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Abstract: Physiological noise arising from a variety of sources can significantly degrade the detection of
task-related activity in BOLD-contrast fMRI experiments. If whole head spatial coverage is desired, effec-
tive suppression of oscillatory physiological noise from cardiac and respiratory fluctuations is quite diffi-
cult without external monitoring, since traditional EPI acquisition methods cannot sample the signal
rapidly enough to satisfy the Nyquist sampling theorem, leading to temporal aliasing of noise. Using a
combination of high speed magnetic resonance inverse imaging (InI) and digital filtering, we demon-
strate that it is possible to suppress cardiac and respiratory noise without auxiliary monitoring, while
achieving whole head spatial coverage and reasonable spatial resolution. Our systematic study of the
effects of different moving average (MA) digital filters demonstrates that a MA filter with a 2 s window
can effectively reduce the variance in the hemodynamic baseline signal, thereby achieving 57%–58%
improvements in peak z-statistic values compared to unfiltered InI or spatially smoothed EPI
data (FWHM ¼ 8.6 mm). In conclusion, the high temporal sampling rates achievable with InI permit
significant reductions in physiological noise using standard temporal filtering techniques that result
in significant improvements in hemodynamic response estimation. Hum Brain Mapp 33:2815–2830,
2012. VC 2011 Wiley Periodicals, Inc.
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INTRODUCTION

Functional MRI (fMRI) allows noninvasive detection of
neural activity changes coupled with blood-oxygen level
dependent (BOLD) contrast mechanisms that are based on
deoxyhemoglobin serving as an endogenous contrast agent
[Kwong et al., 1992; Ogawa et al., 1990]. In BOLD-contrast
fMRI, neuronal activity is associated with a complex series
of hemodynamic changes, including blood flow, volume,
and oxygenation modulations, whose net effect results in
MRI signal increase or decrease [Logothetis et al., 2001]. In
most measurement environments, the hemodynamic signal
changes related to task induced neural activity are quite
small. Many factors can contribute to the total signal varia-
tion in addition to the experimental effects of interest,
which complicates the task of isolating the components
reflecting changes in neural activity.

The noise sources confounding the BOLD-contrast fMRI
data processing can be categorized into two types: system
noise and sample noise. System noise can arise from sub-
optimal instrument performance. This includes, but is not
limited to, thermal noise in the radio-frequency coils, pre-
amplifiers, and other electronic components in the receiver
processing chain. Sample noise is related to the properties
of the object to be imaged. For example, resistive and
dielectric losses due to the presence of the sample inside
the RF coil contribute to sample noise. In fMRI experi-
ments, motion during data acquisition is another signifi-
cant source of noise [Hajnal et al., 1994]. Motion effects
can be effectively reduced by either restricting movement
of the participant’s head inside the RF coil or using image
volume alignment to reduce image-to-image signal varia-
tion under the assumption of rigid body motion between
acquisitions [Cox and Jesmanowicz, 1999; Woods et al.,
1998]. Other sources of sample noise can result from
intrinsic physiological processes. In fMRI experiments,
physiological noise can be further separated into echo-time
and non-echo-time dependent components [Kruger and
Glover, 2001], with the latter component closely related to
periodic cardiac and respiratory activity. Comparing sys-
tem and sample noise in terms of improving contrast-to-
noise ratio (CNR) in high field fMRI experiments, the lat-
ter constitutes the major limitation. Physiological noise is
generally proportional to the signal and going to higher
field strength increases its contribution to overall variance
[Kruger and Glover, 2001]. In addition, at a given field
(e.g. 3 T), improvements to receiver hardware and signal
reception [Bodurka et al., 2007] can result in phyisological
noise dominating the variance in fMRI time-course data.

Cardiac pulsations cause cerebrospinal fluid (CSF) and
brain parenchyma movement resulting from cyclic vascu-
lar pressure changes interacting with the incompressible
property of both tissues. Periodically increased intracranial
pressure leads to repetitive downward parenchymal shifts
because of the anisotropic distribution of pressure resist-
ance [Feinberg, 1992; Feinberg and Mark, 1987; Poncelet
et al., 1992]. Parenchymal motion related to cardiac

pulsation causes oscillatory image intensity changes in
BOLD-contrast fMRI time series [Shmueli et al., 2007]. It
has been shown that the resulting signal artifacts are partic-
ularly prominent near the vertebrobasilar vascular system
near the center of the brain, and around the anterior cere-
bral artery in the anterior interhemispheric fissure between
the medial frontal lobes [Dagli et al., 1999]. In a similar
fashion, respiration can cause bulk susceptibility modula-
tions from organ movement outside the imaging FOV, lead-
ing to both oscillatory magnetic field changes inside the
FOV and consequent signal changes in BOLD-contrast fMRI
time series [Windischberger et al., 2002]. These artifacts are
usually found in CSF and surrounding tissues [Birn et al.,
2006]. Cardiac and respiratory related noise account for
approximately 33% of the total physiological noise encoun-
tered in human gray matter in fMRI studies performed at
3T [Birn et al., 2006; Kruger and Glover, 2001]. In addition,
physiological noise sources are the dominant limiting factor
in high-field fMRI [Kruger and Glover, 2001]. It should be
noted that other low-frequency physiological noise sources
are not solely due to the aliasing of periodic cardiac pulsa-
tions and respiration. The low-frequency (<0.1 Hz) physio-
logical noise arising primarily from CO2 effects resulting
from variations in ventilatory volume [Birn et al., 2006;
Shmueli et al., 2007; Wise et al., 2004] may be more related
to the BOLD-like physiological noise component in Kruger
and Glover’s classification [Kruger and Glover, 2001].
Regardless of the source of fluctuation in fMRI time series,
more effective methods to remove these unwanted signal
components could improve the sensitivity and specificity of
task-related signal detection.

A number of methods to reduce the physiological noise
in BOLD-contrast fMRI have been explored. Early work
used narrow-band notch filtering to reduce the effects of
cardiac and respiratory fluctuations based on the assumed
periodicity of these signals [Biswal et al., 1996]. In these
experiments, pulse oximeter recordings were used to esti-
mate the frequency contributions of cardiac and respira-
tory activity in the BOLD-contrast time series. Next, using
this frequency information, finite impulse response band-
reject digital filters were constructed to remove the effects
of physiological fluctuations. Although effective, wide-
spread adoption of this band-reject filtering technique has
been limited, possibly due to the availability of alternative
methods. In other studies, retrospective gating in k-space
[Hu et al., 1995] and image space [Glover et al., 2000] were
used to suppress physiological noise using data-driven
adaptive algorithms. The RETROKCOR method can sup-
press fluctuations in cardiac and respiratory frequency
ranges by 5% and 20% respectively; and the RETROICOR
method can suppress fluctuations in the cardiac and respi-
ratory frequency ranges by 68% and 50% respectively
[Glover et al., 2000]. Use of adaptive filters has been sug-
gested as a means to suppress cardiac and respiratory
noise: the hemodynamic baseline fluctuation can be sup-
pressed by 10% on average and 50% maximally, compara-
ble to RETROICOR method [Deckers et al., 2006]. More
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sophisticated multivariate methods using Independent
Component Analysis (ICA) and Principle Component
Analysis (PCA) can remove periodic physiological noise
after spatiotemporal data decomposition and identification
of cardiac and respiratory components [Thomas et al.,
2002]. In addition, navigator echoes have been used to
map respiratory related brain motion and therefore to
reduce physiological noise in fMRI time series [Barry and
Menon, 2005; Hu and Kim, 1994; Pfeuffer et al., 2002].
However, relatively little spatial information can be
acquired using navigator echoes, limiting their ability to
spatially resolve physiological noise sources.

In all attempts to mitigate the effects of physiological
noise in fMRI experiments, there are two competing factors:
the image volume sampling rate and spatial coverage. Cur-
rently, echo-planar imaging (EPI) requires approximately 2
- 4 s to acquire a full brain volume. At this sampling rate,
EPI has a TR sufficiently short to ensure that low-frequency
(<0.1 Hz) noise sources can be adequately sampled. How-
ever, EPI lacks sufficient temporal resolution to avoid alias-
ing of higher frequency periodic cardiac and respiratory
effects. In general, time series acquired at low sampling fre-
quencies are difficult to digitally denoise because the fre-
quency components of the aliased noise are distributed in
other parts of the frequency spectrum. If the sampling fre-
quency is below the Nyquist sampling frequency, external
monitoring devices, such as pulse oximeters or respirome-
ter belts can help identify aliased cardiac and respiratory
signals and thereby suggest the optimal filter needed for
their removal. An alternative strategy would be to increase
the acquisition sampling rate in order to satisfy the Nyquist
sampling theorem, thereby allowing straightforward re-
moval of periodic, pulsatile cardiac and respiratory tempo-
ral noise. However, implementing this solution using
standard EPI techniques severely limits spatial coverage.
For example, if a single-shot single slice EPI takes 60 ms to
acquire, a volumetric acquisition of 8 slices has an effective
volumetric sampling rate of 480 ms, which is sufficient to
resolve cardiac cycles with a period of 1 s. Using a custom-
ary 5 mm slice thickness, spatial extent is then limited to a
40 mm thick slab, far short of the approximately 150 mm
slab needed for whole-brain coverage. It follows that an
imaging technique allowing acquisition of whole brain vol-
umes at sampling rates sufficient to fully capture cardiac
and respiratory effects might allow more effective mitiga-
tion of physiological noise.

Here we study the use of magnetic resonance inverse
imaging (InI) [Lin et al., 2006, 2008a,b] in suppressing
physiological noise using relatively simple digital filters.
No external physiological monitoring devices were needed
and the spatial coverage allowed whole brain imaging
with spatial resolution comparable with conventional fMRI
acquisition protocols. The development of InI was inspired
by the physical similarity between the geometry of dense
coil arrays in MRI and the sensor arrays used in modern
magnetoencephalography (MEG) and electroencephalogra-
phy (EEG) systems. Mathematically, InI image reconstruction

is an extreme form of parallel MRI, an approach that can
accelerate image acquisition using disparate spatial infor-
mation sampled from the channels of a receiver coil array
[Pruessmann et al., 1999; Sodickson and Manning, 1997].
Using multiple radiofrequency array elements to cover the
brain, InI can achieve fast spatial encoding by minimizing
k-space traversal and then solving the inverse problem
using data simultaneously acquired from all coil elements.
This approach is closely related to other massively parallel
MRI techniques, including the single-echo-acquisition
(SEA) method [McDougall and Wright, 2005] and the one-
voxel-one-coil (OVOC) MR-encephalography technique
[Hennig et al., 2007]. Minimal gradient data encoding has
also been utilized in back projection reconstruction
(HPYR) of MR angiography [Mistretta et al., 2006]. Our
previous efforts have focused on formulating the relation-
ship between the spatial information contained in the dif-
ferent channels of the RF coil array with full or minimal
gradient encoding [Lin et al., 2006, 2008a].

In this article we demonstrate advantages in using a tem-
poral filter to process BOLD-contrast fMRI signals obtained
using InI’s high temporal resolution. This approach allows
direct suppression of the periodic cardiac and respiratory
disturbances contained in functional time series without
the need for external monitoring devices. Since InI can
achieve 100 ms temporal resolution and whole-brain spatial
coverage with reasonable spatial resolution, it is possible to
optimize digital moving average (MA) low-pass filters in
order to effectively suppress physiological noise. For this
feasibility study, we chose a simple MA low-pass filter
because of its robustness and ease of implementation. Intui-
tively, a MA filter with an overly short temporal window
cannot suppress oscillatory cardiac and respiratory noise
effectively, while a MA filter with an overly long window
suppresses not only noise but also the image contrast
between the baseline and the task conditions. Therefore, an
optimal filter length should exist for physiological noise
suppression in functional imaging studies.

We utilized data from a previous visual experiment,
which was acquired using InI techniques [Lin et al.,
2008a]. The motivation for utilizing an existing data set is
to facilitate comparisons with the previous InI data model-
ing approaches. First, we systematically varied the noise-
suppressing filter parameters to compare their respective
effects on detection sensitivity. Then we describe methods
for quantifying detection power in the filtered and unfil-
tered InI data. Finally, we demonstrate how the use of an
optimized MA filter can improve the sensitivity of detect-
ing task-related regional BOLD-contrast responses in high
temporal resolution (100 ms) InI time series.

METHODS

Participants

Six healthy participants were recruited for the study.
Informed consent was obtained from each participant
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under conditions approved by the Institutional Review
Board of Massachusetts General Hospital.

Task

Participants were asked to maintain fixation at the center
of a tangent screen during periodic presentation of a high-
contrast visual checkerboard reversing at 8 Hz. The check-
erboard stimulus subtended 20o of visual angle and was
generated from 24 evenly distributed radial wedges (15o

each) and 8 concentric rings of equal width. The stimuli
were generated using Psychtoolbox [Brainard, 1997; Pelli,
1997] running under Matlab (The Mathworks, Natick, MA).
The reversing checkerboard stimuli were presented for 500
ms and the onset of each presentation was randomized
such that the inter-stimulus intervals varied uniformly
between 3 and 16 s. Thirty-two stimulation trials were pre-
sented during each of four 240 s runs, resulting in a total of
128 trials per participant. Additionally, we collected one
‘‘resting state’’ run, where the participant was asked to
remain still, keep his eyes open, and stay alert in the mag-
net, during which time no stimulus was presented. The
same data set has been used in our previously published
work on InI technical development [Lin et al., 2008a].

Image Data Acquisition

MRI data were collected with a 3T MRI scanner (Tim
Trio, Siemens Medical Solutions, Erlangen, Germany),
using a body transmit coil and a 32-channel head array
receive coil. Using volumetric InI, each image volume time
point was collected by a 3D multishot EPI pulse sequence
with frequency and phase encodings. The partition encod-
ing was only implemented in the reference scan and the
accelerated acquisition was obtained by leaving out the
partition encoding. Volumetric image reconstruction was
achieved by solving inverse problems in the partition
encoding direction.

The InI reference scan was collected using a 3D multi-
shot EPI readout, exciting one thick slab covering the
entire brain (FOV 256 mm � 256 mm � 256 mm; 64 � 64
� 64 image matrix), and setting the flip angle to the Ernst
angle of 300. Partition encoding was used to obtain the
spatial information along the left-right axis. InI uses EPI
frequency and phase encoding along the inferior-superior
and anterior-posterior axes respectively. We used TR ¼
100 ms, TE ¼ 30 ms, bandwidth ¼ 2,604 Hz and a 12.8 s
total acquisition time for the reference scan, which
included 64 TRs allowing coverage of a volume compris-
ing 64 partitions with two repetitions.

The InI functional scans used the same volume prescrip-
tion, TR, TE, flip angle, and bandwidth as the ones used
for the InI reference scan. The principal difference was
that the partition encoding was omitted: the full volume
was excited, and the spins were spatially encoded only
by a single-slice EPI trajectory, resulting in a sagittal Y-Z

projection image with spatially collapsed data along the
left-right (X) direction. The InI reconstruction algorithm,
described in the next section, was then used to estimate
the spatial information along the X axis. In each run, we
collected 2,400 measurements after 32 dummy measure-
ments in order to reach longitudinal magnetization steady
state. A total of four runs of data were acquired from each
participant resulting in nInI ¼ 9,600 measurements. An
additional 4-min resting condition data set and a 4-min
phantom data set were measured for the subsequent spec-
tral analysis.

For comparison, the same participants were also studied
using multi-slice EPI acquisition with the following param-
eters: FOV 256 mm x 256 mm; 64 � 64 image matrix, slice
thickness ¼ 4 mm with a 0.8-mm gap between neighboring
two slices, 24 slices, TR ¼ 2,000 ms, TE ¼ 30 ms, and Flip
angle ¼ 90

�
. Four EPI runs were collected from each partici-

pant. Each run had 120 scans (4 min) with 32 randomized
reversing visual checkerboard events of 0.5-s duration with
randomized onsets. For each participant, there were in total
nEPI ¼ 480 measurements. The same stimulus design was
used for both the InI and EPI acquisitions.

In addition to the InI and EPI functional data, structural
MRI data were obtained for each participant in the same
session using a high-resolution T1-weighted 3D sequence
(MPRAGE, TR/TI/TE/flip ¼ 2530 ms/1100 ms/3.49 ms/
7
�
, partition thickness ¼ 1.33 mm, matrix ¼ 256 � 256, 128

partitions, FOV ¼ 21 cm � 21 cm). Using the structural
data, the location of the gray-white matter boundary was
estimated for each participant with an automatic segmen-
tation algorithm that yielded a triangulated mesh model
with approximate 340,000 vertices [Fischl et al., 1999b].
This mesh model was then used to facilitate the mapping
of the structural image from native anatomical space to a
standard cortical surface space [Dale et al., 1999; Fischl
et al., 1999a]. To transform the functional results into this
cortical surface space, the spatial registration between the
volumetric InI reference or multislice EPI data and the
MPRAGE anatomical data was done using the 12-parame-
ter affine transformation as implemented in FSL (http://
www.fmrib.ox.ac.uk/fsl/). The resulting transformation
was subsequently applied to each time point of the InI he-
modynamic estimates, thereby spatially transforming the
functional data at each time point to the standard cortical
surface space [Fischl et al., 1999b]. Cross-participant
morphing was done via the standard cortical space spheri-
cal coordinate system, with a transformation to first align
the individual functional maps and then to average them
across participants [Fischl et al., 1999b].

InI Reconstruction and Data Analysis

Filter design for physiological noise suppression

Reduction of the cardiac and respiratory noise sources
in InI data was done by applying simple moving averag-
ing (MA) low-pass digital filters to the InI projection
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images at each channel of the RF coil array. Although
more sophisticated low-pass filters could be used, we
chose MA filters to demonstrate that significant improve-
ments can be achieved even by using these simple filters.
Moreover, it is straightforward to derive the correspond-
ing degrees of freedom consumed by MA filters. We para-
metrically varied the filtering window resulting in five
MA filters, which temporally averaged InI data over win-
dows of 0.5, 1.5, 2, 3, and 5 s duration. These filters are
denoted by MA (0.5 s), MA (1.5 s), MA (2 s), MA (3 s),
and MA (5 s), respectively.

To avoid any temporal shifts in the underlying hemo-
dynamic responses, the MA filters were applied in both
forward and reverse directions. Specifically, the hemody-
namic responses were first filtered by a MA filter. Then
the output of the filtered hemodynamic responses were
temporally reversed and filtered back through the same
MA filter again. The final output is the time reverse of the
output of the second filtering operation and it has pre-
cisely zero phase distortion.

Temporal whitening and HRF estimation

EPI BOLD contrast fMRI data with TR ¼ 2 s have tem-
poral correlations due to the stimulus paradigm structure
as well as physiological processes [Purdon and Weisskoff,
1998]. In this study, the explicit temporal averaging by the
MA filter produced additional temporal correlations in the
InI data. Using a general linear model (GLM) without an
appropriate error model can reduce the efficiency of esti-
mating the hemodynamic response function [Friston,
2007]. Therefore, it is necessary to take into account the
temporal noise correlation structure in order to estimate
the degrees of freedom in the time series correctly. As sug-
gested in previous studies [Purdon and Weisskoff, 1998;
Worsley et al., 2002], we employed the auto-regressive
(AR) model to estimate the temporal correlation in the
GLM residuals.

Considering the time series y0(t) at a specific (projection)
image location in one RF channel, it is common to use a
GLM of the following form:

y0ðtÞ ¼ d0;1ðtÞb1 þ � � � þ d0;lðtÞb1 þ d0;lþ1ðtÞblþ1 þ � � �
þ d0;mðtÞbm þ e0ðtÞ; (1)

where the first l parameters and regressors are related to
the HDR, subsequent variables are used to model slow
trends, and e0(t) corresponds to the modeling error.
In the matrix form of GLM, different time-points corre-
spond to the components of y

*

0, e
*
0 and the linear model

becomes:

y
*

0 ¼ D0 b
*

þe
*
0: (2)

We used Finite Impulse Response (FIR) basis functions
for modeling the hemodynamic response, which are tempo-
rally shifted discrete time delta functions. The hemodynamic

response function (HRF) was constructed using an FIR ba-
sis with 30 s duration and a 6 s pre-stimulus interval.
Each FIR basis function was temporally convolved with a
vector containing the onset of visual stimulus. In each RF
channel, we have 300 unknown coefficients h(t) ([b1���bl])
for the FIR bases in InI (TR ¼ 0.1 s). A DC term and a lin-
ear drifting term were included in the design matrix D0

for each run. The uncertainty of the LS estimate of b
becomes biased if the errors e0(t) are correlated at different
time points, which affects our estimate for the HDR noise
levels, needed in the InI reconstruction.

To whiten the errors, we assume an AR model of order
p for the GLM error time series

e0ðtÞ ¼
Xp

k¼1

ake0ðt� kÞ þ qðtÞ; (3)

where the ak are the AR model coefficients, and q(t)
denotes error with a time-independent Gaussian distribu-
tion N(0,r2). The order p of the AR model can be estimated
by fitting models up to some upper limit (in our case, pmax

40) and selecting the most appropriate using Schwarz’s
Bayesian Criterion [Neumaier and Schneider, 2001; Schnei-
der and Neumaier, 2001]. The corresponding estimates for
ak, can be used to construct an estimate for the temporal
(co)variance matrix r2V for the data y

*

0. The temporal
whitening matrix V�1/2 can be efficiently obtained from
empirical autocorrelations ak without explicit inversion
[Worsley et al., 2002]. Finally, the parameter r2 can be esti-
mated from whitened model residuals r

*
:

y
* ¼ V�1=2y0;D ¼ V�1=2D0; r

* ¼ ðI�DDþÞ y
*
;

r̂2 ¼ ð r*
T
r
*Þ=vInI; vInI ¼ nInI � rankðDÞ; ð4Þ

where (�)1 denotes pseudo-inverse.
In this way, the coefficients of the HRF basis

hðsÞ $ bb̂1; � � � ; b̂lc were estimated by the least squares esti-
mation of the whitened GLM, which yields the following
means and standard deviations:

b̂l ¼ ðDþ y
*Þl; SDl ¼ jjðDþÞljjr̂; (5)

Note that the whitened GLM matrix D will be different
for each image location, and if a matrix V is used to whiten
the whole InI GLM time series in each run (4 min and 2400
samples in this study), then V�1/2D0 may become too large
to be efficiently computed. Performing the temporal whit-
ening in separate non-overlapping 30 s intervals, based on
the assumption that sections of the time series are not corre-
lated, mitigated this computational challenge.

Spatial HRF estimation in InI

The FIR basis coefficients form a time series of projec-
tion images at each channel. To restore the data into three
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spatial dimensions, the minimum-norm estimate (MNE)
was used to reconstruct the projection HRF h

*

ðsÞ into a vol-
umetric HRF x

*ðsÞ at time index s[Lin et al., 2008a]:

x
*ðsÞ ¼ AHðAAH þ kCÞ�1 h

*

ðsÞ

¼ WMNE h
*

ðsÞ
; (6)

where A is the forward solution, a collection of reference
scan data from all channels in the RF coil array, C is a noise
covariance matrix calculated from the whitened residuals, k
is the regularization parameter, and WMNE is the inverse
operator. The regularization parameter was calculated from
a predefined signal-to-noise-ratio (SNR) as:

k ¼ TrðAAHÞ=TrðCÞ=SNR2: (7)

where Tr(�) is the trace of a matrix.
Statistical inference for each InI time series was based

on estimates of the baseline noise calculated by applying
the MNE inverse operator to the baseline InI data. Then,
dynamic statistical parametric maps were derived time
point by time point as the ratio between the InI reconstruc-
tion and the baseline noise estimates:

t
*
ðsÞ ¼ x

*ðsÞ=diagðWMNE � C �WMNEÞ

¼ WMNE h
*

ðsÞ=diagðWMNE � C �WMNEÞ;

¼ WMNE�dSPM h
*

ðsÞ

(8)

where diag(�) is the operator used to construct a diagonal
matrix from the input argument vector. Here x(s) represents
the estimated signal vector and diag(WMNE�C�WMNE)
denotes the estimated noise vector. Dynamic statistical para-
metric maps (dSPMs) t

*
ðsÞ should be t distributed with vInI

degrees of freedom under the null hypothesis of no task eli-
cited hemodynamic response [Dale et al., 2000]. When the
number of time samples used to calculate the noise covari-
ance matrix C is quite large (>100), the t distribution
approaches the unit normal distribution (i.e., a z-score). The
final InI dSPMs were transformed to z-score maps to facili-
tate the comparison between InI and EPI results.

Since signal intensity presumably varied across individ-
uals depending on coil loading, flip angle, and receiver
gain, it is possible for individuals to differentially contrib-
ute to the baseline noise. Additionally, it has been sug-
gested that physiological noise is generally proportional
to signal intensity [Kruger and Glover, 2001], as tissues
with high signal intensity likely make stronger contribu-
tions to the average standard deviation. Therefore, before
averaging, we calculated a normalized baseline noise by
dividing the standard deviation of the baseline noise by
the average signal intensity to get a scaled noise level.
Normalized baseline noise was also used to evaluate
the effect of suppression of physiological fluctuation by
different filters.

EPI Data Analysis

EPI data were first preprocessed using motion and slice
timing correction. Similar to InI, hemodynamic responses
were estimated with a GLM using an FIR basis set. With a
temporal resolution of 2 s in EPI, the hemodynamic
response was modeled for 30-s duration (6-s prestimulus
interval) and 15 total bins. The GLM design matrix was
constructed by convolving the onset timing of the visual
stimuli and FIR basis set. Confounds including DC offset
and linear drift terms for each run were added to the
design matrix. The coefficients of the HDR basis were esti-
mated from the EPI time series by using a temporally
whitened GLM (see the description in the ‘‘Temporal whit-
ening and HDR estimation’’ subsection above). At each
image voxel, coefficients for HRF bases were estimated by
the least squares approach. Dynamic statistical parametric
maps (dSPMs) of the EPI HRF were calculated by taking a
ratio between each EPI HRF basis coefficient and the corre-
sponding standard deviation of the GLM estimate. The
statistical maps were transformed to z-scores to facilitate
comparison between InI and EPI results.

Control of spatial correlation

InI has spatially anisotropic resolution that depends on
the measurement SNR [Lin et al., 2006, 2008a,b]. Therefore,
to allow fair comparison between the InI and multislice
EPI acquisitions, the spatial smoothness of the EPI data
must be comparable with the InI data. On the basis of our
simulation study, the spatial resolution of 3D InI datasets
have spatial resolution in the cortex of 3.0 mm, 4.7 mm,
and 8.6 mm at SNRs of 10, 5, and 1, respectively [Lin
et al., 2008a]. We smoothed the multislice EPI data with
corresponding 3D isotropic Gaussian kernels of 3.0 mm,
4.7 mm, and 8.6 mm full-width-half-maximum (FWHM)
after motion correction and slice timing correction prepro-
cessing. Since a larger smoothing kernel of 12 mm or 18
mm FWHM is also commonly used, EPI data smoothed
with these two kernels were also analyzed.

Filter Performance Measures

The low-pass filtering may reduce the BOLD signal in
fMRI time series. To quantify this effect, we applied differ-
ent moving-average filters to a canonical hemodynamic
response [Glover, 1999] and subsequently evaluated how
much hemodynamic response is preserved after filtering.
We also examined the power spectral density (PSD) of the
empirical InI data. Specifically, the PSD of the original InI
data, the PSD of the InI data after temporal whitening of
the residuals, and the PSD of the InI data after moving-av-
erage filtering and temporal whitening of the residuals
were calculated separately. For comparison, we also calcu-
lated the PSD from the resting condition. In addition, the
PSD calculated from phantom measurements was ana-
lyzed to separate the sources of physiological noise. To
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reduce the biases in PSD estimates, we used the multi-
taper spectrum method [Mitra and Pesaran, 1999; Percival
and Walden, 1993] implemented in the Matlab Signal Proc-
essing Toolbox (Mathworks, Natick, MA, USA). The slow
drift in the InI data was first removed by a high-pass filter
with a cut-off frequency of 0.03 Hz. The multi-taper filters
were created from discrete prolate spheroidal (Slepian)
sequences with the time half-bandwidth product set to 3.5
[Percival and Walden, 1993].

The visual cortex was functionally defined from the
group-averaged EPI data with a threshold of z ¼ 5 (Bon-
ferroni corrected P < 0.001). This threshold was also used
in a previous study on fMRI noise [Deckers et al., 2006].
The spatial distributions of the visually active brain areas
in the unfiltered InI, filtered InI, and EPI datasets were
generated by temporally averaging the HRF z-statistic time
courses between 3 s and 7 s after the stimulus onset. The
optimal filter for the InI data was chosen for the maximal
peak z-statistics in the visual cortex.

RESULTS

Our simulations show that increasing the low-pass filter
width indeed reduced the amplitude of the hemodynamic
responses. The MA (0.5 s), MA(1.5 s), MA (2 s), MA (3 s),
and MA (5 s) low-pass filters respectively preserved
99.6%, 96.5%, 93.9%, 87.3%, and 72.2% of the HRF power.
Figure 1 shows the PSDs of the InI data before and after
low-pass filtering using a MA(2 s) filter. We found clear
respiration peaks between 0.2 Hz and 0.4 Hz in all InI
data spectra. We also saw cardiac peaks between 0.8 Hz
and 1.2 Hz and their harmonics. These peaks were
observed in task InI and resting state InI. The application
of the MA filter caused both respiratory and cardiac peaks
to disappear. Phantom data show no peaks in the respira-
tion and cardiac frequencies, suggesting a physiological or-
igin for the peaks in both frequency bands. Applying a
MA (2 s) filter suppressed the cardiac peaks by more than
80 dB, a more than 10,000-fold suppression. The same MA
(2 s) filter suppressed the respiratory peak by 10.4 dB, an
11-fold suppression.

The spatial distribution of baseline noise after InI data
reconstruction from a representative participant is shown
in Figure 2, which includes both the unfiltered and MA
(2s) filtered InI data. Plotting the noise at the same thresh-
old for both datasets, we found a clear suppression of the
baseline standard deviation across the whole brain in the
filtered InI data compared with the unfiltered InI data.
The baseline noise in both filtered and unfiltered data
shows no distinction between the gray and white matter.
This spatial distribution is similar to systematic and ‘‘non-
BOLD’’ physiological noise [Kruger and Glover, 2001]. We
noticed that the baseline noise images were spatially
blurred along the left-right direction. This effect is because
InI reconstruction uses sagittal slice projection images
acquired by a 32-channel coil array at 3T. Since the array

coil has limited resolution to fully recover the spatial loca-
tion in the left-right direction, reconstructed images were
calculated by using the mathematical constraint of mini-
mizing the L2 norm of the reconstruction. Accordingly,
spatial resolution was compromised in the left-right direc-
tion. Figure 3 shows the spatial distribution of oscillatory
signals around cardiac (0.9 Hz to 1.2 Hz) and respiratory
(0.2 Hz to 0.4 Hz) frequencies before and after MA (2 s) fil-
tering from one four-minute run. Clear blurring along the
left-right direction was found, potentially due to the
reduced spatial resolution in InI reconstruction as
described above. There were stronger signals around the
periphery of the brain in both cardiac and respiratory fre-
quency ranges. After MA (2s) filtering, clear suppression
of oscillatory signals were observed in the cardiac and re-
spiratory frequency ranges. Specifically, the average abso-
lute values of the unfiltered InI data in the cardiac and
respiratory frequencies were 2.2 � 10�3 and 7.6 � 10�3

respectively. After applying the MA (2s) filtering, the aver-
age absolute values of the filtered InI data in the cardiac
and respiratory frequencies were 0.1 � 10�3 and 2.2 �
10�3 respectively. This amounted to 15 fold and 3.4 fold
suppression in the cardiac and respiratory frequencies
respectively. Table I lists the baseline noise standard devi-
ation averaged across the whole cortical surface or visual
cortex in the group average. Results with and without nor-
malization with respect to the average signal are reported.
Regardless of normalization, data filtered with MA (2s) fil-
ter gave the lowest baseline variance across the whole
brain. We noticed that the baseline variance was higher in
the MA (3s) and MA (5s) filtered data. Note that different
temporal whitening by distinct AR models was applied to

Figure 1.

The power spectrum density (PSD) of the original (blue) and MA

(2 s) filtered InI data (green). For comparison, the PSDs of the

original data during the rest condition (cyan) and phantom meas-

urements (red) are also shown. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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Figure 3.

The spatial distribution of noise in cardiac (0.9–1.2 Hz) and respiratory (0.2–0.4 Hz) frequency

ranges. Axial slice images are shown without filtering and with MA (2 s) filtering. The color enc-

odes the standard deviation of the noise in arbitrary units. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 2.

The spatial distribution of baseline noise estimated from the residuals in the GLM model. Axial

slice images are shown without filtering and with MA (2 s) filtering. The color encodes the

standard deviation of the noise in arbitrary units. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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the time series to ensure efficient estimation of hemody-
namic responses with correct degrees of freedom. This
step is likely to generate different estimates of baseline
noise variance. In addition, using a long smoothing win-
dow may temporally smear the BOLD signal into baseline
time points and consequently lead to over estimation of
baseline fluctuation. Since baseline noise was not esti-
mated from the moving average of unfiltered hemody-
namic response, we did not observe a monotonic decrease
of baseline variance.

Figure 4 shows the snapshots of unfiltered InI data and
2 s MA filtered InI data from a representative participant.
These snapshots show dynamic activation of the visual
cortex with reasonable localization. 2 s MA filtered InI
shows higher z statistics. Interestingly the 2 s MA filtered
InI results show subcortical activity with dynamics similar
to cortical BOLD responses. This may be the mis-localized
hemodynamic response at the lateral geniculate nucleus
due to highly ill-conditioned encoding matrix at the deep
brain area.

The visual cortex HRFs for unfiltered InI data, 2 s MA fil-
tered InI data, and spatially smoothed EPI (FWHM ¼ 8.6
mm) data from a representative participant and the entire
group are in Figure 5. The visual cortex average time course
reaches its peak value about the same time in the unfiltered
InI, filtered InI, and smoothed EPI data. Although the peak
latencies vary between EPI and InI data. it is difficult to
make strong inferences about these differences, due to the
temporal resolution difference between EPI (TR ¼ 2 s) and
InI (TR ¼ 0.1 s) acquisitions,. Compared to the unfiltered
InI data and smoothed EPI data, we found that MA filter-
ing of the InI data improved the detection sensitivity, as
evidenced by a higher z-statistic peak value in the visual
cortex. For the single participant and the group average,
MA (2s) low-pass filtered InI results have higher peak z-sta-
tistic values of 39.5 and 34.3 compared to either the unfil-
tered InI data with peak values of 17.5 and 21.8 or the
smoothed EPI data with peak values of 25.1 and 21.7. Com-
pared to unfiltered InI and spatially smoothed EPI (FWHM
¼ 8.6 mm), MA (2 s) filtering improved the peak z-statistics
by 126% and 57% for this representative participant and
57% and 58% for the group. The InI and EPI peak values in
the visual cortex for each participant and the group average
are listed in Tables II and III.

Figure 6 shows the spatial distribution of the z-statistics
averaged between 3 and 7 s after stimulus onset from
a representative participant and the group average. For

comparison, the EPI data spatially smoothed by a FWHM
¼ 8.6 mm kernel are also shown rendered on the inflated
cortical surfaces. The location of visual cortex is well
matched in the unfiltered InI, filtered InI, and smoothed
EPI conditions. Compared with the original InI data,
applying a MA (2 s) filter increased the visual cortex peak
z-statistic in both the single participant and the group av-
erage (Tables II and III).

Snapshots of visual cortex activity for the group aver-
age data are shown in Figure 7. Greater spatial extent
and increased task-related activity duration were seen in
the filtered InI data. Compared with the filtered InI data
using a MA (2 s) filter with a z ¼ 5 critical threshold, a
later detection of suprathreshold activity was observed
in the absence of filtering. Unfiltered InI data showed
the suprathreshold visual cortex activity at approxi-
mately 2.3 s after the visual stimulus onset, while fil-
tered InI data using a MA (2 s) filter showed the
suprathreshold visual cortex activity at � 1.7 s after the
visual stimulus onset. The localization of the visual cor-
tex, however, is very consistent between filtered and
unfiltered InI data.

The MA (2 s) low-pass filter was originally chosen to
match TRs commonly used in multi-slice EPI acquisition.
We expected variations in the moving average filter dura-
tions to influence detection sensitivity. The results of the
group z-statistic average time courses in visual cortex are
shown in Figure 8. We found that the task-related activ-
ity peaks progressively increase when the moving aver-
age filter window increases from 0.5 s to 2 s. Further
increases in the filter window decrease the observed
effects. This pattern has two likely explanations. First, the
failure of a short moving average window to effectively
suppress oscillatory fluctuations, such as cardiac artifacts,
may result in decreased contrast-to-noise ratios and con-
sequent reduced sensitivity to task-related activity. Sec-
ond, a longer moving average window can suppress not
only cardiac and respiratory fluctuations but also func-
tional contrast. Thus, an excessively long moving average
window can result in an overall CNR decrease. We
observed small peak latency differences between hemody-
namic responses estimated from filtered InI data com-
pared to estimates derived from unfiltered InI data or
EPI data. This effect may be due to differential tempo-
rally whitening associated with different AR models
employed in order to achieve efficient estimation of
hemodynamic responses with the correct degrees of

TABLE I. Baseline standard deviation of the InI data with and without normalization to the average signal averaged

across the entire cortex and within the visual cortex in the group analysis

Unfiltered MA (0.5 s) MA (1.5 s) MA (2 s) MA (3 s) MA (5 s)

Without normalization Entire cortex (�10�5) 9.7 6.4 4.2 3.8 4.5 6.7
Visual cortex (�10�5) 12.0 8.9 4.9 4.2 5.3 8.5

With normalization Entire cortex (�10�3) 12.4 8.3 5.3 4.8 5.8 8.6
Visual cortex (�10�3) 11.5 9.6 5.3 4.3 5.7 9.6
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freedom. This step is likely to effect the estimated hemo-
dynamic response shapes and to lead to different
observed latencies.

Since InI has anisotropic spatial resolution [Lin et al.,
2008a; Lin et al., 2008b], we also compared filtered InI data
and spatially smoothed EPI data using different smoothing
kernels (Fig. 9). Compared to unsmoothed EPI data,
smoothing the EPI data using kernels of FWHM ¼ 3 mm
and FWHM ¼ 4.7 mm resulted in increased sensitivity to

visual cortex activity. The largest peak statistics were
found after smoothing EPI data using a kernel of FWHM
¼ 8.6 mm. Further increasing the width of the smoothing
kernel to 12 or 18 mm reduces the detection sensitivity.
However, temporally filtered InI data using a MA (2 s) fil-
ter has a peak z- statistic of 34.3, while the highest peak z-
statistic in the spatially smoothed EPI data resulting from
application of a FWHM ¼ 8.6 mm kernel of was only 21.7
(Tables II and 3).

Figure 4.

Time series of the volumetric reconstruction of unfiltered InI and filtered InI using a MA 2s filter

from a representative participant. The critical threshold was z ¼ 4. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 5.

The average time course for a representative participant (left) and the group (right) in the visual

cortex before (black trace) and after (blue trace) filtering using a MA (2 s) filter. EPI time

courses (red traces) are shown for comparison. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

TABLE II. InI peak z-statistics in the visual cortex before and after moving-average filtering

Participant Unfiltered InI

Temporally filtered InI

MA (0.5s) MA (1.5s) MA (2s) MA (3s) MA (5s)

1 17.5 25.1 26.7 39.5 21.5 22.0
2 10.1 5.8 7.2 9.3 5.8 2.6
3 9.1 8.8 9.0 11.2 7.9 6.6
4 5.8 5.0 12.0 13.8 11.7 8.3
5 14.8 8.7 13.0 23.1 15.6 13.2
6 9.8 12.4 15.3 15.7 14.6 11.1
Average 21.8 18.7 29.1 34.3 25.3 17.4

TABLE III. EPI peak z-statistics in the visual cortex before and after spatial smoothing

Participant Unsmoothed EPI

Spatially smoothed EPI

FWHM.3.0 mm FWHM 4.7 mm FWHM 8.6 mm FWHM 12 mm FWHM 18 mm

1 9.2 9.9 14.3 25.1 18.9 20.8
2 10.7 14.3 22.4 34.3 18.1 16.2
3 8.2 8.5 10.9 11.3 6.3 5.2
4 7.4 8.8 8.7 10.1 2.9 2.1
5 12.6 13.2 16.7 20.0 18,3 17.9
6 1.9 2.2 1.9 2.2 2.1 2.1
Average 4.5 14.8 15.8 21.7 12.6 11.9
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DISCUSSION

BOLD-contrast magnetic resonance inverse imaging
allows indirect detection of neural activity changes, with
an order-of-magnitude advantage in temporal resolution
when compared to standard EPI methods for whole-brain
studies. In addition to its ability to identify the fine tempo-
ral features of the hemodynamic response, InI allows use
of digital processing methods for suppressing physiologi-
cal noise sources without the need for external physiologi-
cal monitoring devices. In the group average data, the
baseline standard deviation in visual cortex in the tempo-
rally filtered InI data with a MA (2 s) filter is 39% of the
unfiltered InI data (Fig. 2 and Table I). In visual cortex, the
baseline standard deviation in the temporally filtered InI
data with a MA (2 s) filter is 35% of the unfiltered InI data
(Fig. 2 and Table I). The maximal z-statistic in visual cortex
increased from 21.8 in the unfiltered InI data to 34.3 in the
filtered InI data (MA (2 s) filter, a 57% increase (Fig. 3,
Tables II and III). Compared to spatially smoothed EPI
data (FWHM ¼ 8.6 mm), the filtered InI data has a 58%
higher peak z-value (Fig. 3, Tables II and III). This result is
higher than the 4% increase observed when using adaptive
filtering, which has comparable performance to that seen
with the RETROICOR method [Deckers et al., 2006]. The
advantages InI provides in suppressing physiological noise
include increased detection sensitivity in all InI fMRI

Figure 7.

Time series of unfiltered and filtered InI cortical activity reconstructions in the visual cortex in

response to visual stimulation from a group of six participants. The critical threshold was z ¼ 5.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 6.

A medial view of the inflated left hemisphere cortex overlaid with

the z-statistic maps showing the spatial distribution of the active

visual cortex before and after MA (2 s) filtering compared to the

EPI data smoothed with a 8.6 mm FWHM kernel in single partici-

pant (top panel) and group (bottom panel). The dark and light gray

indicate sulci and gyri, respectively. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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experiments. Our filtering approach can also aid in detect-
ing subtle changes in response timing within brain areas
across task conditions. When comparing timing differences
at a particular brain location, there are no confounding
influences contributed by differential vasculature effects
and therefore the timing difference between conditions can
more easily be attributed to changes in neural activity.

In contrast to many previously described techniques for
reducing the effects of physiological noise, InI filtering
does not require an external cardiac or respiratory moni-
toring device to directly record cardiac and respiratory ac-
tivity that, when undersampled in the temporal domain,
can lead to aliased noised. External monitoring devices
can collect cardiac and respiratory signals that can be
used to create nuisance-variable regressors [Birn et al.,
2006; Lund et al., 2006] to remove periodic, low-frequency
(<0.1 Hz) sources of physiological noise. However, there
is an unknown latency between these peripherally moni-
tored signals and their associated brain signals. The
peripheral to central latency can also vary due to spatial
variations in neurovascular coupling. Physiologically, pul-
sations of cardiac or respiratory origin have dominant fre-
quencies around 1.0 and 0.25 Hz respectively. Both noise
sources are relatively broadband because of the intrinsic
variability in autonomic nervous system modulation and
the mutual interaction between the competing sympathetic
and parasympathetic influences. Using standard EPI acqui-
sition techniques, while it is possible to monitor and sub-
sequently reduce low-frequency (<0.1 Hz) CO2-mediated
physiological noise [Birn et al., 2006; Shmueli et al., 2007;
Wise et al., 2004], it is more difficult to remove the effects

of respiratory and cardiac fluctuations due to sampling
rate limitations. While it usually takes up to 2 s to com-
plete an EPI volumetric acquisition with whole-brain cov-
erage, the required sampling period to avoid cardiac noise
aliasing based on the Nyquist sampling theorem is 0.5 s or
less. InI can avoid this problem by achieving whole-brain
acquisition with sampling intervals as short as 0.1 s using
RF encoding.

Because of the ill-posed nature of raw InI data, there
exist different alternatives for InI image reconstruction,
including minimum L2 norm [Lin et al., 2008a], spatial fil-
tering [Lin et al., 2008b], or k-space techniques [Lin et al.,
2010]. However, the utility of the filtering method exam-
ined in this paper is not dependent on any specific image
reconstruction algorithm. Physiological noise can first be
suppressed using digital filtering, after which a particular
reconstruction algorithm can be chosen. Therefore, digital
filtering can be considered as a pre-processing step with
benefits independent of particular reconstruction methods.

In this study, we used temporal filters to reduce the
effects of cardiac and respiratory noise. While other digital
filtering techniques can be used to suppress these noise
sources, moving average filters are computationally effi-
cient and extremely easy to implement. Theoretically, the
use of MA filters can result in passband ringing. However,
our results did not show significant ringing artifacts in the
spectral (Fig. 1) or temporal (Fig. 5) domains. One disad-
vantage of employing a moving average filter is that the

Figure 8.

The averaged z-statistic time course in the visual cortex using

unfiltered InI data (solid cyan) and InI data filtered by different

moving average filters. InI data filtered with the MA (2 s) filter

(solid blue) results in the maximal peak z-statistic value. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 9.

The averaged z-statistic time course in the visual cortex using

smoothed EPI data (solid red) and EPI data spatially smoothed

by kernels with different widths. Among all EPI data, EPI

smoothed by a kernel FWHM ¼ 8.6 mm (solid magenta) has

the maximal peak z-statistic value. InI data filtered with the MA

(2 s) filter (solid blue) has a even larger peak z-statistic. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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low-pass filtering does indeed increase the temporal corre-
lation among the elements of a time series. Therefore,
studies concerned with very transient fMRI responses may
therefore benefit from the use of other filtering methods to
reduce cardiac and respiratory noise without distorting the
fine temporal structure of the task-related responses. For
example, adaptive filtering methods have been applied in
optical imaging to reduce global signal variation [Zhang
et al., 2007]. In theory, these methods can be applied to InI
data to reduce physiological noise while preserving the
temporal structure of transient signal changes.

The physiological noise sources that have been the focus
of our study mostly originate from cyclic cardiac and respi-
ratory activity. We assume that these artifacts have quasi-
periodic waveforms and that the sampling rate of volumet-
ric inverse imaging is sufficiently fast to avoid temporal
noise aliasing. The current implementation of volumetric
InI uses 100 ms temporal resolution for whole-brain cover-
age. This sampling frequency, in typical physiological con-
ditions, is sufficiently high to meet the Nyquist sampling
criterion. The cost associated with the high InI sampling
rate is a loss of spatial resolution, since InI solves underde-
termined linear systems in image reconstructions. Due to
the ill posed nature of these underdetermined linear sys-
tems, there exist an infinite number of solutions. However,
imposing constraints can allow solution of underdeter-
mined linear systems. We previously investigated the use
of minimum L2 norm solutions [Lin et al., 2008a] and spa-
tial filtering techniques using linear constraint minimum
variance beamformers [Lin et al., 2008b]. Depending on the
SNR of the measurements, it is possible to obtain an aver-
age point spread function of 8.6, 4.7, and 3.0 mm in mini-
mum L2 norm reconstructions at SNRs of 10, 5, and 1,
respectively. Since fMRI data collected using EPI acquisi-
tion methods usually involves spatial smoothing to
improve the SNR [Friston, 2007], a small loss of spatial re-
solution is generally considered acceptable. Note that if the
LCMV beamformer is used as an alternative reconstruction
algorithm for InI data, the average point spread function is
usually below 1 mm [Lin et al., 2008b]. In this case, the
loss of spatial resolution may be negligible.

We found that Figures 2, 3, and 4 were not perfectly sym-
metric along the left-right direction. Note that these figures
are results of functional activity rather than anatomy. Thus
we cannot completely attribute asymmetric appearance to
the reconstruction. Notably, Figure 4 is the result from one
single subject. And there have been reports on the variabili-
ty of visual cortex BOLD responses [de Zwart et al., 2005;
Handwerker et al., 2004], which might explain why the
observed visual cortex activity is not 100% symmetric even
symmetric stimuli were presented.

InI indeed has intrinsic a spatial smoothing effect as the
result of using the constraint of minimizing the L-2 norm
of the reconstruction. Such smoothing can improve the sig-
nal-to-noise ratio and it is spatially variying [Lin et al.,
2010; Lin et al., 2008a; Lin et al., 2008b]. Considering the
common EPI processing stream using only one homogene-
ous 3D smoothing kernel, a fair comparison, in our mind,

would be spatially smoothing InI and EPI such that the
average cortical resolution is comparable. This is in fact
what we did. Even considering different spatial smoothing
effects in InI reconstructions, Figure 8 clearly shows that
EPI data using different spatially smoothing kernels
(FWHM ¼ 3 mm to 18 mm) do not generate as high statis-
tics as temporally smoothed InI data. Taken together, spa-
tial smoothing in InI is not dominating the SNR
improvement in BOLD fMRI time series. The suppression
of the fluctuation in InI time also contributes significantly
to the overall improvement in the sensitivity of BOLD
hemoydnamic responses detection.

Cardiac and respiratory periodic modulations are part of
the ‘‘non-BOLD’’ component of physiological temporal
noise (rNB) [Kruger and Glover, 2001]. The other type of
physiological temporal noise is similar to BOLD-contrast
signal (rB), whose magnitude depends on TE of the mea-
surement [Kruger and Glover, 2001]. rNB noise has a more
homogenous spatial distribution, while rB noise is higher
in gray matter than white matter [Kruger and Glover,
2001]. With TR ¼ 3 s, the ratio between rNB and rB noise
at 3T is � 1:2, implying that our temporal filtering method
can optimally reduce physiological noise by 33%. Note that
these numbers depend on TE, flip angle [Gonzalez-Castillo,
2010], and TR. To further reduce the rB physiological noise,
we may look to other solutions. It has been suggested that
sampling with high spatial resolution and subsequently
smoothing the data along the gray matter can effectively
reduce the rB physiological noise [Triantafyllou et al.,
2006]. This is due to the fact that physiological noise sour-
ces are partially spatially correlated. Sampling at higher
spatial resolution can ensure that the noise sources are
dominated by thermal, rather than physiological, noise.
Subsequent spatial smoothing of thermal noise dominated
data can compensate for the loss of signal without lowering
the SNR, since thermal noise is spatially uncorrelated.
Increasing spatial resolution to reduce the relative contribu-
tion of physiological noise reduces the advantage of InI as
compared with EPI. However, if we know a priori that the
rB noise is less concentrated in a specific k-space region, as
suggested by [Bodurka et al., 2007; Lowe and Sorenson,
1997], then InI accelerated scans can be acquired in that
specific k-space region in order to reduce physiological
noise contamination. Namely, instead of acquiring projec-
tion images (kz ¼ 0) in InI, we can also acquire k-space data
corresponding to a spatial harmonic (kz = 0) in accelerated
InI acquisition. Hypothetically, the reconstructed volumetric
images can have reduced physiological noise.

It has been suggested that a steady state free precession
(SSFP) signal can develop under a train of RF pulses with
TR < T2 in single-shot EPI [Zhao et al., 2000]. B0 fluctua-
tions originating from respiration, physical movement out-
side the FOV, and system instability can cause SSFP
temporal variation. InI uses a brief TR ¼ 100 ms and thus
this mechanism can potentially contribute to time series
variation. It has been suggested that a strong crusher can
be used to minimize these temporal noise fluctuations

r Lin et al. r

r 2828 r



[Zhao et al., 2000]. In fact, our experiment used a crusher
gradient of 20 mT/m strength and 10-ms duration, as pre-
viously suggested [Zhao et al., 2000]. However, since the
suggested strong crusher was studied with TR ¼ 200 ms,
InI may require further increase the crusher moment to
reduce the SSFP signal disturbance by increasing the
crusher duration or strength. However, the potential cost
will be reduced temporal resolution and more prominent
eddy current artifacts.

In conclusion, the high sampling rate made possible with
MR InI can be exploited to monitor and suppress cardiac
and respiratory physiological noise sources without the
need for external monitoring devices. We systematically
investigated this advantage by parametrically modulating
the temporal filtering parameters and then comparing the
results to EPI acquisitions processed with different spatial
smoothing kernels. The improved detection power after
physiological noise suppression was validated across par-
ticipants and the improvements resulting from noise sup-
pression are strong and statistically significant. The InI
method can be used in BOLD-contrast fMRI experiments
using parallel detection from a RF coil array to further
improve the sensitivity of detecting localized changes in
neural activity that are either spontaneous, as in resting
state studies, or task-related, as in investigations of the neu-
ral mechanisms of perception, cognition and action.
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