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Abstract

Introduction—When public health surveillance systems are evaluated, CDC recommends that 

the expected sensitivity, specificity, and timeliness of surveillance systems be characterized for 

outbreaks of different sizes, etiologies, and geographic or demographic scopes. High-Fidelity 

Injection Detectability Experiments (HiFIDE) is a tool that health departments can use to compute 

these metrics for detection algorithms and surveillance data that they are using in their 

surveillance system.

Objective—The objective of this study is to develop a tool that allows health departments to 

estimate the expected sensitivity, specificity, and timeliness of outbreak detection.

Methods—HiFIDE extends existing semisynthetic injection methods by replacing geometrically 

shaped injects with injects derived from surveillance data collected during real outbreaks. These 

injects maintain the known relation between outbreak size and effect on surveillance data, which 

allows inferences to be made regarding the smallest outbreak that can be expected to be 

detectable.

Results—An example illustrates the use of HiFIDE to analyze detectability of a waterborne 

Cryptosporidium outbreak in Washington, DC.

Conclusion—HiFIDE enables public health departments to perform system validations 

recommended by CDC. HiFIDE can be obtained for no charge for noncommercial use (http://

www.hifide.org).

Introduction

When public health surveillance systems are evaluated, CDC recommends that the expected 

sensitivity, specificity, and timeliness of surveillance systems be characterized for outbreaks 

of different sizes, etiologies, and geographic or demographic scopes (1). An important 

approach for computing these metrics is the simulation of outbreaks.

Researchers have developed injection methods in which artificial spikes, perturbations of the 

surveillance data, are injected into a time series of real surveillance data from nonoutbreak 
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periods (2–4). This method is called semisynthetic, because artificial data are injected into 

real data. After a spike is injected, any outbreak detection algorithm can be run on the 

injected time series to determine whether the spike can be detected, on what date, and with 

what false alarm rate. To understand how the detection algorithm would work on average, 

the injection is then repeated systematically with the inject date moving forward one time 

unit per repetition (Figure 1). From the results of this procedure, the parameters of 

sensitivity, false alarm rate, and timeliness for spike detection can be computed. To explore 

detection algorithm performance at different false alarm rates, the entire procedure is then 

repeated, varying the detection algorithm alarm threshold. The results are typically displayed 

graphically by using activity monitor operating characteristic (AMOC) curves (Figure 2) (5).

The primary limitation of the semisynthetic technique is that it only determines the smallest 

spike that could be detected, leaving unanswered the key detectability question, “What is the 

smallest outbreak that can be detected?” For example, the first published semisynthetic 

analysis injected spikes that increased linearly in height over time into daily sales data of 

cough products (2). The results indicated that if an outbreak increased sales by a factor of 

1.36, it would be detected. The limitation is what size outbreak increases sales by a factor of 

1.36 is unknown. A second limitation of semisynthetic analyses conducted is the use of 

geometrically shaped injects, which might be poor estimates of actual temporal outbreak 

contours and which do not account for variations in the data as a result of individual 

behavior.

An alternative injection technique addresses these limitations by forming injections with a 

shape derived from surveillance data collected during an actual outbreak (6). This inject is 

called a high-fidelity inject. Moreover, with this technique, the height of the inject is scaled 

in a method that preserves the known relationship between the magnitude of the real 

outbreak and the strength of the signal in the surveillance data from the real outbreak. 

Because of this property, a detectability analysis can be used to determine the smallest 

outbreak that can be detected. The scaling adjusts for differences in population size and in 

data completeness, which is the proportion of the data that is available in a jurisdiction. This 

technique allows health departments to ask whether an outbreak that occurred in some other 

region would have been detected in their own region, provided that the outbreak region was 

collecting the same type of surveillance data as the region performing the detectability 

analysis. The technique can be applied to the majority of surveillance data, including over-

the-counter (OTC) sales data and emergency department registrations. However, the two 

regions might differ in population size, population density, and completeness of surveillance 

data.

High-Fidelity Injection Detectability Experiments (HiFIDE) is a software tool that uses 

high-fidelity injects to analyze detectability of surveillance systems. The mechanics of a 

HiFIDE analysis are similar to those of a semisynthetic analysis, although the software 

primarily automates this process. A user selects from a user interface the type of surveillance 

data and outbreak. The user can then easily create a substantial number of injects by using 

different values of outbreak size (defined as the proportion of the population that would be 

affected by the outbreak) and surveillance data completeness. HiFIDE combines each inject 

with real surveillance data to form a time series. HiFIDE then runs a set of detection 
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algorithms on each injected time series, varying the alarm threshold, and summarizes the 

detectability results in AMOC curves and plots of sensitivity versus timeliness.

This report illustrates how HiFIDE can be used to investigate the detectability of a water-

borne Cryptosporidium outbreak in the Washington, DC, metropolitan area by assessing 

data from sales of OTC diarrheal remedies. HiFIDE is used to address the following 

questions:

• What detection algorithm would be expected to earliest detect a Cryptosporidium 

outbreak in Washington, DC?

• What is the smallest Cryptosporidium outbreak we can expect to detect, given the 

available surveillance data in the city?

• How early can we expect to detect Cryptosporidium outbreaks of different sizes?

• How many false alarms per year would we have to tolerate to improve detection?

• How much earlier would detection occur if more pharmacies were successfully 

recruited to increase the completeness of sales data?

Methods

HiFIDE is a software application that runs under the Microsoft Windows® operating 

systems. It uses R as a computational backend to enable the rapid inclusion of sophisticated 

detection algorithms (7). However, no knowledge of R is required, because the user interacts 

with only the graphical user interface of HiFIDE.

Initiating an Analysis

A user initiates a HiFIDE analysis by selecting an outbreak and surveillance data type from 

the HiFIDE library of outbreaks and data types. The user then selects a file with sampled 

surveillance data from their jurisdiction. The data must be organized as a daily time series of 

counts. Missing data are not allowed, and outbreak-dependent minimum data requirements 

are checked by HiFIDE to ensure that the time series is long enough to complete the 

analysis. The user also has the option of providing the data completeness for the sampled 

surveillance data. If the user provides data completeness, then HiFIDE permits investigation 

of the effect of varying the data completeness of the surveillance data. For example, the user 

could investigate the effect that recruiting additional retailers would have on detection 

timeliness.

Creating Injects

The user creates injects in collections called inject repetitions. An inject repetition consists 

of one inject for each feasible day in the sampled surveillance time series. Two horizontal 

sliders on the right of the screen (Figure 3) can be manipulated by the user to adjust the 

outbreak size and data completeness; the data completeness slider is only active if the data 

completeness for the sampled surveillance data was provided when the analysis was 

initiated. A third slider controls the false alarm rate and does not affect the creation of 
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injects. When the user selects “Inject,” one inject repetition is added for the selected values 

of outbreak size and data completeness.

Summarizing Detectability

HiFIDE presents the results of the analysis graphically by using AMOC plots (Figure 3), 

which depict the relationship between day of detection (computed relative to a reference 

date) and the false alarm rate, and plots of sensitivity versus day of detection (Figure 4). The 

user can alternate between these plots by selecting the “Switch Plot” button in the upper 

right-hand corner. The three sliders control the values of outbreak size, data completeness, 

and false alarm rate (the false alarm rate slider is only active for the sensitivity versus day of 

detection plot). HiFIDE reads the values of the sliders and selects values for outbreak size 

and data completeness that are closest to the slider-specified values for which at least one 

inject repetition exists. The values used by HiFIDE for the plot are displayed above the plot.

The user can select up to two algorithms to display at a time from the HiFIDE library of 

algorithms. The results for each of the algorithms are pre-computed when the injects are 

created, therefore enabling rapid switching between detection algorithms.

Results

This report illustrates how HiFIDE can be used to investigate the detectability of a water-

borne Cryptosporidium outbreak in the Washington, DC, metropolitan area by assessing 

data from sales of OTC diarrheal remedies.

Jurisdictions

The focus of the detectability analysis was the Washington, DC, metropolitan area, which 

has a resident population of approximately 550,000. Daily sales of antidiarrheal products 

during August 9–December 20, 2003, were obtained from the National Retail Data Monitor 

(8). These sales represented approximately 89% of all such sales.

The analysis is based on a waterborne Cryptosporidium outbreak in North Battleford, 

Saskatchewan. The outbreak began on March 20, 2001, when the solids contact unit at a 

surface water treatment plant malfunctioned (9). Public health officials issued a 

precautionary drinking water advisory 5 weeks later on April 25 after laboratory-confirmed 

cases of cryptosporidiosis were identified. The date of the drinking water advisory is a 

reference date for measuring timeliness. The outbreak affected approximately 36% of the 

18,000 residents. The number of weekly retail sales of diarrheal remedies was available (9) 

from a single pharmacy.

Detection Algorithms

Multiple simple detection algorithms were used for this analysis. The algorithms are a day-

specific moving average (DSMA), autoregressive integrated moving average (ARIMA 

[1,0,1] ) time series model (3), exponentially weighted moving average (EWMA) with 

weights of 0.05 and 0.2, and CUSUM with a baseline computed via EWMA with weights of 
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0.05 and 0.2 (10). The ARIMA parameters and EWMA weights were set to commonly used 

values for simplicity rather than by any model selection criteria.

Number of Repetitions

Multiple values of outbreak size and data completeness were used in the analysis. Five 

outbreak sizes were used with a range of 0.1%–10% in addition to three values of data 

completeness — 50%, 100%, and 89% — the data completeness for the surveillance data. 

Five inject repetitions were created for each pair of outbreak size (five sizes) and value of 

data completeness (three values). The entire computation took approximately 4.5 hours on a 

personal computer with a 2.4GHz Pentium 4 CPU.

Findings

What detection algorithm would be expected to detect a Cryptosporidium 
outbreak in Washington, DC, the earliest?—At a false alarm rate of four per year, the 

DSMA algorithm detects outbreaks of all sizes that are considered the earliest (Table 1). The 

AMOC curves can be inspected to determine how the false alarm rate affects relative 

algorithm performance. This report illustrates AMOC curves and a sensitivity versus 

timeliness plot for DSMA and ARIMA for an outbreak of size 1% (Figures 5 and 6); 

ARIMA detects the outbreak earlier than DSMA at smaller false alarm rates.

What is the smallest Cryptosporidium outbreak that health departments can 
expect to be detected, given the available surveillance data in the city?—The 

values (Table 2) for DSMA were interpolated to determine the smallest outbreak that is 

detected 2 weeks before public health response (using the North Battleford experience as a 

benchmark) at least 75% of the time. The smallest outbreak that is detectable is 

approximately 0.78% at a false alarm rate of four per year and 3.10% at a false alarm rate of 

two per year.

How early can health departments expect Cryptosporidium outbreaks of 
different sizes to be detected in Washington, DC?—When using DSMA, health 

departments can expect to detect an outbreak that affects 10% of the population 26 days 

before public health response, whereas an outbreak size of 1% is expected to be detected 21 

days before public health response. The timeliness of detection for other algorithms and 

outbreak sizes are illustrated in this report (Table 1).

How many false alarms per year have to be tolerated to improve detection in 
Washington, DC?—This report illustrates the trade-off between the false alarm rate and 

timeliness for an outbreak size of 1% for the DSMA and ARIMA algorithms (Figure 5). For 

example, increasing the false alarm rate from two to four per year improves timeliness by 

11.67 days for DSMA and 6.09 days for ARIMA.

How much earlier would detection be if more pharmacies were successfully 
recruited to increase the completeness of sales data?—The current completeness 

of data is approximately 89%, and limited improvement would be expected in timeliness if 

coverage was increased to 100%. The timeliness of detection of a 1% outbreak when using 
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the DSMA algorithm at a false alarm rate of four per year only improves from −20.66 days 

to −20.94 days if the remaining 11% is obtained. The effect that timeliness has on losing 

pharmacies can also be investigated. If data completeness decreases to 50%, the timeliness 

increases to −19.74 days.

A limitation of this example is that the North Battleford surveillance data used to estimate 

the shape of the injects come from only a single pharmacy. However, weekly sales data from 

a second pharmacy also exhibited a similar temporal effect to the outbreak (11).

These results are from a system that aggregates counts for the entire jurisdiction. A full 

detectability analysis would exploit knowledge of the water distribution system, and 

substantial improvements in performance might be possible.

Discussion

The primary contribution of HiFIDE is that it enables public health departments to conduct 

detectability analyses for their jurisdictions. Public health departments can estimate the sizes 

of outbreaks that are expected to be detectable and the timeliness of their detection by using 

currently available surveillance data. Decisions regarding whether to allocate resources to 

improve data completeness by recruiting more retailers or connecting additional hospitals to 

the surveillance system can also be explored. HiFIDE also enables researchers in the field of 

biosurveillance to evaluate and compare detection algorithms.

HiFIDE supports detectability analyses for Cryptosporidium and influenza when sales of 

diarrheal remedies and emergency department registrations with constitutional chief 

complaints are used, respectively. Additional outbreaks and data sources are expected to be 

added.

Conclusion

In the HiFIDE analysis, the substantial practical information that HiFIDE can provide users 

of surveillance systems is illustrated. In particular, HiFIDE provides the sensitivity, 

specificity, and timeliness (metrics recommended by CDC [1]) for outbreaks of different 

sizes, etiologies, and scopes. The HiFIDE tool is available at no charge for noncommercial 

use (http://www.hifide.org).
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FIGURE 1. 
An example of a semisynthetic process for creating outbreak data
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FIGURE 2. A hypothetical example of an AMOC* curve
* Activity monitor operating characteristic.
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FIGURE 3. AMOC* curves in HiFIDE† for two detection algorithms§

*Activity monitor operating characteristic.

†High-Fidelity Injection Detectability Experiments.

§The sliders on the right of the display control the outbreak size and data completeness.
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FIGURE 4. Sensitivity plots in HiFIDE* for two detection algorithms†

*High-Fidelity Injection Detectability Experiments.

†The sliders on the right control the outbreak size, data completeness, and false alarm rate of 

the algorithms.
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FIGURE 5. AMOC* curves for the DSMA† and ARIMA§ (1,0,1) algorithms for the detectability 
analysis of Cryptosporidium—Washington, DC, 2003
* Activity monitor operating characteristic.

†Day-specific moving average.

§Autoregressive integrated moving average.
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FIGURE 6. Sensitivity plots of the DSMA* and ARIMA† (1,0,1) algorithms for the detectability 
analysis of Cryptosporidium—Washington, DC, 2003
* Day-specific moving average.

†Autoregressive integrated moving average.
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TABLE 1

Mean day of detection relative to public health response for a false alarm rate of 4 per year, by algorithm and 

outbreak size

Outbreak size DSMA* ARIMA† (1,0,1) EWMA§ 0.05 EWMA 0.20 CUSUM¶-
EWMA 0.05

CUSUM-
EWMA 0.20

0.10% −16.19 −15.4 −13.4 −6.11 −13.48 −11.43

0.50% −17.81 −15.44 −13.45 −6.32 −13.52 −11.78

1.00% −20.66 −16 −13.57 −6.33 −16.19 −12.45

5.00% −24.76 −23.14 −22.89 −17.52 −23.41 −22.66

10.00% −26.22 −24.74 −24.67 −22.2 −24.67 −24.18

*
Day-specific moving average.

†
Autoregressive integrated moving average.

§
Exponentially weighted moving average.

¶
Cumulative sum.
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TABLE 2

Probability (sensitivity) of detection at least 2 weeks before public health response for a false alarm rate of 4 

per year, by algorithm and outbreak size

Outbreak size DSMA* ARIMA† (1,0,1) EWMA§ 0.05 EWMA 0.20 CUSUM-
EWMA 0.05

CUSUM-
EWMA 0.20

0.10% 0.58 0.56 0.5 0.37 0.55 0.55

0.50% 0.65 0.56 0.52 0.38 0.55 0.55

1.00% 0.83 0.59 0.55 0.4 0.6 0.57

5.00% 1 1 1 0.86 1 1

10.00% 1 1 1 1 1 1

*
Day-specific moving average.

†
Autoregressive integrated moving average.

§
Exponentially weighted moving average.
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