figure 1. The large connectogram displays

the effect of removing all three structural measures, while small connectograms show the

effect of removing exactly one of these three canonical variables from the full model, as

indicated. Also shown are circular color bars for each measure, with ranges from the

minimum to the maximum value of the measure being encoded. Similarly, link transparency

encodes the value of the coefficient of determination R2 (see text for details), with colors

being mapped from the minimum to the maximum value of the coefficient within the

connectogram.
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Figure 3.
As in Figure 2, for the two connectomic measures.
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Figure 4.
As in Figure 2, for the six network-theoretic measures.
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