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How do we perform rapid visual categorization?It is widely thought that categorization involves evaluating the similarity of an
object to other category items, but the underlying features and similarity relations remain unknown. Here, we hypothesized
that categorization performance is based on perceived similarity relations between items within and outside the category. To
this end, we measured the categorization performance of human subjects on three diverse visual categories (animals,
vehicles, and tools) and across three hierarchical levels (superordinate, basic, and subordinate levels among animals). For
the same subjects, we measured their perceived pair-wise similarities between objects using a visual search task.
Regardless of category and hierarchical level, we found that the time taken to categorize an object could be predicted using
its similarity to members within and outside its category. We were able to account for several classic categorization
phenomena, such as (a) the longer times required to reject category membership; (b) the longer times to categorize atypical
objects; and (c) differences in performance across tasks and across hierarchical levels. These categorization times were
also accounted for by a model that extracts coarse structure from an image. The striking agreement observed between
categorization and visual search suggests that these two disparate tasks depend on a shared coarse object representation.
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Introduction

Categorization is a fundamental cognitive process
that involves evaluating the similarity of an object with
other category members (Goldstone, 1994; Margolis &
Laurence, 1999; Smith, Patalano, & Jonides, 1998).
What are the underlying features and similarity
computations? One influential approach has been to
study categorization of visual objects varying along
prespecified features (Freedman, Riesenhuber, Poggio,
& Miller, 2001; Maddox, Ashby, & Gottlob, 1998;
McKinley & Nosofsky, 1996; Minda & Smith, 2002;
Sigala & Logothetis, 2002; Stewart & Morin, 2007).
However, these results only confirm that categorization
is based on the manipulated features. In contrast, other
studies have characterized how visual object categori-
zation in natural tasks is affected by various manipu-
lations. For instance, animal categorization is
unaffected by color (Delorme, Richard, & Fabre-
Thorpe, 2000), by removal of certain spatial frequencies
(Harel & Bentin, 2009; Morrison & Schyns, 2001;
Nandakumar & Malik, 2009), can be performed on

silhouettes (Quinn, Eimas, & Tarr, 2001), and does not
depend on Fourier power in the image (Girard &
Koenig-Robert, 2011; Joubert, Rousselet, Fabre-
Thorpe, & Fize, 2009; Wichmann, Braun, & Gegen-
furtner, 2006; Wichmann, Drewes, Rosas, & Gegen-
furtner, 2010). Although these results constrain the
information used for categorization, they do not
explicitly define the underlying features. It is also not
clear whether these features are purely visual or
influenced by verbal or semantic factors (Goldstone,
1994). In fact, it is a common assumption that animal
or vehicle categorization is a high-level task involving
visual as well as semantic representations (Li, Van-
Rullen, Koch, & Perona, 2002; Peelen, Fei-Fei, &
Kastner, 2009; Rousselet, Fabre-Thorpe, & Thorpe,
2002).

Any candidate feature representation must account
for two important observations regarding categoriza-
tion. First, categorization tasks vary in difficulty:
humans are fastest to categorize an object at the
superordinate level (e.g., animal), slower at the basic
level (e.g., dog), and slowest at the subordinate level
(e.g., Labrador) (Large, Kiss, & McMullen, 2004;
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Macé, Joubert, Nespoulous, & Fabre-Thorpe, 2009;
Mack, Wong, Gauthier, Tanaka, & Palmeri, 2009). The
fact that superordinate categorization is fastest contra-
dicts the classic basic level advantage (Rosch, Mervis,
Gray, Johnson, & Boyes-Braem, 1976), but this
discrepancy arises from the key press responses used
in recent studies compared to the verbal naming used in
the classic studies (see Discussion). A second influential
observation is that humans take longer to categorize
atypical objects than typical ones (McCloskey &
Glucksberg, 1978; Rosch et al., 1976; Rosch & Mervis,
1975). Accounts of both observations have invoked
visual, verbal, and semantic representations but do not
disentangle them (Goldstone, 1994; Macé et al., 2009;
Margolis & Laurence, 1999; Rosch et al., 1976; Smith
et al., 1998).

Here we hypothesized that visual categorization
depends on visual similarity relations between objects
within and outside the category. We performed four
separate experiments to investigate whether similarity
relations in visual search can predict rapid visual
categorization. In each experiment, subjects performed
a visual categorization task and a visual search task
(Figure 1). In the visual categorization task, they were
asked to categorize a briefly flashed object as belonging
to a particular category or not. In the visual search task
using the same images, they had to identify an oddball
target among distractors and were given no explicit
instruction regarding the identity of the targets. We
took the search times for each pair of images as a
measure of perceived similarity between these images.
We then investigated whether these perceived similarity
relations could predict categorization performance.

In Experiment 1, subjects were asked (in separate
blocks) to categorize an object as an animal, dog, or
Labrador, and they then performed a single visual
search block involving all pairs of objects used in the
three tasks. Objects in this experiment were stereotyped

in their view. In Experiment 2, we set out to test
whether our results would generalize across variations
in view. Here, subjects performed an animal categori-
zation task in which objects were presented in four
different three-dimensional views. In Experiment 3, we
tested whether the results would hold for another
common category, namely vehicles. In Experiment 4,
we tested whether the results would generalize to a
category defined by its function rather than visual
form, namely tools. In each experiment, we used search
times to predict categorization times and obtained a
striking correlation in all tasks. The data were also
accounted for by a model based on extracting coarse
structure from images. Taken together, these results
suggest that both visual search and rapid visual
categorization are driven by object representations
sensitive to coarse object structure.

Experiment 1: Categorization
across hierarchical levels

In Experiment 1, we tested the hypothesis that a single
set of similarity relations (measured using visual search)
could predict categorization performance at three
distinct hierarchical levels—superordinate (animal), ba-
sic (dog), and subordinate (Labrador). To this end,
subjects had to categorize a briefly presented object as an
animal, dog, or Labrador in separate blocks.

Methods

Subjects: A total of 12 subjects, aged 20–30 years, with
normal or corrected-to-normal vision were recruited
for the experiments. All participants were naı̈ve to the
purpose of the experiments. Subjects gave written

Figure 1. In each experiment, human subjects performed a visual categorization task (A) and a visual search task (B) on the same objects.

In the visual categorization task, subjects saw a briefly presented image followed by a noise mask and had to indicate whether or not the

object belonged to a particular category (in this example, animal). In the visual search task, subjects saw an array containing an oddball

and had to indicate whether the oddball appeared on the left or right half of a vertical red line on the screen. No instructions were given as

to the nature or category of the oddball target.
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consent to a protocol approved by the Institutional
Human Ethics Committee of the Indian Institute of
Science.

Subjects were seated approximately 50 cm from a
computer monitor that was under control of custom
Matlab programs (Mathworks, Natick, MA) written in
Psychtoolbox (Brainard, 1997). Each subject performed
a categorization task and a visual search task. The
order of these two tasks was counterbalanced across
subjects. None of the subjects declared any expertise
with dogs or Labradors, but we did not perform any
detailed tests of their expertise.
Stimuli: The image set consisted of 48 gray-scale
images, of which 24 were animals and 24 were
nonanimals (12 man-made and 12 natural objects).
The 24 animals consisted of 12 dogs and 12 animals
that were not dogs. The 12 nondog animals consisted of
six typical animals (all quadrupeds: cat, cow, elephant,
llama, rhinoceros, and deer) and six atypical animals
(two snakes, two birds, one monkey, and one
kangaroo). The fact that these animals are indeed
atypical was independently established using a typical-
ity rating task (however, atypicality may depend on
context; see below and also Discussion). Of the 12 dogs,
there were six Labradors and six non-Labradors. All
images were segmented from their original scene
context and presented against a black background.
Images were equated for brightness and rescaled such
that their longer dimension was 140 pixels—this
corresponded to a visual angle of 4.88. Animal images
were chosen to be profile views with the head pointed
left—this was done to minimize influences of view angle
on search times. The same images were used in both
categorization and visual search tasks.
Categorization task: Subjects performed three catego-
rization blocks—an animal task, a dog task, and a
Labrador task. Block order was counterbalanced
across subjects. Each block began with a preview of
all objects to avoid confusion regarding the category
(primarily for the Labrador task). Each trial began with
a fixation cross that appeared for 750 ms, followed by
the test object presented briefly for 50 ms, followed by a
noise mask for 250 ms (Figure 1A). The subjects were
instructed to press the ‘‘M’’ key to indicate that the
object belonged to the target category being tested and
to press ‘‘Z’’ otherwise. Subjects had to make a correct
response within 2 s, failing which the trial repeated
after a random number of other trials. The next trial
began 500 ms after the subject made a response. Each
image was presented eight times within a block. To
investigate possible repetition or learning effects, we
performed a post-hoc analysis in which we separated
the eight responses to each image into the two halves.
We found a modest decrease in reaction times between
the first half and second half (average¼ 21 ms), but the
main trend in categorization times (animal , dog ,

Labrador) remained the same and attained statistical
significance in both halves.

A total of 48 objects were presented in the animal
task—24 animals (18 typical and six atypical) and 24
nonanimals (12 natural and 12 man-made objects). The
atypical animals consisted of two birds (seagull and
pigeon), two snakes (viper and cobra), a monkey, and a
kangaroo—these were rated in an independent exper-
iment as being the six most atypical animals. In the dog
task, there were 24 objects—12 dogs and 12 nondogs.
Of the 12 nondogs, there were six animals—three
typical (cat, llama, and rhinoceros), three atypical
(bird, monkey, and snake), and six nonanimals (flower,
shoe, squash, stone, leaf, and bottle gourd). In the
Labrador task, we tested six Labradors and six non-
Labradors. The six non-Labradors comprised two dogs
(dachsbracke and beagle), two typical animals (cat and
llama), and two nonanimals (flower and shoe).

In a separate experiment, we confirmed that the
results were qualitatively similar when the relative
proportion of nondogs was kept identical in the animal
and dog tasks. Specifically, since there were 12 nondog
animals and 24 inanimate objects in the animal task, we
kept the relative proportion the same in the dog task by
selecting four nondog animals and eight inanimate
objects as distractors in the dog task. We found that
differences in categorization performance were quali-
tatively similar (data not shown; but see Macé et al.,
2009 for a similar observation).
Visual search task: Subjects performed a single visual
search task involving the set of images used in all three
categorization tasks. The experiment began with a
motor reaction measurement block in which a white
circle appeared on the left or right side of the screen,
and the subject had to indicate with a key press the side
on which the target appeared (Z for left, M for right).
This was followed by practice visual search trials
involving random objects (not belonging to the image
set). Each visual search trial began with a fixation cross
that appeared for 500 ms, followed by a 4 · 4 array of
items consisting of one oddball target among a field of
otherwise identical distractors with a red vertical line in
the middle of the screen (to facilitate left/right
judgments). The search array was displayed until the
subject made a response with a maximum of 5 s, after
which the trial was marked as an error trial and
repeated later on (Figure 1B). We varied the size of the
distractors relative to the target in order to prevent low-
order cues such as image size (or alignment of items
along rows or columns) from influencing visual search.
Specifically, among the 16 items in the 4 · 4 array, one
target and seven distractors measured 80% of the
object size used in the categorization experiment (i.e.,
3.848 along the longer dimension), and four distractors
each measured 60% and 100% of the original size.
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Subjects were asked to respond as quickly and
accurately as possible with a key press (Z or M)
indicating which side (left or right) of the screen the
oddball target appeared. They were given no instruc-
tions regarding the nature or category of the oddball
target. We tested all 1,128 possible pairs of images (48
choose 2) in this manner. For each image pair (A, B),
subjects performed four correct trials—the target could
be either A or B and the target could be on the left or
right. The location of the target was random in each trial
and search displays corresponding to the image pairs
appeared in random order. Incorrect trials were repeated
after a random number of other trials. Subjects
performed this task across two sessions lasting roughly
30 min each with a break in between. For each subject,
image pairs were randomly assigned to the two sessions.
Typicality rating task: We performed an additional
experiment on 12 independent subjects (the same
subjects who performed Experiments 3 and 4) to assess
the degree to which they considered the animal images
as typical examples of the animal category. Specifically,
these subjects were asked to rate each animal in the
animal task on a scale of 1–5, where 1 implied that the
animal was a bad example of the category, and 5
indicated that it was a good example. We note,
however, that atypicality can depend on context—a
pigeon rated as atypical compared to the many four-
legged animals in this set would clearly be considered
typical among a set of birds (see Discussion).

Within-category and between-category similarity

We reasoned that the time required to categorize an
object would depend on (a) its similarity to items of its
own category (denoted as within-category similarity, or
CRT) and (b) its similarity to items outside its category
(denoted as between-category similarity, or NRT). For
each object, we calculated its CRT as the average
search time (across subjects and repetitions) required
during visual search to find the object among members
of its own category (or vice-versa; e.g., the beagle
among all other animals, or all animals among beagles).
NRT was also calculated likewise as the time required
to find the object among items outside its own category
(e.g., a beagle among cucumbers or vice-versa). When
testing a model such as coarse footprint or aspect ratio,
we calculated the pair-wise similarity between every
pair of objects (see below). These pair-wise similarity
ratings were then used to calculate CRT and NRT as
before.

Coarse footprint

To instantiate similarity driven by coarse object
structure, we used a simple image model described
previously (Sripati & Olson, 2010). To calculate the

similarity in coarse structure between two images, we
first shifted and scaled the images to a constant frame
(while preserving the aspect ratio), and then low-pass
filtered them using a Gaussian blur function. Next,
images were normalized by dividing the intensity of
each pixel in the image by the total intensity. A
difference image was then created by pixel-wise
subtraction of the normalized images. The coarse
footprint index was calculated by adding the absolute
values of the pixels in the difference image. To convert
this coarse footprint index (which is a measure of
dissimilarity) into a similarity measure akin to reaction
times, we took its reciprocal and used it to calculate the
within- and between-category similarity measures. The
standard deviation of the Gaussian blur was varied to
obtain the best match with the data.

Results

Does visual categorization vary in difficulty?

Subjects were highly consistent in both tasks, as
evidenced by the correlation in average reaction times
between two independent groups of subjects (r¼ 0.74, p
¼ 2 · 10�6 across 84 objects in the three categorization
tasks, and r¼ 0.90, p¼ 0 across 1,128 object pairs in the
search task). Thus, the underlying strategies and
features used to perform categorization did not differ
between subjects. Subjects were fastest to categorize an
object as an animal, slower to categorize an object as a
dog, and slowest to categorize it as a Labrador (Figure
2A; mean reaction times in the animal, dog, and
Labrador tasks were 687, 707, and 784 ms, respective-
ly). This effect was significant as determined using an
ANOVA on the reaction time (RT) with subject and
task as factors (p , 0.0001). Post-hoc analysis of data
from individual subjects revealed that although the
animal , dog effect was fairly robust and present in 8
of 12 subjects, the other two effects (dog , Labrador
and animal , Labrador) were present in all subjects
and attained significance in all but two subjects. This
effect persisted even upon consideration of the six
Labrador images used in all three tasks (mean RTs:
644, 679, and 776 ms, respectively; p , 0.0001 for main
effect of task, ANOVA) or the 12 images in the
Labrador task that were common to all three tasks
(mean RTs: 661, 711, and 784 ms, respectively; p¼ 5 ·
10�29, ANOVA). Thus the effect was due to differences
in the tasks rather than due to differences in the objects
used. Although the set size varied across the three tasks
in our study, similar results have been reported using
equal set sizes (Macé et al., 2009)—thus the effect is
unlikely to be due to different set sizes. Finally, we
confirmed that the reaction times do not reflect a speed-
accuracy tradeoff: subjects were not only fastest but
also most accurate in the animal task, slower and less
accurate in the dog task, and slowest and least accurate
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Figure 2. Categorization and visual search times in Experiment 1. (A) Average categorization times in the animal, dog, and Labrador

tasks. (B) Within-category search times: times taken to search for animals among animals, dogs among dogs, and Labradors among

Labradors. Error bars represent standard errors of the mean. (C) Between-category search times: times taken to search for animals

among nonanimals, dogs among nondogs, and Labradors among non-Labradors. (D) Plot of categorization reaction time (averaged

across subjects) for each item against the prediction based on average within- and between-category search times. Triangles represent

Labradors, plus symbols represent non-Labrador dogs, circles represent other animals, and squares indicate inanimate objects. The color

of each symbol indicates the task: red represents the animal task, green represents the dog task, and blue represents the Labrador task.

All trends reached a high level of statistical significance (**** represents p , 0.00005). (E) Categorization times plotted against predicted

times for atypical animals (two birds, two snakes, one monkey, and one kangaroo). Circles indicate average predicted and observed times

�
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in the Labrador task (mean accuracy in the animal,
dog, and Labrador tasks was 94.6%, 92.3%, and 92%,
respectively; p , 0.05, ANOVA). We conclude that
visual categorization in humans varies systematically
with task: it is easiest to categorize objects as animals,
harder to categorize them as dogs, and hardest to
categorize them as Labradors.

Can visual search similarity account for
categorization?

One possible explanation for the observed differenc-
es in categorization difficulty is that the three tasks
differ in hierarchical level (superordinate vs. basic vs.
subordinate levels). A simpler explanation (requiring
no assumption about category hierarchy) is that the
tasks vary in difficulty because of differences in the
similarity relations between members within and
outside each category. We set out to investigate
whether this simpler account might explain categoriza-
tion.

We considered two specific hypotheses regarding
how similarity relations might influence categorization:
(1) an object might be easy to categorize if it is similar
to members of its own category; (2) alternatively, it
might be easy to categorize if it is dissimilar to members
outside its category. However, these hypotheses cannot
be directly evaluated without a quantitative measure of
similarity. In order to measure the similarity between
two images A and B, we measured the average search
times for subjects to search for A among Bs or vice-
versa (Duncan & Humphreys, 1989). We can therefore
rephrase these two hypotheses as: (1) categorization
time would be decrease with increasing similarity (i.e.,
search time) between the object and members of its own
category (denoted as within-category similarity, or
CRT); and (2) categorization times would increase
with increasing similarity (i.e., search time) between the
object and members outside its category (denoted as
between-category similarity, or NRT).

We found that within- and between-category search
times exhibited a trend similar to the categorization
times (Figure 2B and C). Average within-category
search times increased from animals to dogs to
Labradors, contrary to the prediction of Hypothesis
1, but nonetheless covaried with average categorization
times (Figure 2B; animal mean¼ 1177 ms, dog mean¼
1505 ms, Labrador mean ¼ 1987 ms, p ¼ 0, ANOVA).

Thus at a coarse level, the within-category search times
increase across tasks, contrary to the trend expected
from Hypothesis 1. However, this may be due to
differences in the task, and the expected negative
correlation might nonetheless be present among objects
within each task. To investigate this issue, we calculated
the correlation between categorization times and
within-category search times across objects in each
task. As predicted by Hypothesis 1, categorization
times were negatively correlated with the within-
category search times for the 48 objects in the animal
task (r ¼ �0.81, p ¼ 2.9 · 10�12), were negatively
correlated and approached statistical significance for
the 24 objects in the dog task (r¼�0.33, p¼ 0.11), and
were not correlated for the 12 objects in the Labrador
task (r ¼ 0.05, p ¼ 0.87). These differences in the
statistical significance presumably arose from the
different sample sizes. Thus, at least for objects within
a task, there is a tendency for categorization time to
decrease with within-object similarity.

We then investigated whether between-category
search times vary across objects used in the three tasks.
Consistent with the second hypothesis, the average
between-category search times (NRT) increased from
animals to dogs to Labradors (Figure 2C; animal mean
¼ 776 ms, dog mean¼ 955 ms, Labrador mean¼ 1356
ms, p ¼ 0, ANOVA). A detailed correlation analysis
yielded an overall positive and significant correlation
across 84 objects in the three tasks (r¼ 0.76, p¼ 6.2 ·
10�17). These correlations were also positive when
considered separately for objects in each task (r¼ 0.25,
p¼ 0.08 in the animal task; r¼ 0.8, p¼ 2.5 · 10�6 in the
dog task; r ¼ 0.75, p ¼ 0.005 in the Labrador task).
Thus, the time to categorize an object tends to decrease
as it becomes increasingly dissimilar to members
outside its category.

Although the above analyses indicate that categori-
zation times covaried with within- and between-
category search times, the correlations were not
consistently significant. This could be either because
categorization is unrelated to these search times, or
alternatively, because categorization may be based on
some combination of these measures rather than any
one of them considered separately. To investigate this
issue, we set up a model that uses both within- and
between-category similarity to predict categorization
times. To this end, we compared the average time taken
by subjects to categorize each object with a linear sum

 
obtained for each atypical animal. The gray and black crosses represent the means obtained from typical and atypical animals

respectively. Error bars represent standard errors of the mean. (F) Approximate representation of animals and things in visual search

space, constructed using multidimensional scaling on visual search data. In this plot, distances between images are (approximately)

inversely proportional to the average time taken by subjects to find one image among another in visual search. The correlation coefficient

above the plot represents the degree to which distances in the two-dimensional plot capture the observed distances from visual search

data. Some images are scaled down to accommodate them in the plot, and three others have been deleted to avoid clutter.
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of the within- and between-category search times for
that object (Figure 2D). The best-fitting weights of the
linear sum were obtained using linear regression, and
their magnitudes then revealed the relative contribution
of within- and between-category similarities towards
categorization. We observed a striking correspondence
between the predicted and observed categorization
times (r ¼ 0.85, p ¼ 5 · 10�25; Figure 2D). The best-
fitting linear weights (Table 1) indicate that between-
category similarity (weight ¼ 0.16) has a four-fold
greater influence on categorization times than within-
category similarity (weight ¼ �0.04), and their influ-
ences are reversed in sign as predicted by the two
hypotheses. These weights and, consequently, model
performance were largely similar even when the model
was fit separately for each task or for each image type
(Table 2), suggesting that the same underlying mech-
anisms may account for categorization performance
across the animal, dog, and Labrador tasks. We
therefore only report model performance using a single
model fit across tasks and images.

To summarize, the time taken to categorize an image
as an animal, dog, or Labrador is influenced strongly
by its similarity to members outside the category and
only weakly by its similarity to members within its
category. The high degree of correlation is striking
because (a) the data come from two seemingly
disparate visual tasks—one involving scrutiny of single
objects (categorization) and the other involving search-
ing for an oddball target in an array (visual search)—
which might have been driven by entirely different
visual representations; (b) the underlying feature
representations and/or strategies used by subjects could
have differed widely; and (c) categorization could have

potentially been based on a much larger number of
similarity relations than those tested here.

The striking correlation between categorization and
search may arise simply from an overall difference in
both categorization and search times between tasks or
between stimuli, but with zero correlation within each
group. To confirm that this was not the case, we
calculated task-wise and stimulus-wise correlations
between the observed and predicted categorization
times (Table 2). All within-group correlations were
positive and significant, indicating that search times
consistently account for categorization times across
tasks and across stimuli. However the magnitude of
correlation varied slightly across tasks (from r¼ 0.75 to
r¼ 0.89) and strongly between stimulus types (r¼ 0.42
to r¼ 0.96). In particular, the degree of fit of the model
was strongest for animals, dogs, and Labradors (r ¼
0.85, p¼ 1.5 · 10�19 across these three groups) and was
weaker but still significant for inanimate objects (r ¼
0.42, p ¼ 0.017). We conclude that, in general,
categorization times for individual objects can be
predicted using similarity relations as measured using
visual search.

To visualize the underlying similarity relations that
contribute to categorization performance, we per-
formed multidimensional scaling on the visual search
data. For each pair of images, we took the distance (or
dissimilarity) between them to be the reciprocal of the
oddball search time. We then performed multidimen-
sional scaling to find the configuration of points in two-
dimensional space that correspond best with the
observed distances. The best-fitting two-dimensional
configuration is depicted in Figure 2F. This configura-
tion is a reasonably faithful representation of the

Task Item type

Correlation between

categorization & search

Model coefficients

RT ¼ a · NRT þ b · CRT þ c

a b c

Animal/dog/Labrador in canonical views

(Experiment 1)

All items 0.85**** 0.16 �0.04 0.61

Category 0.91****

Noncategory 0.85****

Animals in oblique and profile views

(Experiment 2)

All items 0.72****

Category 0.52* 0.08 �0.02 0.62

Noncategory 0.56* 0.06 0.02 0.61

Vehicles (Experiment 3) All items 0.71****

Category 0.43* 0.17 �0.05 0.63

Noncategory 0.48* 0.10 0.11 0.59

Tools Experiment 4) All items 0.62****

Category 0.70*** 0.58 �0.13 0.44

Noncategory 0.45* 0.20 �0.07 0.73

Table 1. Summary of categorization time predictions using visual search data. Notes: For each image, we calculated the within-category

similarity (CRT) and between-category similarity (NRT) using visual search data. We then fit a model that uses a linear combination of

NRT and CRT to account for categorization times. The resulting correlations and model coefficients are depicted above. Asterisks

represent the statistical significance of the correlation (*p , 0.05, **p , 0.005, ***p , 0.0005, ****p , 0.00005).
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underlying search distances, as evidenced by the degree
of fit between the observed distances and distances
between images measured in the plot (r ¼ 0.8, p ¼ 0).
The plot clearly reveals that (a) animals and non-
animals form reasonably distinct clusters; (b) non-
animals are more diverse than animals; and (c) atypical
animals are dissimilar to the remaining typical animals.
These similarity relations form the basis for the ability
of the model to predict categorization times. To assess
whether these similarity relations can predict category
judgments, we trained a linear classifier on the two-
dimensional coordinates obtained from multidimen-
sional scaling. The performance of the classifier (92%
correct) approached the accuracy of humans on the
same task (95% correct; see Table 4). Thus, similarity
relations in visual search account for animal categori-
zation performance in humans.

How do similarity relations explain classic
categorization phenomena?

We wondered whether well-known categorization
phenomena can also be explained using similarity
relations based on visual search. We account for three
basic and well-known observations regarding visual
categorization, as detailed below.

Can similarity relations explain differences in
categorization difficulty?

The first and most widely reported phenomenon is
that categorization increases in difficulty from super-
ordinate to basic to subordinate levels (Macé et al.,
2009; Mack et al., 2009). This was the case even in our
data (Figure 2A). It was also true for our model:
categorization times were smallest for animal catego-
rization (mean¼ 687 ms), larger for dog categorization

(mean¼ 715 ms), and largest for Labrador categoriza-
tion (mean ¼ 770 ms), and all three differences were
statistically significant (p , 0.0007, t-test). In the
model, these differences arise because of differences in
within- and between-category search times in the three
different tasks. In other words, categorizing an object
as a dog is hard because nondogs contain animals that
share several features (e.g., legs, head) with dogs,
increasing the average between-category similarity
(NRT). This is consistent with the observation made
that categorization times decrease when nondogs in a
dog task are restricted solely to be inanimate objects
(Macé et al., 2009). Because our model accounts for
categorization performance across the superordinate,
basic, and subordinate levels, we conclude that
categorization difficulty may be explained on the basis
of similarity relations alone without invoking category
hierarchy.

Can similarity relations explain the longer time to
reject category membership?

The second basic phenomenon is that humans are
typically faster to confirm category membership than to
reject it. This was the case even in our data: in the
animal categorization task, subjects were faster to
categorize an object as an animal than to reject it as a
nonanimal (659 ms for animals, 716 ms for nonanimals,
p ¼ 4 · 10�51, ANOVA). We observed a similar trend
in the model predictions (672 ms for animals, 701 ms
for nonanimals, p ¼ 1.7 · 10�6, t-test). Upon closer
inspection, we found that within-category search times
for animals (mean ¼ 1476 ms) were significantly larger
than the within-category search times for nonanimals
(mean¼ 784 ms for nonanimals, p¼ 2 · 10�14, t-test).
This is a straightforward consequence of the fact that
nonanimals are more diverse and therefore more

Model fitted on:

Correlation between

categorization & search

Model coefficients

RT ¼ a · NRT þ b · CRT þ c

a b c

All tasks/items 0.85**** 0.16 �0.04 0.61

Animal task 0.84**** 0.09 �0.08 0.7

Dog task 0.89**** 0.14 �0.03 0.61

Labrador task 0.77** 0.14 �0.02 0.61

Animals across tasks 0.91**** 0.17 �0.02 0.55

Dogs across tasks 0.95**** 0.21 �0.02 0.53

Labradors across tasks 0.96**** 0.33 �0.13 0.63

Things across tasks 0.43* 0.11 �0.06 0.68

Table 2. Model performance on different images and tasks in Experiment 1. Notes: For each image, we calculated the within-category

similarity (CRT) and between-category similarity (NRT) using visual search data. We then fit the model either on all objects within a task

(e.g., animals and nonanimals in the animal task) or for all objects of a given type (e.g., animal images in all three tasks) for various tasks

and image types. The asterisk symbol beside each correlation coefficient indicates its statistical significance, with conventions as in

Table 1.
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dissimilar to each other on average than are animals.

Because of the way they are calculated, between-

category similarity is simply the average time to search

for animals among nonanimals or for nonanimals

among animals. Thus, between-category similarity is

identical for both animals and nonanimals. The longer

categorization times for nonanimals in the model arise

entirely because of smaller within-category search times

that are penalized by negative weights by the model.

Thus, humans are slower to reject category membership

because noncategory items are more diverse.

Can similarity relations explain the categorization of
atypical members?

The third well-known observation is that humans
take longer to categorize atypical category members
compared to typical category members. To indepen-
dently assess typicality, we performed an additional
experiment in which 10 subjects were asked to rate each
animal image in the animal task on a scale of 1–5,
where 1 indicated that the object was a poor example of
the animal category, and 5 indicated that it was a good
example. We then chose the six animals with the
smallest typicality ratings—these were the viper (mean

Task Item type

Correlation with

categorization (r)

Model coefficients

RT ¼ a · NRT þ b · CRT þ c

Animal/dog/Labrador (Experiment 1) All items 0.79****

Optimal blur ¼ 0.10 Category 0.68**** 0.082 0.008 0.49

Visual search correlation ¼ 0.41**** Noncategory 0.79**** 0.097 �0.04 0.62

Animals with three-dimensional views (Experiment 2) All items 0.64***

Optimal blur ¼ 0.10 Animals 0.41* 0.02 �0.02 0.66

Visual search correlation ¼ 0.46**** Nonanimals 0.38# 0.02 0.02 0.61

Vehicles (Experiment 3) All items 0.67***

Optimal blur ¼ 0.10 Vehicles 0.43* �0.04 �0.01 0.77

Visual search correlation ¼ 0.40**** Nonvehicles 0.33# �0.008 0.03 0.71

Tools (Experiment 4) All items 0.63****

Optimal blur ¼ 0.00 Tools 0.71*** 0.83 �0.8 0.72

Visual search correlation ¼ 0.25**** Nontools 0.47* 0.64 �0.34 0.7

Table 3. Categorization time predictions using coarse footprint. Notes: The coarse footprint model was used to calculate pair-wise

similarities between objects. These pair-wise similarities were used to calculate the NRT and CRT for each object, which was then used to

predict categorization times as described in Table 2. The resulting model fits and coefficients are depicted above, with conventions as

before.

Task Item type

Human

accuracy (%)

Classifier accuracy

using visual

search (%)

Classifier accuracy

using coarse

footprint (%)

Classifier accuracy

using aspect

ratio (%)

Animal All items 95 92 89 63

Category 95 92 83 66

Noncategory 95 92 96 58

Animals with

three-dimensional views

All items 98 94 83 50

Animals 98 100 83 41

Nonanimals 98 88 83 58

Vehicles All items 93 88 81 63

Vehicles 95 92 83 66

Nonvehicles 92 83 79 58

Tools All items 93 79 88 63

Tools 93 83 83 54

Nontools 94 75 92 71

Table 4. Categorization accuracy for humans and models. Notes: For human data, accuracy is calculated across trials and averaged

across subjects. For visual search and coarse structure data, pair-wise similarity relations between images were projected into two-

dimensional space using multidimensional scaling, and a linear classifier was trained on these coordinates. For each object the predicted

category was obtained by training the classifier on all other objects. For aspect ratio data, the aspect ratio of each image was used as

input to the linear classifier (the multidimensional scaling is redundant since its output will be identical to the input).
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rating ¼ 2.0), pigeon (3.5), seagull (3.6), cobra (3.6),
kangaroo (4.1), and monkey (4.1). The average rating
for these six animals (3.5) was smaller than the average
rating for the remaining animals (4.7) and attained
significance as assessed by a t-test (p ¼ 1.4 · 10�6).

Because half the animals in our image set were dogs,
we were concerned that typicality ratings may have
been biased in favor of dogs. However, we found no
evidence supporting this notion: typicality ratings for
dogs (mean ¼ 4.7) were similar to the ratings for
nondog animals excluding the six atypicals (mean ¼
4.7). Furthermore, typicality ratings for the six atypical
animals were significantly different from the remaining
nondogs (p ¼ 0.004, t-test). In the categorization task,
however, subjects were significantly faster to categorize
dogs (mean ¼ 640 ms) than the other nondog typical
animals (mean¼ 660 ms) in the animal task (p¼ 0.001,
ANOVA). However, both dog and nondog categoriza-
tion times were substantially faster than the times taken
to categorize atypical animals (see below). Assessing
whether these effects can be attributed to bias due to
the image set used or to intrinsic differences will require
careful manipulation of set context and is beyond the
scope of this study. Nonetheless, our model automat-
ically incorporates these effects in the form of many
more image pairs containing dogs or typical animals
compared to atypical animals, which in turn influence
within- and between-category similarity.

Consistent with previous studies, subjects were
slowest at categorizing atypical animals (mean ¼ 699
ms) compared to other animals in general (typical mean
¼ 647 ms, atypical mean ¼ 699 ms, p , 0.0001,
ANOVA). Typicality ratings were also negatively
correlated with categorization times in the animal task
(r¼�0.89, p¼ 6.3 · 10�9), implying that on an image-
by-image basis, animals considered to be more typical
were categorized faster than the atypical ones. Impor-
tantly, we observed a similar trend in the between-
category visual search times: among arrays containing
nonanimals, subjects took longer to search for atypical
animals compared to typical animals (typical mean ¼
758 ms, atypical mean¼ 795 ms, p¼ 8 · 10�5 for main
effect of typicality, ANOVA on average search times
for each item with subject and typicality as factors).
Similarly, among arrays containing animals, subjects
took longer to search for typical animals compared to
an atypical animal (typical mean ¼ 1590 ms, atypical
mean ¼ 1133 ms, p ¼ 9 · 10�30, ANOVA). Thus,
subjects considered atypical animals as more similar to
inanimate objects and less similar to other typical
animals. Observed categorization times for atypical
animals were strongly correlated with model predic-
tions based on between- and within-category search
times (Figure 2E; r¼ 0.85, p¼ 0.033). We conclude that
atypical animals take longer to categorize as animals

because of their greater similarity to nonanimals and
their lower similarity to other animals.

Overall, our results suggest that differences in
performance on visual categorization arising from
category level (superordinate, basic, or subordinate),
category membership (belonging or not belonging), and
object typicality (atypical vs. typical) can be explained
entirely by visual similarity alone.

Can coarse object similarity account for
categorization?

Having established a close correspondence between
categorization times and similarity as determined by
visual search, we then asked whether categorization
times for individual objects could be predicted directly
from the image pixels. A positive outcome would be
remarkable because it would relate animal categoriza-
tion—a high level cognitive process—directly to image
content without invoking high-order verbal or semantic
influences. We reasoned that since animal categoriza-
tion is unaffected by blurring (Nandakumar & Malik,
2009), it must depend on the coarse structure in an
image. So does visual search for images differing in
global arrangement (Sripati & Olson, 2010). In these
studies, the coarse footprint of an image was formed by
shifting and scaling it to a fixed frame, normalizing its
brightness, and blurring it using a Gaussian function.
In the present study, the normalizing operations are
redundant because images were already equated for
these factors. The difference in coarse structure for a
pair of images was then calculated by computing the
absolute pixel-by-pixel difference between the coarse
footprints of the two images. The reciprocal of this
coarse footprint difference was taken to be a similarity
measure akin to reaction times in visual search.

We reasoned that differences in coarse footprint
might account for similarity relations between images,
which in turn might predict categorization times
(Figure 3A). Indeed, we obtained a strong correlation
between categorization times and the predictions from
a model based on coarse content (r ¼ 0.68, p ¼ 2 ·
10�12; Table 3). This correlation remained significant
even upon considering the three categories separately (r
¼ 0.44, p¼ 0.001 for the animal task; r¼ 0.62, p¼ 0.001
for the dog task; and r ¼ 0.79, p ¼ 0.002 for the
Labrador task). We found a substantial improvement
in model predictions when the model was fit separately
for category and noncategory items (Figure 3B; r ¼
0.79, p¼ 9 · 10�19). This was true for all the categories.
Accordingly we report the performance of the coarse
footprint model upon fitting it separately on the
category and noncategory items. Upon varying the
coarseness of image content, we obtained the highest
correlation when images were blurred by a Gaussian
blur with standard deviation equal to 0.1 times the size
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of the object (Figure 3C). This is close to the value of
0.08 obtained during visual search for objects differing
in global arrangement (Sripati & Olson, 2010). We
conclude that visual categorization depends on simi-
larity relations driven by coarse object structure.

The results above demonstrate that coarse object
structure can predict categorization times, but do not
show that it is sufficient to perform category judg-

ments. Specifically, we wondered whether similarity
relations, as measured by coarse footprint differences,
can be used by a computer-based classifier to predict
whether a given object was an animal. To this end, we
took the pair-wise distances between all 48 objects in
the animal task and performed multidimensional
scaling. This yielded the coordinates of each object in
a multidimensional space such that the Euclidean

Figure 3. A model of coarse image structure accounts for categorization times. (A) Each image is blurred using a Gaussian blur to create

its coarse footprint. The reciprocal of the difference in coarse footprints of each image pair yields a measure of similarity in the coarse

structure. These pair-wise similarity measures are then used to calculate within- and between-category similarity, which were then used to

predict categorization times. (B) Categorization times plotted against predictions based on coarse footprint for the optimum level of blur.

Each point represents a reaction time pair for each stimulus in the animal, dog, and Labrador categorization tasks. Symbol conventions

are identical to those in Figure 2D. (C) Correlation between categorization and coarse footprint predictions as a function of standard

deviation of the Gaussian blur. (D) Similarity relations between objects in the animal task, as revealed by coarse image structure. Images

are represented such that nearby objects have small coarse structure differences and distant objects have large coarse structure

differences. The labels above each image represent the category label predicted by a linear classifier trained on this multidimensional

representation: no label ¼ correct prediction, FA ¼ false alarm (i.e., a nonanimal misclassified as an animal), M ¼ miss (i.e., animal

misclassified as a nonanimal). The classifier misclassified only 5 out of the 48 objects. Three of these misclassifications were atypical

animals, which were harder also for humans. Some images have been scaled down to accommodate them in the plot, and other images

(but not their data points) have been deleted to avoid clutter.
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distances best approximate the pair-wise distances. The
best-fitting two-dimensional configuration, depicted in
Figure 3D, is similar to that obtained using the visual
search data (Figure 2F). We then performed a linear
discriminant analysis to obtain a linear boundary that
predicts the category label of each image. To avoid
over-fitting, we performed a leave-one-out cross
validation: in other words, we predicted the category
label of each object by training the classifier on the
coordinates and category labels of the remaining 47
objects. The classifier correctly predicted the category
labels of 43 of the 48 objects in the animal task (Figure
3D). Of the four misses, three were atypical animals,
suggesting that, like humans, the classifier finds it
difficult to categorize atypical animals. Its performance
(89% correct) was close to the accuracy of humans on
the same task (95% correct; Table 4). We conclude that
coarse object structure can predict human category
judgments as well as categorization times during animal
categorization.

Experiment 2: Animal
categorization with varying three-
dimensional view

The two essential findings of the previous experiment
are that (a) categorization times can be accounted for
by visual search and that (b) coarse structure can
account for these data. However, these results are
based on objects appearing in a canonical leftward
facing profile view. In this experiment, we set out to
investigate whether these results would generalize to
objects varying in their three-dimensional view. Sub-
jects performed an animal categorization task as
before, except that the stimuli now consisted of six
animals and six nonanimals, each presented in four
possible three-dimensional views. Thus an object could
be seen in either a profile or oblique view and could be
pointing either left or right (Figure 4).

Methods

Subjects: A total of six subjects were recruited for this
experiment and gave informed consent as before. Three
of these subjects had participated in Experiment 1.
Although we were initially concerned that the observed
differences between oblique and profile views arose
because these subjects were exposed more to profile
views during Experiment 1, a post-hoc analysis revealed
no qualitative difference between the results obtained
by including or excluding these subjects.
Stimuli: The stimuli comprised 48 gray-scale images
(from Hemera Photo Objects), of which 24 were images

of animals (different from those in Experiment 1), and
24 were of nonanimals. There were six unique animals
(cow, dog, elephant, horse, stag, and tiger) and six
unique nonanimals (motorcycle, shoe, chair, gourd,
pepper, and pumpkin). Each of these objects was
presented in four distinct three-dimensional views. The
four views of each object were profile views and oblique
views, pointing either leftwards or rightwards. For each
object, we defined the profile view as its sideways view
(i.e., the view in which its image was most elongated).
The oblique view was chosen to be a view of the same
object rotated approximately 458 out of the plane.
Objects were presented against a black background and
equated for brightness as before. We also equated
image size across all objects: to prevent any low-order
visual cues from contributing to task performance, we
resized the profile views of all objects such that their
longer dimension (typically their width) was 4.88. We
then resized each oblique view image such that its
height was equal to the corresponding profile view.
This was done to achieve the overall effect that the
oblique view appeared to be a plausible three-dimen-
sional rotation of the object seen in the profile view.
Categorization and visual search tasks: Subjects per-
formed a categorization task and a visual search task,
with task order counterbalanced across subjects. The
tasks were exactly the same as described earlier, with
the exception of the stimuli.

Results

Subjects’ reaction times were highly consistent in
both tasks as evidenced by a strong correlation between
two independent groups of subjects (r¼ 0.51, p¼ 0.001
across 48 objects in the categorization task, and r ¼
0.83, p¼ 0 across 1,128 object pairs in the search task).
Thus, the underlying strategies and/or features used to
perform each task did not differ between subjects.
Subjects were faster to categorize profile views of
animals compared to their oblique views (mean ¼ 654
ms for profile views, 670 ms for oblique views), as
revealed by an ANOVA on the categorization reaction
time with subject, animal (six levels) and view (four
levels) as factors (p¼ 0.02 for main effect of view). We
found no such difference for the nonanimals in our set
(mean ¼ 691 ms for profile view, 690 ms for oblique
views, p ¼ 0.86 for main effect of view). We conclude
that humans categorize profile views of animals faster
than oblique views, but show no such effect for
nonanimals.

We then set out to investigate whether the observed
categorization times could be predicted using visual
search. As before, we calculated for each object the
average search time to find this object as target among
all other members within its category or vice-versa (i.e.,
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within-category similarity) and the average time
required to search for this object among items outside
its category (i.e., between-category similarity). We then
fit a linear model based on these within- and between-
category similarities for all 48 objects in the task in
order to account for their corresponding categorization
times. We observed a significant positive correlation
across all items between model predictions and
observed categorization times (r ¼ 0.65, p ¼ 5 · 10�7;
data not shown). However, this fit was significant only
for nonanimals (r ¼ 0.49, p ¼ 0.02) and not so for
animals (r¼0.27, p¼0.2). We therefore sought a model

that would account better for the observed categoriza-
tion times. Upon calculating within- and between-
category search times separately for each view, we
obtained a much higher degree of fit (Figure 4A; r ¼
0.72, p ¼ 9 · 10�9) with significant correlations within
both the set of animals (r ¼ 0.52, p ¼ 0.009) as well as
nonanimals (r ¼ 0.56, p ¼ 0.005). We conclude that
view-dependent similarity relations account for the
time taken by humans to categorize objects varying in
three-dimensional view.

To investigate whether coarse object similarity could
account for categorization of animals varying in view,

Figure 4. Animal categorization task with objects varying in three-dimensional view (Experiment 2). Subjects were asked to categorize an

object as an animal or not as before, except that the objects consisted of animals or nonanimals in four possible three-dimensional views:

two profile views (pointing left or right) and two oblique views (pointing left or right). (A) Correlation plot of categorization times for each

item (averaged across subjects) versus predictions using search data; different shapes represent the reaction times for animals in the four

different views (profile/oblique left/right); blue represents reaction times of all animals, and red represents reaction times of all things. (B)

Correlation plot of observed categorization times versus predictions using the coarse structure model with conventions as in Figure 4A.

(C) Approximate representation of animals and nonanimals in visual search space. Dots represent all 48 images. Dots connected by a line

represent pairs of images that are identical short of mirror reflection. All images are to scale except for the cow images, which are scaled

down by 80% to accommodate them in the plot.
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we started as before with the reciprocal of the
difference in coarse footprint between two images as
their pair-wise similarity. Just as for the visual search
data, we then calculated the within- and between-
category similarity separately for each view and used
these to fit the categorization times. We obtained a
positive correlation between the coarse footprint
prediction and observed categorization times (r ¼
0.64, p ¼ 9 · 10�7; Figure 4B, see also Table 3). We
were also able to predict the category of the item using
the visual search data (accuracy ¼ 94%) or using the
coarse footprint data (accuracy¼83%). These accuracy
levels approached the performance of humans on the
same task (98%). We concluded that coarse object
similarity can account for categorization even when
objects vary in three-dimensional view.

To visualize the similarity relations that underlie
categorization, we performed multidimensional scaling
on the visual search data as before. The best-fitting
two-dimensional configuration is shown in Figure 4C.
Several interesting patterns can be seen in these plots:
the first and most striking trend is that in both animals
and nonanimals, object views related by mirror
reflection lie close together. This is consistent with the
mirror-image confusion observed in humans (Gross &
Bornstein, 1978) and in neuronal activity in high-level
visual cortex (Rollenhagen & Olson, 2000).

Second, different views of inanimate objects tended
to form distinct clusters (Figure 4C), whereas this
clustering is present but not as apparent among
animals. The weaker clustering among animals could
be due to the greater similarity within animals
compared to within nonanimals. Alternatively, the
presence of such clustering among animals might have
been obscured by the multidimensional scaling and
projection of the data into two dimensions. We
therefore performed an analysis on the original visual
search data. For each view of each object, we compared
the reaction times to search for it among its three other
views with the reaction times to search for it among all
views of all other objects. For every object in our set
(both animals and things), within-object search times
were longer on average compared to between-object
search times (mean¼ 2068 ms for within-object search,
mean ¼ 1200 ms for between-object search, p ¼ 4 ·
10�6, t-test). We conclude that the different views of
each object (in both animals and nonanimals) form
distinct clusters in visual search space.

Third, profile and oblique views appear to form
distinct clusters in the case of animals (i.e., in Figure
4C, oblique views appear on the left and profile views
on the right). We confirmed that this trend is present in
the visual search data by comparing search times for
oblique views among profile views across objects with
search times for objects in the same view (i.e., profile
among profile or oblique among oblique views). For

animals, the average search times for oblique views
among profile views (1,376 ms) was significantly smaller
than search times for profile among profile (1680 ms, p
¼ 4 · 10�13, ANOVA) or oblique among oblique views
(1790 ms, p ¼ 6 · 10�22, ANOVA). In contrast, for
nonanimals, average search times for oblique views
among profile views (891 ms) did not differ significantly
from search for profile among profile views (897 ms, p¼
0.87, ANOVA) but were significantly different from
oblique among oblique views (1007 ms, p ¼ 0.0003,
ANOVA). We conclude that similarity relations based
on visual search reflect both view-dependent and view-
invariant representations.

Based on the results of Experiments 1 and 2, we
conclude that similarity relations from visual search
can account for categorization even when objects vary
in view and that these similarity relations are driven by
coarse object similarity.

Experiment 3: Vehicle
categorization

We performed additional experiments to investigate
whether the above results would generalize to other
categories. In this experiment, subjects performed a
vehicle categorization task on 48 objects (24 vehicles
and 24 nonvehicles) and an oddball visual search task
on all 1,128 pairs of stimuli (48 choose 2) used in the
categorization task.

Methods

Subjects: A total of six new subjects were recruited for
this experiment. Because a few of the nonvehicles in the
set were animals, we were concerned that prior
exposure to the animal categorization task might
induce response conflict. Therefore, we only chose
subjects who had not previously performed Experi-
ments 1 and 2.
Stimuli: The image set for the vehicles categorization
experiment consisted of 48 gray-scale images (from
Hemera Photo Objects), comprising 24 vehicles and 24
nonvehicles. The 24 nonvehicles consisted of 12 natural
objects (animals such as caribou or cat; fruits such as
melon or gourd) and 12 man-made objects (furniture
such as chair or table; household items such as light
bulb or teapot). All images in the vehicle experiment
were chosen to have an oblique view pointing to the
left.
Categorization and visual search tasks: Subjects per-
formed a vehicles categorization task and a visual
search task, with task parameters as before.
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Results

Subjects were highly consistent in both tasks as
evidenced by a strong correlation in reaction times
between two independent groups of subjects (r¼ 0.61, p
¼ 4.6 · 10�5 across 24 objects in the categorization task
and r ¼ 0.80, p ¼ 0 across 1,128 object pairs in the
search task). Thus, the underlying strategies and/or
features used to perform each task did not differ
between subjects. Subjects were faster to categorize an
object as a vehicle than rejecting it (mean¼ 714 ms for
vehicles, 770 ms for nonvehicles, p ¼ 6 · 10�17,
ANOVA). We then used the search times to predict
categorization times exactly as before and observed a
strong positive correlation between model predictions
and categorization times (r ¼ 0.62, p ¼ 2 · 10�6). We
found a marked improvement in the performance of
the model when it was fit separately on the category
and noncategory data—we accordingly show the
results using this model (r ¼ 0.71, p ¼ 2 · 10�8; Table
1, Figure 5A). This correlation remained significant
when computed separately for the set of vehicles (r ¼
0.43, p ¼ 0.04) and across the set of nonvehicles (r ¼
0.48, p ¼ 0.02). These categorization times were also
predicted well by coarse object similarity (r¼0.67, p¼2
· 10�7; Table 3, Figure 5B). In both cases, it can be
seen that the models not only account for individual
categorization times of vehicles and nonvehicles, but
also for general trends such as the longer categorization
times for nonvehicles compared to vehicles.

To visualize the similarity relations that underlie
vehicle categorization, we performed multidimensional
scaling on the visual search data as before (Figure 5C).
The resulting plot reveals distinct clusters for vehicles
and nonvehicles, which form the basis for the ability of
the visual search data to predict rapid visual categori-
zation in humans. Indeed, when we trained a linear
classifier on the visual search data, we were able to
predict the category (vehicle or not) with an accuracy of
88% correct, approaching the accuracy of humans on
this task (93% correct; Table 4). We were also able to
predict the category of the item using the coarse
footprint data (accuracy¼ 81%; Table 4). We conclude
that vehicle categorization can be accounted for by
similarity relations based on visual search, which are in
turn driven by coarse object similarity.

Experiment 4: Tool
categorization

The objects investigated in the above experiments
(animals and vehicles) consisted of categories defined
primarily by their visual form. Would our results
generalize to categories defined by their motor func-

tion? We reasoned that the category of tools, which are
defined primarily by their function and by motor
affordances, would be a natural choice to investigate
this question. Specifically, we hypothesized that cate-
gorization of an object as a tool would be predicted
poorly by visual search or coarse object structure, both
of which are based solely on visual appearance.
Alternatively, it is possible that, under conditions of
rapid visual presentation used here, tool categorization
is based primarily on visual appearance rather than on
motor representations.

Methods

Subjects: Six new subjects were recruited for this
experiment—none of the subjects had previously
performed Experiments 1, 2, or 3.
Stimuli: The image set for the tools categorization
experiment consisted of 48 gray-scale images (from
Hemera Photo Objects), comprising 24 tools and 24
nontools. The nontools consisted of 12 natural objects
(animals such as tiger, dog, or goat; fruits such as
pineapple or banana) and 12 man-made objects
(furniture such as bench or sofa; musical instruments
such as bugle or guitar). All objects were presented in a
profile view pointing towards the left, in a canonical
horizontal pose.
Categorization and visual search tasks: Subjects per-
formed a tools categorization task and a visual search
task, with task parameters as before.

Results

Subjects were highly consistent in their responses (r¼
0.66, p ¼ 1.9 · 10�6 for reaction times between two
independent groups of subjects in the categorization
task; r¼ 0.68, p¼ 0 in the visual search task). Subjects
tended to categorize tools faster than nontools but this
trend did not attain statistical significance (mean¼ 819
ms for tools, 833 ms for nontools, p¼ 0.07, ANOVA).
Upon using visual search times to predict categoriza-
tion times as before (by fitting the model to category
and noncategory items separately, we obtained a
positive and significant correlation (r ¼ 0.62, p ¼ 3 ·
10�6; Figure 6A). This correlation persisted even upon
calculating it separately across tools (r ¼ 0.7, p ¼
0.0001) and across nontools (r¼ 0.45, p¼ 0.03). Thus,
rapid visual categorization of tools appears to depend
on their perceived visual similarity relations. The
categorization data was also predicted using the coarse
footprint model (r¼ 0.63, p¼ 2 · 10�6; Table 3, Figure
6B). Notably, the best correlation was obtained at zero
blur (i.e., no blurring). This optimal blur (blur ¼ 0)
differs from the values (blur¼ 0.1) obtained for animal
and vehicle categorization. Thus, higher spatial detail
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may be required for tool categorization compared to
animal or vehicle categorization.

To visualize the similarity relations that underlie tool
categorization, we performed multidimensional scaling
on the visual search data as before (Figure 6C). The
resulting plot reveals distinct clusters for tools and
nontools, which form the basis for the ability of the
visual search data to predict categorization data.
Indeed, when we trained a linear classifier on the visual
search data, we were able to predict the category (tool
or not) with an accuracy of 79% correct, approaching,
but not as good as, the accuracy of humans on this task
(93% correct; Table 4). We were also able to predict the
category of the item using the coarse footprint data
(accuracy ¼ 88%; Table 4). We conclude that tool

categorization can be accounted for by similarity
relations based on visual search, which are in turn
driven by pixel-level similarity between objects.

Can aspect ratio account for categorization?

The fact that visual search—which is known to be
sensitive to low-level image differences such as bright-
ness, color, size, aspect ratio, etc. (Wolfe & Horowitz,
2004)—can explain categorization raises the possibility
that subjects may have performed these tasks using
simple features that may have differed between
category and noncategory items. Because images in
all tasks were equated for size, contrast, and brightness,

Figure 5. Vehicles categorization task (Experiment 3). Subjects were asked to categorize an object as a vehicle or not. (A) Correlation plot

of categorization times for each item in the vehicles task (averaged across subjects) against predictions using visual search data. Plus

symbols represent reaction times of all vehicles, and circles represent reaction times of all nonvehicles. (B) Correlation between the

observed categorization times against predictions using coarse footprint with the same conventions as in Figure 5A. (C) Approximate

representation of vehicles and nonvehicles in visual search space, showing separable clusters according to category. Some images are

scaled down to accommodate them in the plot.
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we chose for further analysis a low-level feature that
was most likely to vary between categories, namely
aspect ratio.

We set out to test whether the aspect ratio of an
object could explain categorization performance in
each task. For each category, we trained a linear
classifier to predict the category of each item. Classifiers
trained on aspect ratio performed poorly compared to
those based on visual search or coarse footprint
(classifier accuracy using aspect ratio: 62% for animals,
50% for animals varying in view, 63% for vehicles, and
63% for tools; Table 4). We then used pair-wise
similarity measures (calculated as the reciprocal of the
absolute difference in aspect ratio) as before to predict

categorization times. Models based on aspect ratio
similarity yielded predictions that were positively and
significantly correlated with categorization times on all
tasks (correlations: r¼ 0.35, p¼ 0.001 for animals; r¼
0.55, p¼ 5 · 10�5 for animals varying in view; and r¼
0.69, p¼ 4 · 10�8 for vehicles) with the sole exception
of tools (r ¼ 0.18, p ¼ 0.2). These correlations were
generally lower than those obtained using visual search
or coarse footprint (for animals and tools) except in the
case of vehicles where they compare favorably.
Although we cannot rule out aspect ratio altogether,
the higher correlations and accuracy obtained using
coarse structure suggests that coarse structure is the
most likely candidate.

Figure 6. Tools categorization task (Experiment 4). Subjects were asked to categorize an object as a tool or not. (A) Correlation plot of

categorization times for each item in the tools task against predictions using visual search data. Plus symbols represent reaction times of

all tools, and circles represent reaction times of all nontools. (B) Correlation between observed categorization times in the tools task

against predictions using coarse footprint with the same conventions as in Figure 6A. (C) Approximate representation of tools and

nontools in visual search space, showing separable clusters according to category. Some images are scaled down to accommodate them

in the plot.
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Discussion

Here we measured the time taken by humans to
categorize objects across three diverse categories
(animals, vehicles, and tools), as well as across three
hierarchical levels in the animal category: superordi-
nate (animal), basic (dog), and subordinate (Labrador).
We hypothesized that categorization of an object could
be explained using its similarity to items within and
outside its category. To this end, we used visual search
to measure the perceived similarity between the objects
used in each task and used this data to predict
categorization performance. The main result of this
study is that categorization can be predicted using
similarity relations as measured by visual search. This
result held true across various categories as well as
across hierarchical levels. Our model quantitatively
accounts for several well-known categorization phe-
nomena using similarity relations alone without invok-
ing verbal, semantic, or hierarchy-related factors.
Furthermore, we were able to predict these categoriza-
tion times using coarse image content. Taken together,
our results suggest that visual search and categorization
are based on a common underlying object representa-
tion that depends on coarse image content. We discuss
these findings below in relation to other studies of
categorization.

Relation between categorization and visual
search

The main result of this study is that visual search can
predict rapid visual categorization. Our result is
concordant with the view that, although neuronal
activity in the visual cortex is modulated by attention
and task demands (Maunsell & Treue, 2006), neuronal
selectivity remains unaffected (Martinez-Trujillo &
Treue, 2004; McAdams & Maunsell, 1999; Suzuki,
Matsumoto, & Tanaka, 2006). The finding that search
predicts categorization is surprising because they are
disparate tasks: one involves scrutiny of individual
items (categorization) whereas the other involves
scrutiny of several items in an array (visual search).
But they may be more similar than they appear because
both tasks involve feature matching, in one case
between the object and other category/noncategory
items (categorization) and in the other, between target
and distractors (search). Our results imply that rapid
visual categorization and visual search depend on a
shared object representation.

Our finding that search times for a category member
among noncategory members increase from superordi-
nate to basic to subordinate levels is consistent with a
previous report (Large et al., 2004). However we have,

to our knowledge, demonstrated for the first time that
visual search similarity accounts for visual categoriza-
tion. Like most categorization studies, we have only
dealt with discriminating one category from all other
noncategory members (dogs vs. nondogs). We propose
that visual search similarity might predict categoriza-
tion even on tasks that involve discriminating between
two categories (e.g., dogs vs. cars). We note that either
outcome may be interesting: discriminating between
two categories might be more complex because it
involves two category representations; alternatively it
may be simpler because both alternatives in the task
have low visual variability (Bowers & Jones, 2008). A
final point of interest concerns how the results would
change with visual expertise: would search and
categorization performance be different for dog (or
other category) experts, leaving their correlation
unchanged? Or would categorization alone change
leaving search unaffected? The answers to these
intriguing questions will clarify the link between
categorization and visual search reported here.

Comparisons of performance across
categories

One concern regarding comparing performance
across categories is that the tasks may involve different
degrees of visual variability. However, visual variability
may be fundamental to the definition of a category
(e.g., Labradors are intrinsically less variable than
animals), and elucidating its contribution to categori-
zation will require comparing performance on catego-
ries with different degrees of variability. Our model
implicitly incorporates this factor into the measures of
within- and between-category similarity: if category
items are more variable, they will be more easily
distinguished among each other, leading to small
within-category similarity.

In general, differences in categorization performance
may simply arise from differences between the non-
category items rather than the category items. Our
model incorporates this factor because it is sensitive to
both within- and between-category similarity. Howev-
er, ruling out this explanation is hard: for instance,
keeping identical distractors in the animal and dog
tasks would result in the dog task becoming equivalent
to the animal task for all practical purposes—indeed,
recent studies have found identical performance in such
equated tasks (Macé et al., 2009). At the other extreme,
selecting all distractors to be from a single category
(e.g., using dogs as distractors in the Labrador task)
may invoke two category representations in the brain,
as opposed to only one when the distractors are
heterogeneous and belong to no particular category.
Although categorization might always be based on
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similarity relations, the extent to which it is context, set,
or distractor dependent remains to be fully elucidated.

Relation to other studies of categorization

Our finding that superordinate (i.e., animal) categori-
zation is easiest is inconsistent with the classical basic-
level advantage where basic level categorization (i.e.,
dog) is easier than both superordinate and subordinate
level classification (Rosch et al., 1976). However, the
classic Rosch studies required subjects to make verbal
responses, whereas recent studies have required manual
(key press) responses indicating the category (Large et
al., 2004;Macé et al., 2009;Mack et al., 2009). In all these
studies including ours, the advantage of the basic level
over the superordinate level is reversed. Thus the classical
basic-level advantage over the superordinate level may
have arisen due to verbal influences. In contrast, the
advantage of the basic level over the subordinate level is a
highly robust finding reported in every study including
ours (de la Rosa, Choudhery, & Chatziastros, 2011;
Grill-Spector & Kanwisher, 2005; Mack et al., 2009;
Mack & Palmeri, 2010; Rosch et al., 1976).

Our finding that atypical animals take longer to be
categorized as animals is concordant with classic
findings regarding atypicality (McCloskey & Glucks-
berg, 1978; Rosch & Mervis, 1975; Rosch et al., 1976).
It is entirely possible, however, that atypicality depends
entirely on context; a pigeon would hardly be atypical
among birds. Our model accounts for context auto-
matically because both within- and between-category
similarity are average measures sensitive to the
frequency of occurrence of stimuli within a given set.
Our finding of longer categorization times for snakes is
discordant with the early detection of fear-relevant
stimuli in visual search (Lobue & DeLoache, 2008;
Ohman, Flykt, & Esteves, 2001). This may be due to a
difference in the two tasks (animal categorization vs.
visual search), although whether the early detection of
snakes can be truly attributed to their emotional
valence rather than their shape or to search asymme-
tries is not clear (Lipp, Derakshan, Waters, & Logies,
2004). Indeed, our visual search data show no
systematic difference between snakes and other atypical
animals (Figure 2E).

We have found that for animals, vehicles, and tools,
the categorization time for an object depends primarily
on its similarity to members outside its category and to
a smaller degree on its similarity to members of its own
category. This finding is consistent with a previous
study demonstrating that dissimilarity (to outside-
category members) rather than similarity (to within-
category members) determines categorization (Stewart
& Morin, 2007). However, their relative contributions
towards categorization may differ across tasks—and
they do in the categories we tested (Table 1). The

general form of our model is consistent with previously
proposed models that predict categorization times
based on similarity relations and an explicit category
boundary (Hampton, 1998; McKinley & Nosofsky,
1996; Sigala, Gabbiana, & Logothetis, 2002). Our
approach differs from these studies in two important
respects: we have used naturalistic categorization tasks
where both the features and the category boundary are
unknown. To resolve the features, we made explicit
measurements of similarity using visual search and
modeled them using coarse object structure. Rather
than explicitly modeling the unknown category bound-
ary, we simply measured the similarity of each object to
members in and outside its category. In our formula-
tion, the similarity of an item to both items within or
across its category is inversely related to its distance
from the category boundary, wherever it may be
located. Thus, our data may be accounted for equally
well by models that posit increased reaction times near
the category boundary (Grinband, Hirsch, & Ferrera,
2006; Maddox et al., 1998; McKinley & Nosofsky,
1996). Distinguishing between these possibilities will
require measuring categorization times for stimuli
equidistant from the category boundary but differing
in within- or between-category distances.

Influence of three-dimensional object view

Our finding that animal categorization is influenced
by object view is concordant with reports of view-
dependence in the recognition of three-dimensional
objects (Buelthoff & Edelman, 1992; Buelthoff, Edel-
man, & Tarr, 1995; Palmer, 1999; Riesenhuber &
Poggio, 2000) and in neuronal object representations in
higher visual areas (Freiwald & Tsao, 2010; Logothetis,
Pauls, Bülthoff, & Poggio, 1994; Vogels, Biederman,
Bar, & Lorincz, 2001). This view dependence might be
specific to some categories: objects like animals have
elongated, bilaterally symmetric bodies whose distinc-
tive features are maximally visible in a sideways
(profile) view, making them easier to categorize in a
profile view. In contrast, other objects such as fruits
contain distinctive features at all views, suggesting that
their categorization is equally easy at all views. Indeed,
subjects’ performance on animals was view-dependent,
whereas their performance on nonanimals was view-
independent (Experiment 2). We propose that whether
categorization is view-invariant or not will depend on
the availability of diagnostic features at different three-
dimensional views.

We have also found that in visual search, profile and
oblique views of animals form separate clusters,
whereas across the set of nonanimals, different views
of an object cluster together (Figure 4C). Although at
first glance, this appears to be a fundamental difference
between animate and inanimate objects, it could arise
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simply because animals are more similar to each other
than are nonanimals. These possibilities can be
distinguished by testing object representations of
inanimate and animate objects equated for perceived
similarity. We propose that object representations are
fundamentally view-dependent but that object identity
can be extracted in a view-invariant manner, especially
for perceptually distinct objects. Our proposal is
consistent with evidence that the neuronal representa-
tion of faces (being perceptually similar) is view-
dependent in the posterior face patches in monkeys
and view-invariant in subsequent stages of processing
(Freiwald & Tsao, 2010).

Influence of nonvisual factors on visual
categorization

We have found that visual search explains categori-
zation of animals and vehicles (which are defined
primarily by visual form) as well as that of tools (which
are primarily defined by their motor function). The last
result is surprising because we expected motor repre-
sentations to be activated for tool categorization but
purely visual representations to be activated for visual
search. However, it is possible that categories such as
tools might still have a distinctive visual appearance.
For instance, most tools are elongated objects and
contain handles for grasping, which could be diagnostic
for categorization. In general, the finding that coarse
object structure can predict categorization times implies
that the underlying representation is primarily visual
and does not involve verbal or semantic factors.
Although we cannot rule out semantic or verbal
contributions to categorization, our results limit their
influence as follows. The discrepancy in the quality-of-
fit between categorization and similarity based on
visual search (r ¼ 0.85; Figure 2D) compared to
similarity based on coarse structure (r ¼ 0.68; Figure
3B) might arise from two sources: an inability of coarse
structure to account for visual similarity, or alterna-
tively, from verbal or semantic influences on both
visual search and categorization that are absent in the
coarse structure model. That coarse structure cannot
completely account for visual similarity is evident from
a simple example: two out-of-phase checkerboards
differ maximally in coarse structure but are perceptu-
ally indistinguishable. Nonetheless, coarse structure, as
instantiated here, is a first step towards elucidating the
object representations that underlie categorization.

Evidence for coarse object representations in
vision

Our finding that coarse object structure accounts for
categorization is consistent with four lines of evidence.

First, coarse structure is sufficient for categorization:
removing other details such as color (Delorme et al.,
2000), removing high spatial frequencies (Nandakumar
& Malik, 2009), and even reducing objects to silhou-
ettes (Quinn et al., 2001) all have modest effects on
categorization. However, the level of coarseness re-
quired may be task-dependent (Collin & McMullen,
2005; Harel & Bentin, 2009; Morrison & Schyns, 2001).
Indeed, our results suggest that at least for animal and
vehicle categorization, the relevant spatial frequencies
are similar but that a finer spatial scale is required for
tool categorization. Second, visual processing proceeds
in a coarse-to-fine manner (Bar, 2003; Bar et al., 2006;
Bullier, 2001; Frazor, Albrecht, Geisler, & Crane, 2004;
Kveraga, Boshyan, & Bar, 2007; Macé, Delorme,
Richard, & Fabre-Thorpe, 2010; Macé, Thorpe, &
Fabre-Thorpe, 2005; Morrison & Schyns, 2001; Navon,
1977; Sripati & Olson, 2009). This early availability of
coarse information is consistent with evidence that
animal categorization is extremely fast (Rousselet et al.,
2002; Thorpe, Fize, & Marlot, 1996) and that it
involves feedforward processing (Serre, Olivia, &
Poggio, 2007; Thorpe et al., 1996). Third, our results
are consistent with evidence that coarse structure
influences object representations in visual cortex
(Bermudez, Vicente, Romero, Perez, & Gonzalez,
2009; Frazor et al., 2004; Sripati & Olson, 2009,
2010) and with evidence that neuronal representations
in monkey inferotemporal cortex (Kiani, Esteky,
Mirpour, & Tanaka, 2007) as well as voxel-based
representations in human object-selective cortex (Krie-
geskorte et al., 2008) contain category information.
Finally, our results accord with suggestions that
categorization may be based on features with interme-
diate complexity since these features are likely to occur
at coarse spatial scales (Delorme, Richard, & Fabre-
Thorpe, 2010; Fabre-Thorpe, 2011; Ullman, Vidal-
Naquet, & Sali, 2002).

Conclusions

Coarse object structure may be important for
categorization because it is insensitive to the idiosyn-
cratic finer details (e.g., antlers of a deer) that may be
irrelevant for categorization but relevant for identifi-
cation. At the same time, it is sensitive to large-scale
structural differences (e.g., presence of head, body, and
legs) that distinguish one category from another.
Coarse structure may allow for object category to be
decoded sooner than object identity (Hung, Kreiman,
Poggio, & DiCarlo, 2005; Matsumoto, Sugase-Miya-
moto, & Okada, 2005; Young & Yamane, 1992), but
this may be due to differences in discriminability rather
than a fundamental temporal separation (Bowers &
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Jones, 2008; Grill-Spector & Kanwisher, 2005; Mack,
Gauthier, Sadr, & Palmeri, 2008; Mack & Palmeri,
2010, 2011). Separate representations are also unlikely
given that different categorization and identification
tasks may require different spatial frequencies (Collin
& McMullen, 2005; Harel & Bentin, 2009; Morrison &
Schyns, 2001). We propose that both coarse and fine
structure are integrated into a unified object represen-
tation that subserves a wide variety of visual and
cognitive tasks.
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