
Measuring and interpreting neuronal correlations

Marlene R. Cohen1 and Adam Kohn2

1 Department of Neurobiology, Harvard Medical School, Boston MA
2 Department of Neuroscience, Albert Einstein College of Medicine, Bronx NY

Abstract
Mounting evidence suggests that understanding how the brain encodes information and performs
computations will require studying correlations between neurons. The recent advent of recording
techniques such as multielectrode arrays and two-photon imaging has made it easier to measure
correlations, opening the door to detailed exploration of their properties and contributions to
cortical processing. Studies to date, however, have reported discrepant findings, providing a
confusing picture. Here, we briefly review these studies and conduct simulations to explore the
influence of several experimental and physiological factors on correlation measurements.
Differences in response strength, the time window over which spikes are counted, spike sorting
conventions, and internal states can all dramatically affect measured correlations and
systematically bias estimates. Given these complicating factors, we offer guidelines for
interpreting correlation data and a discussion of how best to evaluate the impact of correlations on
cortical processing.

Understanding how populations of neurons encode information and guide behavior is a
major focus of systems neuroscience. Cortical neurons respond with variable strength to
repeated presentations of identical stimuli 1, 2. This variability is often shared among
neurons, and such correlations in trial-to-trial responsiveness can have a substantial impact
on the amount of information encoded by a neuronal population2-6. Early studies, for
instance, showed that correlations reduce the signal-to-noise of a pooled population
response, since shared fluctuations in response cannot be averaged away 6. More recently, it
has been shown that attentional modulation of correlations accounts for more of its impact
on sensory coding than modulation of firing rate 7, 8. Determining how correlations are
affected by stimulus drive 9-12, by learning or experience 10, 13, 14, or by changes in
behavioral context 7, 8, 15-17 is thus likely to be as important as understanding how these
factors affect the firing rates of individual cells 18.

Correlations can also provide important information about the functional architecture of
neuronal networks. Correlation analysis has been used to infer connectivity within the
retina 19, between the visual thalamus and cortex 20, and between neurons within
cortex 9, 21. For a given circuit, changes in correlations under different stimulus or
behavioral conditions can provide a signature of network function or computations that may
be difficult to discern from measurements of individual neuronal firing rates 10, 12, 14-18. For
instance, when an animal actively explores its environment, responses in sensory cortex are
desynchronized, even when sensory input is disrupted and neuronal firing rates are
unchanged 16.

Studying correlations is, however, inconvenient. It requires large amounts of data from
simultaneously recorded neurons, and raw correlation values can be difficult to interpret.
The recent advent of recording techniques such as multielectrode arrays and two-photon
imaging has made obtaining such recordings easier, but has also highlighted the need to
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understand the experimental and physiological factors that can lead to different estimates
and conclusions.

Forms of correlation and their basic properties
Correlation is a normalized measure of covariation. It has commonly been used to refer to
two distinct phenomena. One use refers to tuning similarity, measured as the correlation in
the mean responses of two neurons to an ensemble of stimuli (termed signal correlation or
rsignal, see Figure 1A,C and Box 1). The second use of correlation—and our focus here—is
as a measure of the degree to which trial-to-trial fluctuations in response strength are shared
by a pair of neurons. This is typically quantified as the Pearson correlation of their spike
count responses to repeated presentations of identical stimuli under the same behavioral
conditions (spike count correlation or rSC, also called noise correlation; Figure 1A,B).

Co-fluctuations in the responses of a pair of neurons can arise over a range of
timescales 8, 12, 22, 23, from the precise temporal alignment of spikes (i.e. synchrony) to
slower changes in excitability (Box 1). The timescale over which correlated activity affects
the responses of downstream neurons is unknown, but membrane time constants suggest that
it is tens of milliseconds or less. However, most work on the relationship of spike count
correlations to population coding and behavior has been based on responses measured over
the duration of a stimulus presentation or behavioral trial (typically hundreds of
milliseconds).

Over the past two decades, spike count correlations have been measured in many cortical
areas under a variety of behavioral and stimulus conditions (Table 1). These studies have
reported a range of values, but correlations are typically small and positive. They tend to be
highest for pairs of neurons that are near each other 24-26 and have similar functional
properties or tuning (high rsignal; 6, 7, 12, 13, 15, 25-31). Pairs recorded from opposite
hemispheres have very low correlations7. These properties suggest that correlations reflect
co-fluctuations in the responses of restricted subsets of neurons, rather than global
fluctuations that affect all cells.

Correlation strength is also likely to depend on local circuitry or architecture. For instance,
rSC is weak in the input layers of primary sensory cortex (32; M.A. Smith and A. Kohn,
personal communication; J. Hansen and V. Dragoi, personal communication). Correlations
in motor areas seem to be consistently lower than those in sensory cortex (see Table 1).

The influence of distance, tuning similarity, and architecture can explain some of the
variability across studies, but even studies that sample similarly can arrive at quite different
estimates of correlation strength. We show here that many of these discrepancies can be
explained by differences in other factors that can systematically bias correlation estimates—
namely, response strength, the time period for counting spikes, spike sorting, and
fluctuations in internal states.

Why is it important to understand the influence of these factors and, more generally,
differences in estimates across studies? It is not because the mean strength of correlations is
a particularly critical quantity. Even very weak correlations can substantially affect the
information encoded by a population of neurons, and the structure of correlations can have a
much stronger influence than their mean strength2-6. Furthermore, other properties of the
distribution of correlation coefficients, such as its variance, may be more informative about
the underlying circuit than the mean 33. However, understanding differences in correlations
across brain regions or in different stimulus or task conditions is critical both for elucidating
their role in sensory processing and for making inferences about the circuitry and
mechanisms that generate them. For this reason, we explore below the way that different
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experimental and physiological factors affect measurements of correlations and discuss
guidelines for interpreting correlation data.

Experimental factors that affect rSC

Correlations are small when based on few spikes
Correlations in pairs of neurons that fire few spikes per trial are weaker than in pairs that
respond more strongly7, 8, 28, 34. Mathematically, correlations between discrete variables
such as spike counts need not depend on their magnitude. Binary variables can be perfectly
correlated, uncorrelated, or correlated to any intermediate degree. The dependence of rsc on
spike count is therefore not a mathematical given but a biological and experimental
phenomenon, as described below.

The number of spikes produced by a neuron is determined by its underlying firing rate and
the time window over which responses are measured, and both factors vary considerably
across studies. Firing rates depend on the stimulus, the animal's cognitive state, and the
neurons’ tuning. In some studies, the stimulus is tailored to the tuning preferences of the
neurons under study6, 12, 29. In others, a common stimulus is used to drive a large number of
simultaneously recorded cells7, 26, 28, yielding weaker responses on average. In addition,
neurons in some cortical areas, such as V1 and MT, are easier to drive than those in areas
where stimulus preferences are less understood. The time window used to count spikes is
purely an experimental decision, and thus also varies across studies. Below we show that
both low firing rates and brief measurement windows can lead to lower measured values of
rSC.

The spike threshold can reduce spike count correlations
The relationship between rSC and firing rate depends largely on the proportion of
subthreshold events that are masked by the spiking threshold34. Correlations in spiking
responses arise because of cofluctuations in synaptic input, which give rise to correlated
membrane potential fluctuations in pairs of neurons16, 33, 35-37. The degree to which shared
membrane potential fluctuations are observable in spiking responses depends on the firing
rates of the cells: when the mean membrane potential is far below threshold, responses are
weak and many of the shared membrane potential fluctuations are unobservable in the
spiking responses34, 37, 38.

This relationship is illustrated with a simple simulation shown in Figure 2 (similar to 34). We
simulated correlated membrane potentials by picking values for each of two neurons from a
bivariate Gaussian distribution. The membrane potential produces a spike response defined
by the non-linearity shown in the middle panel. The shape of the nonlinearity is not critical;
ours was chosen so that the variance of the spiking response is nearly the same as the mean,
for both weak and strong responses39.

We set the membrane potential correlation to 0.2 in all of our simulations, but the measured
spike count correlation depended on response strength. When the mean membrane potential
is above threshold (Figure 2A), the correlation in spiking responses is similar to that of the
subthreshold response. However, when the mean membrane potential is far below threshold
(Figure 2B), rSC is markedly lower than between the subthreshold responses. This masking
of correlated activity cannot be overcome by making more observations, which reduces the
variance of correlation measurements but does not alter the mean. If membrane potential
correlations are the same for stimuli that drive weak and strong responses, the spiking
responses for the latter will thus be more correlated (Figure 2C), reaching asymptote at the
strength of the underlying membrane potential correlation.
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The dependence of correlation on response strength is typically assessed by comparing rSC
to the geometric mean response of the two neurons7, 8, 28, 34. However, rSC will be reduced
if either neuron responds weakly. For example, a pair in which one neuron has a mean
response of 0.01 sp/s and the other 100 sp/s has the same geometric mean response as a pair
whose mean responses are both 1 sp/s, but the measured rSC of first pair is only 15% of the
underlying correlation compared with 85% in the second pair. Figure 2D shows rSC as a
function of the response strength of the two neurons. A dependence of rSC on the geometric
mean response would appear as diagonal stripes from the top-left to bottom right. Instead,
Figure 2D has vertical and horizontal bands, indicating that the magnitude of rSC depends
more on the minimum response of the two neurons than their mean.

Counting spikes over short windows can lead to weaker correlation
The number of spikes a neuron fires also depends on the time window over which responses
are measured. The studies in Table 1 use windows that range from tens of milliseconds to
multiple seconds. Counting spikes over short epochs can lead to weaker observed values of
rsc, even if both neurons are sufficiently responsive to avoid the effect of thresholding
described in Figure 2.

We ran additional simulations to illustrate the dependence of rSC on measurement window
(Figure 3). To do so, it was necessary to use a framework in which we could control the
timescale of correlation. Since the simulations of Figure 2 do not specify a timescale, we
instead imposed correlations by adding a small number of common spikes to the otherwise
independent (Poisson) spike trains of two simulated neurons (Figure 3A,B; see also 40).

This simulation illustrates that correlations are systematically underestimated if the counting
window is shorter than the jitter in the timing of the common spikes. If the common spikes
occur at the same instant (Figure 3A), the resulting synchrony will be evident in spike count
correlations based on responses measured over arbitrarily small windows (line marked ‘no
jitter’ in Figure 3C). If the times of these common spikes are jittered (Figure 3B), however,
the resulting spike count correlation will only be fully evident when it is calculated from
responses during longer response epochs (lines labeled 5-80 ms in Figure 3C). For instance,
when spike times are jittered using a Gaussian distribution with a standard deviation of 80
ms, a window of several hundred milliseconds is needed to capture the full strength of
correlation. A similar dependence on measurement window is observed for Poisson
distributed spikes conditioned on correlated underlying firing rates (see 22 and
Supplementary Material for analytical description). Note that in this scenario correlations do
not arise from nearly synchronous spikes, yet the observed correlations are still smaller for
brief measurement windows.

Several studies have measured the timescale of correlation in cortex, providing estimates
ranging from tens22 to a few hundred milliseconds8, 12, 23. Measurements using response
windows briefer than these timescales are thus almost certain to yield weaker correlations
than those using longer response windows.

Effect of spike sorting errors on measured rSC

Issues of recording quality or spike sorting can artifactually increase or decrease
measurements of rSC. In general, errors that add independent variability to the responses of
one neuron will bias estimates of correlations toward zero, while errors that involve
combining the responses of multiple cells will increase the magnitude of measured rSC.

One spike sorting error that can lead to consistent overestimation of correlations is mistaking
multiunit activity as spikes from a single neuron. Combining several units into one
effectively averages out variability that is independent to each cell, so the correlation
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between two clusters of multiunit activity will be larger than between pairings of the
constituent neurons. To quantify this influence, we simulated multiunit activity by grouping
the responses of individual neurons produced from the simulation in Figure 2. We computed
rSC between increasingly large groupings of neurons, made by simply summing the
responses of individual units whose pairwise correlations ranged from very small (0.001) to
more typical (0.1) values (Figure 4).

These simulations show that when pairwise correlations are weak, the measured value of rSC
grows slowly with the number of units grouped together. Specifically, the value of rSC
between multiunit clusters (rSC-measured) is given by:

(1)

where n is the number of units grouped together and rsc-pair is the pairwise correlation,
which in this simulation was the same between all units, whether they were in the same or
different groupings 41, 42. For nrsc-pair<<1, rSC thus grows linearly with the number of units
n contributing to the multiunit clusters (i.e. as nrsc-pair). If, for example, the underlying
pairwise correlation were 0.01, one would need to record simultaneously from clusters of
nearly 20 cells to obtain the rSC of 0.2 that has been reported in many studies. Recordings
from such large groups of cells would be evident by a proportional increase in firing rate and
thus easy to distinguish from single unit activity.

It is important to note that excessively restrictive criteria in spike sorting can lead to an
underestimation of rSC. Sorting spike waveforms in extracellular recordings is essentially a
decision about when noisy voltage traces are similar enough that they are likely to have
come from a single neuron. We considered a simple scenario in which the waveforms from
two neurons were recorded on separate electrodes and clearly distinct, but each waveform
was corrupted by noise (Figure 5A,B). We simulated increasingly stringent spike sorting by
discarding a proportion of waveforms from each neuron. In this simulation, no spikes are
mistakenly assigned to the other unit; changing the threshold simply alters the proportion of
events that are accepted as valid spikes. As fewer spikes are accepted (meaning that the
criterion for acceptance becomes more stringent), the measured value of rSC decreases
(Figure 5C). Such oversorting (discarding valid waveforms) decreases rSC because whether
a spike is accepted as valid or not is a random event—dependent strictly on noise—and
variability that is independent for the two cells weakens measured correlation.

The relationship between the measured rSC (rSC-oversort) and the proportion of spikes
discarded is given by

(2)

where p1, p2 are the probabilities that a spike is discarded from neuron 1 and 2, respectively,
and n1, n2 are the spike counts of those cells (see Supplementary Material for derivation). In
our simulation, the probability of deletion, p, is the same for the two cells (p1=p2), the two
cells have equal rates and the Fano factor equals 1, so<n1>=<n2>=var(n1) =var(n2). In this
case,

(3)

Therefore, when half the spikes are accepted, measured rSC decreases twofold (from 0.20 to
0.10). When the probability of discarding waveforms is different for the two cells (p1≠p2) or
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when the Fano factors are different from 1, the decay with sort stringency will be different
from that depicted in Figure 5A-C. Because the denominator in Equation 2 is always greater
than 1, however, rSC-oversort will always underestimate rSC-original.

A second scenario in which spike sorting can reduce measured correlations is when
waveforms belonging to a single neuron are mistakenly assigned to multiple neurons
(Figures 5D-F). We simulated this scenario by randomly dividing the spikes from a single
neuron into two units (different shades of red in Figure 5D). We then assessed the
correlations between these units and a single unit (Figure 5E) measured on another
electrode. This manipulation reduced rSC by roughly 30% compared to the true underlying
correlation (Figure 5F, open symbols compared to filled). When more than two units are
created from a single unit, the measured value of rSC falls further (Figure 5F).

Variability in internal states can affect rSC

Measurements of rSC are based on sets of trials in which the stimulus and behavioral
conditions are held as constant as possible. Despite experimenters’ best efforts, however,
internal factors such as arousal, attention, or motivation are bound to vary. Similarly, in
experiments using anesthetics, the depth of anesthesia may vary over time. Such fluctuations
could in principle comodulate the responses of groups of cells and thus directly contribute to
measurements of rSC.

It is impossible to determine experimentally the degree to which this is the case, as internal
variables, by definition, are not under experimental control. However, comparing the
timescale of fluctuations in internal states with that of correlations can provide important
constraints on their contribution. In the absence of salient changes in the visual scene,
animals can only shift their attention approximately once every 400 ms43-45. Even shifts in
exogenous attention take 100-200 ms following an abrupt stimulus change43, 44, 46-49.
Fluctuations in other cognitive states like arousal or motivation or in anesthetic state likely
occur even more slowly.

In contrast, correlations are dominated by fluctuations on shorter timescales. The timescale
of correlation can be estimated within a trial by comparing rSC computed in time windows
of different sizes or by using the spike train crosscorrelogram8, 12, 22. The contribution of
fluctuations that occur across trials can be estimated by calculating rSC between responses
measured on different but nearby trials (e.g. by shifting the trials of one of the two
neurons)22, 28. These measures reveal that correlations are typically dominated by
fluctuations on the timescale of tens to a few hundred milliseconds; correlations between
responses measured in different trials are usually near zero (22, 28; Kohn and Smith, Cohen
and Maunsell, unpublished observations). Thus, although variations in cognitive factors or
anesthesia states may well contribute to measured correlations, these correlations likely arise
in large part from fluctuations on faster timescales.

Reconciling measurements of rSC

The majority of studies that have measured spike count correlations have recorded neurons
in primate sensory cortex. These studies report mean rSC values in the range of 0.1-0.2 in
pairs of similarly-tuned, well-driven, nearby neurons (Table 1). In an apparent exception, a
recent study found mean correlations in primary visual cortex (V1) that were on average
slightly positive but very close to zero28. The authors concluded that variability in cortical
neurons is independent and that the non-zero rSC measurements in many other studies were
due to a variety of experimental artifacts.
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The authors offer two primary explanations for this discrepancy. First, the authors argue that
measured correlations in other studies were inflated because of poor spike sorting, either by
mistakenly swapping spikes between two neurons or by misidentifying multiunits as single
units. The former error is only possible when correlations are measured between pairs of
neurons recorded on the same electrode, the situation considered in their spike sorting
simulations. Of the studies in Table 1, only one relies on pairs recorded this way6, so this
explanation cannot explain the departure from most previous results. That higher
correlations in previous studies were the result of clustering single units into multiunits is
also untenable. Previous studies would have needed to have mistakenly grouped responses
from roughly 10-20 units with the near-zero correlations reported by Ecker et al. to explain
the difference in mean rSC values (Figure 4). It seems inconceivable that all previous studies
made mistakes of this magnitude. Furthermore, paired intracellular recordings—for which
spike sorting is not an issue—have shown significant membrane potential and spiking
correlations 16, 35, 36.

Second, Ecker et al. suggest that the correlations in previous studies arise from small
fluctuations in uncontrolled cognitive factors such as the animal's internal state or behavioral
factors like fixational eye movements, which produce “artifactual” correlations. As
discussed above, the timescale of correlations makes it unlikely that they arise primarily
from fluctuations in internal states. Furthermore, unlike other studies that asked subjects to
perform difficult behavioral tasks (providing some means of controlling and assessing
cognitive state), the subjects in Ecker et al. performed an easy fixation task. Therefore, the
internal states of their subjects likely varied as much as, or more than, in previous studies.
Fixational eye movements are also unlikely to be the primary source of measured
correlations because positive correlations are reported in studies that specifically remove
trials containing detectable eye movements 8, 15, 50 and in those that use anesthetized,
paralyzed animals 12, 26. Fixational eye movements would also be expected to produce anti-
correlations in some pairs (e.g. cells with offset spatial receptive fields, so that an eye
movement that reduces drive to one cell would increase it to the other), but correlations are
typically near zero or slightly positive in such cases 26.

Why then are the data of Ecker et al. so different from previous findings? A striking feature
of the data in this study is that the firing rates were unusually low. Precise values were not
provided, but summary plots suggest that the mean firing rate was a few spikes per second,
and many cells had rates as low as 0.1 sp/s. Thus, neurons typically fired either a single
spike, or no spikes, on each trial. As our simulations show, such weak responses—whether
because neurons were only weakly driven or because of overly stringent spike sorting
criteria—result in low measured values of rSC. A second contribution may be the location of
the recordings. Correlations in the input layers of V1 are weaker than in other layers (M.A.
Smith and A. Kohn, personal communication; J. Hansen and V. Dragoi, personal
communication). If the data were recorded in part from those layers51, correlations would be
weaker than in studies targeting other layers or visual areas.

Where do we go from here?
Comparing correlations across studies, brain areas, and task conditions

The experimental factors discussed here – in addition to the influences of distance, tuning
similarity, and architecture – can explain much of the diversity of reported rSC values. For
instance, for studies in the primate visual system, differences in mean rate can account for
more than 33% of the across-study variance in reported values of rSC (Figure 6). It is clear
that these factors must be considered when comparing results across studies, cortical areas,
and stimulus or behavioral conditions, although some are more likely to affect conclusions
than others. For instance, when conclusions are based on the relative magnitude of

Cohen and Kohn Page 7

Nat Neurosci. Author manuscript; available in PMC 2013 March 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



correlations across conditions in a single experiment, spike sorting errors are unlikely to
play a critical role. The dependence of rSC on firing rates, on the other hand, can be a key
issue. Behavioral and stimulus manipulations often affect firing rates, and neurons in
different areas or circuits may vary in their responsiveness to experimental manipulations.
Alternative, rate-independent metrics, can be useful when rates vary across conditions38, 52,
but determining the effect of stimulus and behavioral manipulations on correlations is most
straightforward in cases when firing rates do not change12, 15 or when correlations decrease
while firing rates increase7.

Studying the influence of correlations on behavior
To date, most studies of correlations have focused on their impact on population encoding
and decoding, used their properties to make inferences about network architecture, or made
comparisons across conditions to study neuronal correlates of perceptual or cognitive events.
Ultimately, the goal of studying correlations should also be to understand how they affect
computations in cortex and directly contribute to behavior. The effort to establish a link
between correlated variability in populations of sensory neurons, the activity of downstream
neurons, and perceptual decisions is in its early stages. However, the studies reviewed below
suggest that correlated variability directly contributes to perception and provide promising
avenues for future research.

The best evidence that correlated variability in sensory neurons affects behavior is the well-
established observation that fluctuations in the responses of individual neurons are
predictive of an animal's perceptual decision (‘choice probability’; 53-55). Choice probability
has been observed in a range of tasks and cortical areas, as early as primary visual cortex
(56; I. Kang and J.H.R. Maunsell, personal communication; H.N. and B.G. Cumming,
personal communication). If the activity of sensory neurons were independent, the responses
of any individual neuron would be measurably correlated with behavior only if very few
neurons contributed to perceptual decisions, making the probability of encountering these
cells very low. A more plausible explanation is that because the responses of neurons are
correlated, each neuron's response reflects the shared activity of a large group of cells that
contribute to perceptual decisions.

Fluctuations in non-spike based measures of brain activity such as scalp recordings57, 58 and
the BOLD signal measured in fMRI studies59-64 are also predictive of behavior. Fluctuations
in such coarse signals presumably reflect the summed activity of many cells, suggesting that
they are driven by correlated variability. Their relationship to decisions suggests that the
underlying neuronal fluctuations affect behavior.

The relationship between behavior and fluctuations in neural activity suggests that correlated
variability in sensory neurons affects perceptual decisions. The correlated variability
underlying choice probability was originally thought to reflect noise in a bottom-up (i.e.
sensory) signal, but recent evidence suggests that choice probability at least partially reflects
top-down influences65. This raises the possibility that correlations in sensory neurons reflect
rather than drive decisions, although it seems more plausible that the purpose of top-down
signals is to influence decisions through their effect on pools of sensory neurons. Examining
the time course of choice probability reveals that sensory neurons are correlated with
decisions, and therefore with each other, during nearly the entire response to the
stimulus65-68. Furthermore, both experimental69, 70 and theoretical studies71-74 indicate that
sensory information is integrated until just before a decision is reported. Together, these
results suggest that the correlated variability is present during, and not solely after, the
period when perceptual decisions are made. However, establishing a causal link between
correlated variability and perceptual decisions will require further research, and may require
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the development and application of techniques that allow experimenters to manipulate
correlated activity directly.

Principled statistical models
Pearson's correlation is a simple, descriptive statistic. Its simplicity and the fact that it can be
estimated from experimentally tractable amounts of data has made it the metric of choice for
both experimentalists and theoreticians to explore issues of population coding and network
function and connectivity. However, it is important to note that pairwise correlations provide
a limited view of complex, population responses.

Recent theoretical work has begun to offer tools for providing a more complete and
statistically-principled approach to measuring interactions among cells. Multivariate point
process models provide a full description of joint response distributions, incorporating
information about receptive field properties, spiking history, and interactions among
cells 75-78. These methods provide means of simulating population responses, assessing the
relative importance of single-cell properties and network influences on measured responses,
and performing model-based decoding. Models of this type have been used to show that
many of the observed fluctuations in single retinal ganglion cells 79 or neurons in
sensorimotor cortex 80 can be accounted for by the current and past responses of other cells
in the network. Future applications of these methods will undoubtedly provide important
insights into issues of population coding and network structure.

Concluding remarks
Despite the difficulties in measuring and interpreting correlations, we have made important
strides in characterizing their properties and how these depend on network state, behavioral
experience and cognitive state81. Understanding which properties of correlations are most
important—for instance, the most relevant timescales and sets of neurons—will ultimately
depend on determining how population responses are interpreted by downstream networks,
how they affect the computations performed there, and how they guide behavioral decisions.
With recent improvements in experimental techniques and computational methods, this
understanding feels very much within reach.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Box 1: Types of correlations

Signal correlation (rsignal) measures the correlation coefficient between mean responses
to different stimuli. This measure is often used to quantify the extent to which a pair of
neurons has similar tuning or other functional properties. Decreases in this type of
correlation, for instance through adaptation 82 or contextual modulation 83, can lead to
sparsening of population responses.

Spike count correlation (rSC, also called noise correlation) is the Pearson's correlation
coefficient of spike count responses to repeated presentations of identical stimuli, under
the same behavioral conditions. Spike counts are typically measured over the timescale
of a stimulus presentation or a behavioral trial, which range from a few hundred
milliseconds to several seconds (see Table 1). Spike count correlations are proportional
to the integral under the spike train cross-correlogram (CCG; 22).

Synchrony measures the extent to which the timing of individual spikes is precisely
aligned, typically on the timescale of one or a few milliseconds. It is typically quantified
as a measure of a sharp peak in the CCG. Dependencies in the timing of individual spikes
can also be measured in the frequency domain, using spike-spike coherence.

Long timescale correlation (rLT) measures the extent to which a neuron's response on
one trial is correlated with a second neuron's response on trials in the future or past. It is
used to quantify the influence of slow fluctuations in responsiveness on rSC. When
measured, rLT has been found to be close to 0.

Cohen and Kohn Page 14

Nat Neurosci. Author manuscript; available in PMC 2013 March 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Types of pairwise neuronal correlations. A Tuning curves for two hypothetical direction-
selective neurons. Open circles show mean responses to different directions of motion, and
small points show responses to individual presentations of a stimulus at a particular
direction. B. Spike count or “noise” correlation (rSC) measures the correlation between
fluctuations in responses to the same stimulus. Here, each point represents the response of
the two neurons on one presentation of an individual stimulus. C. Signal correlation (rsignal)
measures the correlation between the two cells’ mean responses to different stimuli. Each
point represents the mean response to a given direction of motion. Because the responses of
cell 2 increase of a range of motion directions in which the responses of cell 1 decline,
signal correlation is negative.
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Figure 2.
Measured correlations are small when responses are weak. A. We drew intracellular voltage
“events” from a bivariate Gaussian distribution of voltage relative to threshold (Vm) such
that the two neurons had the same mean voltage and the correlation coefficient between
membrane potentials was 0.2 (left panel). These voltage events were converted to
extracellular firing rates by passing them through a non-linearity such that the firing rate on
the ith trial fri = Vmi

1.7 (center panel). We picked this exponent so that the variance of the
output rates was approximately equal to the mean39. We defined the spike count on each
trial to be equal to the firing rate rounded to the nearest whole spike (right panel). In the case
of high mean voltages, the measured spike count correlation is close to the input correlation
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(rSC = 0.20). B. Same as A, for low mean Vm. When the threshold masks subthreshold
events, the measured spike count correlation (rSC = 0.04) is much lower than the membrane
potential correlation. C. Measured rSC as a function of firing rate, using the simulations in A
and B when the two cells had the same mean rate. The circles represent the correlations and
mean counts in A and B. D. Measured rSC as a function of the firing rates of each of the two
cells. We simulated responses using identical methods as those in A and B, but we allowed
the rates of the two neurons in a pair to differ. Correlations depend more strongly on the
minimum rate in the pair than the mean.
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Figure 3.
Counting spikes over short response windows can decrease measured correlations. A. We
simulated correlated spike trains as a combination of independent Poisson spike trains (black
spikes in the schematic on the left panel; mean = 20 sp/s) and inserted shared, synchronous
spikes (red spikes, mean = 5 sp/s). Therefore, each neuron's response was the sum of
independent and shared spikes (mean = 25 sp/s). When there is no jitter in the timing of the
shared spikes, the cross correlogram has a sharp peak at 0 ms time lag (right panel). B. Same
as A, for longer jitter times. We simulated variable timescales by jittering the timing of the
correlated spikes by an amount picked from a Gaussian distribution (left panel, red spikes).
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This results in a cross correlogram with a peak whose width depends on the standard
deviation of the Gaussian distribution (right panel). C. Measured rSC as a function of
counting window for several timescales of correlation. The number next to each curve
corresponds to the standard deviation of the Gaussian jitter in milliseconds.
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Figure 4.
Measured correlations grow slowly with the number of units that contribute to multiunit
activity. We simulated single unit activity by choosing random variables from a bivariate
Gaussian with covariance defined to give pairwise correlation values of 0.001-0.3. We then
computed rSC between sums of these variables (as one would do when recording multiunit
activity). Measured rSC increases with the number of ‘units’ contributing to the multiunit
activity. The increase in magnitude is gradual, however, essentially proportional to the
number of units contributing to the multiunit response. For instance, if the pairwise
correlations are 0.01, multiunit clusters consisting of 10-20 units would be needed to obtain
rsc values in the typical range (0.1-0.2, indicated by horizontal dotted lines).
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Figure 5.
Spike sorting errors can reduce the strength of measured correlations. A,B. Two ensembles
of spike waveforms (red and gray) created by taking two differently shaped waveforms
(thick lines) and corrupting them with multiplicative and additive noise. These waveforms
are represented by the amplitude of their first two principal components (PCs); each dot
indicates one waveform. Lighter shading indicates greater distance in PC space from the
average waveform. C. Effect of increasingly stringent sorting thresholds (i.e. keeping only
those spikes that are within a certain distance, in PC space, of the average waveform) on the
measured correlation strength, for true correlation values of 0.05, 0.1, and 0.2. As the
proportion of discarded spikes increases, the measured value of rsc decreases strongly. D., E.
Same as A., B. for waveforms that form a tight cluster (E) and for those with a wider range
of shapes (D). F. Measured correlation (rsc) between the well-isolated unit (E) and multiple
random divisions of the waveforms in D. The true correlation is indicated by the filled dots
to the left (0.05, 0.1 and 0.2). When the waveforms of the cell shown in D are assigned
arbitrarily to two units (filled symbols), measured rsc decreases by roughly 25%, compared
to the true correlation between the pair. When the waveforms are arbitrarily divided among
more than two units, rsc falls further. These scenarios correspond to setting p1=0 and p2 to
0.5 (for two units created), 0.66 (for three units created), and so on, in equation 2.
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Figure 6.
Differences in mean rates duration predict much of the variability in rsc measurements
across studies. The figure plots average rSC as a function of mean firing rate and
measurement duration for 13 studies of correlations in primate visual cortex, for which these
data were either provided or could be estimated from summary figures. When a range of
values was reported (e.g. from different stimulus or behavioral conditions or for pairs of
neurons separated by different distances), we plotted either the average or most common
value, and in some cases we estimated values from summary plots. The mean firing rate
accounts for 37% of the cross-study variance in mean rSC values. Differences in spike
sorting were not included in this meta-analysis because sort quality is rarely quantified or
discussed.
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