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Attention to a spatial location or feature in a visual scene can modulate the responses of cortical neurons and affect
perceptual biases in illusions. We add attention to a cortical model of spatial context based on a well-founded account of
natural scene statistics. The cortical model amounts to a generalized form of divisive normalization, in which the surround is
in the normalization pool of the center target only if they are considered statistically dependent. Here we propose that
attention influences this computation by accentuating the neural unit activations at the attended location, and that the
amount of attentional influence of the surround on the center thus depends on whether center and surround are deemed in
the same normalization pool. The resulting form of model extends a recent divisive normalization model of attention
(Reynolds & Heeger, 2009). We simulate cortical surround orientation experiments with attention and show that the flexible
model is suitable for capturing additional data and makes nontrivial testable predictions.
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Introduction

We interpret the visual environment not only based
on the bottom-up properties of the visual inputs. Top-
down attention—for instance, directed to a particular
location or property of the scene—also plays a critical
role. Indeed, top-down attention is widely studied in
visual neuroscience and psychology and has been found
experimentally to influence both the response proper-
ties of cortical neurons and perception (for reviews, see
Carrasco, 2011; Maunsell & Treue, 2006; Reynolds &
Chelazzi, 2004). There has also been great interest in
computational modeling of a wide range of attention
effects (e.g., Chikkerur, Serre, Tan, & Poggio, 2010;
Dayan & Solomon, 2010; Dayan & Zemel, 1999; Rao,
2005; Yu & Dayan, 2005; Yu, Dayan, & Cohen, 2009;
for some recent reviews and books, see Eckstein,
Peterson, Pham, & Droll, 2009; Reynolds & Heeger,
2009; Tsotsos, 2011; Whiteley, 2008).

Here we focus on the interaction between spatial
context and attention in visual processing, with
emphasis on orientation stimuli and cortical processing
in the ventral stream. Specifically, we focus on various
types of cortical neurophysiology data that have
emerged. This includes data that have previously been
modeled, such as changes in tuning curves due to
attention (e.g., McAdams & Maunsell, 1999) and

changes in response and contrast gain (e.g., Reynolds
& Heeger, 2009). In addition, we consider data
pertaining to the orientation, contrast, and geometrical
arrangement of stimuli inside and outside the classical
receptive field (e.g., Moran & Desimone, 1985; Sund-
berg, Mitchell, & Reynolds, 2009; Wannig, Stanisor, &
Roelfsema, 2011).

From the modeling perspective, we focus on divisive
normalization accounts, which are widespread in
neuroscience (e.g., Carandini & Heeger, 2012; Geisler
& Albrecht, 1992; Heeger, 1992). We consider two
relevant sets of literature. First, cortical models have
been developed based on the hypothesis that neurons
are matched to the statistical properties of scenes (e.g.,
Attneave, 1954; Barlow, 1961; Bell & Sejnowski, 1997;
Olshausen & Field, 1996; Simoncelli & Olshausen,
2001; Zhaoping, 2006). In particular, it has been shown
that scene statistics models can be related to nonlinear
neural computations (e.g., Karklin & Lewicki, 2009;
Rao & Ballard, 1999; Zetzsche & Nuding, 2005),
including divisive normalization (e.g., Coen-Cagli,
Dayan, & Schwartz, 2012; Schwartz & Simoncelli,
2001). However, these approaches have thus far not
incorporated attention effects (although see Spratling,
2008, for a predictive coding framework). Second,
descriptive models of divisive normalization have
recently been extended to include attention inside and
outside the classical receptive field and have shown to
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impressively unify a range of cortical attention data
(Ghose, 2009; Lee & Maunsell, 2009; Reynolds &
Heeger, 2009). The divisive normalization signal in
descriptive models is typically not constrained and
includes neural units with a wide range of features such
as orientations. Here, we essentially merge these two
approaches, namely incorporating attention in a
divisive normalization model, in which the form of
the model and the normalization pools are motivated
from scene statistics considerations.

More specifically, we have recently developed a
cortical model of spatial context (without attention),
based on a Bayesian account of natural scene statistics.
The form of model amounts to a generalized divisive
normalization and can address some biological data on
spatial context effects (Coen-Cagli, Dayan, & Schwartz,
2009, 2012; Schwartz, Sejnowski, & Dayan, 2009). A
critical aspect of the model that goes beyond canonical
models of divisive normalization is the inclusion of a
flexible divisive normalization pool: For a given visual
input, neural units in the surround location divisively
normalize the center unit, only if the center and
surround are considered statistically dependent accord-
ing to the model (for instance, if they have similar
orientation and are considered part of a statistically
homogenous texture or object). In contrast, when
center and surround are thought to be statistically
different, then the surround units do not normalize the
response of the center unit. Here our goal is to address
the influence of attention in this class of model.

We propose that attention multiplicatively accentu-
ates the attended features and locations in the model
and that Bayesian estimation then proceeds as before:
The model determines the degree to which the
attention-modulated center and surround are deemed
statistically dependent, and divisively normalizes by the
surround appropriately. This results in an influence
that is equivalent to Reynolds and Heeger (2009), in
which the output of a neuron is divisively normalized
by a signal computed by other neurons in the
normalization pool, and both the numerator and the
normalization pool are modulated by attention. How-
ever, extending Reynolds and Heeger (2009), in our
model there is an interplay between the normalization
pools and attention. We thus put together flexible
normalization pools from image statistics consider-
ations and the influence of attention.

In the next section, we include an introduction to the
main components of the modeling. This is followed by
a more detailed Methods section. In the Results
section, we show that the resulting flexible normaliza-
tion model replicates key results of the divisive
normalization model of attention given its similar
form. We show that it also addresses additional cortical
attention data that we suggest require more flexible
divisive normalization pools and makes testable pre-

dictions for cortical surround attention experiments in
which the model diverges from the canonical divisive
normalization. In the Discussion section, we also
discuss implications for perceptual illusion biases (in
light of our previous work; Schwartz et al., 2009) in the
context of attention.

Introduction to the modeling

We next describe in nontechnical terms the scene
statistics approach and the relation of the statistical
modeling to divisive normalization. We also address
how the statistical model compares to the canonical
model of divisive normalization and how we might
think about the model components in neural terms.

The statistical model and divisive
normalization

We adopt a model of scene statistics that is closely
related to divisive normalization. The main motivation
for the model comes from the empirical observation
that the activations of oriented cortical-like filters to
natural scenes exhibit statistical dependencies. We
would like to relate these dependencies to a model of
the cortical neural output. There are two main
approaches. The first approach is to find a transform
that makes the outputs more independent, assuming for
instance that neurons aim to code the visual input more
efficiently (e.g., Attneave, 1954; Barlow, 1961). It has
been shown that this can be achieved through divisive
normalization (e.g., Schwartz & Simoncelli, 2001).

A second related approach, which we adopt here, is
to build a model that can generate the statistical
dependencies between filter activations and then relate
a component of this model to the neural output. This is
known as a generative modeling approach (e.g., Hinton
& Ghahramani, 1997). It has been shown that the
dependencies of filter activations to natural scenes are
well described by a multiplicative model (e.g., Wain-
wright & Simoncelli, 2000). For instance, to generate
dependencies between two filter activations (say at two
different spatial locations), one starts with two
independent variables corresponding to the filters at
the two locations and multiplies each of them by a
common variable that introduces the dependency. We
describe the cortical neural output at a given spatial
location as essentially reversing this procedure and
estimating its local independent variable. Since the
generative model is multiplicative, this amounts to the
reverse process, i.e., divisive normalization.

The advantage of the generative approach, which is
common also in the broader machine learning com-
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munity, is that rather than searching for a suitable
transform, one can build a suitably rich model that
captures the statistical dependencies and then reverse
the model. In the Methods section, we formalize this
process in a class of generative model known as
Gaussian Scale Mixture (GSM), which we have
previously applied to simulating cortical data without
attention (e.g., Coen-Cagli et al., 2012). In this class of
model, the cortical output of the model corresponds to
Bayesian estimation of the local variable in light of the
statistical dependencies. The generative modeling ap-
proach also leads to a richer model than the canonical
model of divisive normalization, which we denote the
flexible normalization model.

Canonical normalization, tuned
normalization, and flexible normalization

In Figure 1, we provide intuition for the main
modeling approach and how it compares to the
canonical divisive normalization model. Figure 1b (left)
shows a simplified cartoon of the canonical divisive
normalization model (e.g., Heeger, 1992). In this
model, the surround filter activation (and more
generally, multiple surround filter activations in the
normalization pool) always divisively modulates the
center filter activation. From the scene statistics
perspective, the division comes about via estimation
in a Bayesian model in which center and surround filter
activations are always assumed to be statistically
dependent, as is common between spatially adjacent
regions in natural scenes. The model estimates the
response of a center neuron in light of these assumed
dependencies. This amounts to a divisive normalization
computation, which also reduces the dependencies
(Schwartz & Simoncelli, 2001).

Another important point to note is that filter
activations in two spatial locations are more statisti-
cally dependent when the center and surround orien-
tations are similar (Schwartz & Simoncelli, 2001). For
this reason, one straightforward version of the canon-
ical model that we will adopt here is a tuned divisive
normalization model, i.e., we assume that filters in the
center and surround locations have a similar orienta-
tion (Schwartz et al., 2009). In Figure 1b (right) we also
show the canonical divisive normalization model with
attention (Reynolds & Heeger, 2009), whereby filter
activations in both center and surround are multipli-
catively weighted by attention prior to divisive nor-
malization. The statistical version turns out equivalent:
Attention is assumed to multiplicatively weight center
and surround filter activations; center and surround
activations modulated by attention are still always
assumed dependent, and the division proceeds appro-
priately for the Bayesian estimation of the center

component. We note further that in most model
simulations, we assume for simplicity that all surround
locations are weighted equally in their contribution to
divisive normalization (as in Schwartz et al., 2009). In
one of the simulations addressing geometric influences
of surround normalization with attention, we relax this

Figure 1. Divisive normalization in the GSM model and attention.

(a) Cartoon of image statistics in the GSM model. The center and

surround are either statistically dependent and share a common

mixer variable (green for homogenous regions of the scene, such

as within the zebra) or are independent each with their own mixer

variable (blue for nonhomogenous regions, such as across the

zebra border). Filter activations are given by xc (for center) and xs
(for surround). The cartoon shows two filters, but the model

generalizes for more filters. (b) The canonical divisive normaliza-

tion version of the GSM model assumes that center and surround

filter activations are always dependent, and thus the center filter

activation is always divided by the surround activation. The

cartoon illustrates example experimental stimuli. Attention is

assumed to modulate the observed filter activations in both

center and surround locations multiplicatively (only surround

attention shown by the red circle). Attention weights are given

by ac (for center) and as (for surround). The cortical model

estimates the mean firing rate corresponding to the center

location via divisive normalization (formally, this is done by

estimating the Gaussian component in the GSM model; see main

text). This model is similar to Reynolds and Heeger (2009) but

includes a tuned surround. (c) The flexible pool divisive

normalization model determines the degree to which center and

surround activations are deemed dependent or independent. For

the dependent case, the surround is in the normalization pool of

the center; for the independent case, the surround is not in the

normalization pool of the center.
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assumption (as in Coen-Cagli et al., 2009, 2012), and
allow nonequal weighting of different spatial positions
in the surround.

Second, we consider an extension of the model to
flexible divisive normalization. In the flexible pool
divisive normalization model, we assume a richer and
more correct model of scene statistics (Schwartz et al.,
2009), in which center and surround could either be
deemed statistically dependent (as is common in
homogenous regions of an image or within objects),
or statistically independent (as is common across
objects with different statistics; see Figure 1a). This
results in a neural model in which the surround
activations divide the center to the degree that they
are deemed statistically dependent according to the
model (Figure 1c, left). In our model, the normalization
pools (which include either normalization by the center
or normalization by both center and surround) and the
priors for each of the pools are set in advance. The
degree to which each of the divisive normalization
pools contribute to the neural output (i.e., the posterior
probability for each of the pools) is then computed via
Bayesian inference, given the filter activations to the
input stimuli. In this way, when the center and
surround stimuli are more similar (for instance in
contrast and orientation), they are deemed more
dependent according to the model, and the surround
normalizes the center, but when center and surround
stimuli are very different, the surround does not
normalize the center. We also show the flexible
normalization model with attention (Figure 1c, right):
Now the Bayesian model determines the degree to
which the attention-modulated center and surround
activations are deemed dependent and normalizes
appropriately.

Potential neural correlates of the flexible
normalization

Before proceeding to a more detailed description of
the modeling, we describe intuitively how one might
think about the model components in neural terms. It is
important to note that divisive normalization has
indeed been termed a canonical neural computation
(Carandini & Heeger, 2012), for which there are many
possible neural correlates. In the context of surround
effects which is our main focus here, it has been
suggested that divisive normalization might be mediat-
ed by feedback from higher areas (e.g., terminating on
inhibitory interneurons) and horizontal connections,
both of which have been suggested to be orientation
dependent.

The extension to a flexible normalization model
requires a mechanism whereby the divisive signal is not
fixed but can vary with the input stimuli. Although

nailing down the mechanisms is a task for future work,
we note several possibilities here (see also discussion
and references in Coen-Cagli et al., 2012). One
possibility is that the stimulus dependence might arise
through the diversity of the interneurons that mediate
divisive normalization. The group of interneurons and
their properties (e.g., their selectivity and firing
threshold) might be set in advance (as for the
normalization pools and priors in our model). Howev-
er, the flexibility could arise because different input
stimuli could turn on or off the interneurons to
different degrees (Moore, Carlen, Knoblich, & Cardin,
2010), and this could depend on aspects such as
contrast or attention (as for the Bayesian inference in
our model). Alternatively, the flexible normalization
might be an emergent property of the network
dynamics—for instance, through stimulus-dependent
changes in the effectiveness of lateral connections
(Nauhaus, Busse, Carandini, & Ringach, 2009) or
through switching between network regimes (Salinas,
2003) or dynamic stabilization of the neural network
(Ahmadian, Rubin, & Miller, 2012).

The role of attention

The attention model assumes that the priors for the
normalization pools are determined from natural
scenes and that attention acts given the priors from
scenes. We think that a main benefit of attention within
this framework is that it acts as a more reliable cue to
improve local estimates due to shared dependency.
That is, if one attends to a surround location, it should
only influence the center computation and contribute to
divisive normalization in as much as the center and
surround are believed to be statistically dependent (if
center and surround are independent, there is no need
to use the surround information in estimating the
center). One should properly take account of these
dependencies inherent in natural scene statistics also in
the face of attention. Our framework therefore ties
together so-called normative/functional scene statistics
approaches, with the attention model of Reynolds and
Heeger (2009). Note, however, that we think pinning
down the functional benefits of attention would require
a formal treatment of neural noise and assessing
improvement in a task (see Discussion section).

Methods

We note at the outset that similar to Reynolds and
Heeger (2009), our model does not distinguish the level
of cortical processing, i.e., primary visual cortex (V1)
versus higher cortical areas (e.g., V4). The original
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scene statistics model was built to explain V1 data, and
so the normalization pools are expected to be most
appropriate for this level. However, there are more
relevant attention data in V4. Area V4 is likely to have
more complex center and surround interactions than
V1, and a complete model should consider the
hierarchical cortical structure (e.g., Tiesinga & Buia,
2009). Here we assume that when probing V4 with
simple oriented stimuli that are typical in V1 experi-
ments, some aspects are inherited from earlier cortical
stages (e.g., see discussion in Sundberg et al., 2009,
about most suppression for similar tuning of center and
surround). We discuss these issues further in the
Discussion section.

We next provide a more detailed description of the
cortical flexible normalization model and its extension
to attention.

Cortical flexible normalization model without
attention

We hypothesize that cortical neurons are sensitive to
the statistical properties of spatial context inherent in
natural scenes. The underlying hypothesis is that
cortical neurons are optimized for statistical regulari-
ties in scenes from the environment and that when
presented with experimental stimuli, make inferences
based on the expectations from scenes.

More formally, we consider the statistical dependen-
cies between patches of scenes at neighboring spatial
locations through cortical-like oriented receptive fields
or filters. These are known to be statistically coordi-
nated or dependent, such that when one filter responds
strongly (either positive or negative; for instance, to
some feature in the scene) the other one is also likely to
respond strongly. Statistical dependencies in neighbor-
ing spatial regions of natural scenes are particularly
striking for filters with similar orientation and reduced
for filters with orthogonal orientation (Schwartz &
Simoncelli, 2001). We focus on a class of generative
model that describes how the statistical dependencies of
filter activations are generated. Specifically, we focus on
the Gaussian Scale Mixture model (GSM; Wainwright
& Simoncelli, 2000), in which a common mixer
(denoted v) provides the contextual coordination
between filter activations. We denote the filter activa-
tions corresponding to center and surround locations,
xc and xs. Without loss of generality, we discuss the
model with regard to two such filters; this generalizes to
a set of filters in center and surround locations. The
dependency between the two filters arises via a
multiplication of the common mixer with two indepen-
dent Gaussians (xc ¼ vgc; xs ¼ vgs).

We hypothesize that a neural cortical unit in a center
location aims to estimate its local Gaussian component

(e.g., gc) in light of the statistical dependencies. This is
motivated by a number of factors. First, we focus here
on experiments that report a fairly local property (i.e.,
the response of a neuron in a center location or
perceived orientation in a center location). In the
model, the Gaussian component gc is the local variable,
whereas the mixer variable is a more global property
across space linking the receptive fields. Also, estima-
tion of the Gaussian amounts to the inverse of the
multiplication, i.e., a form of divisive normalization
(Schwartz et al., 2009) that is prominent in mechanistic,
descriptive, and functional cortical models, and this
estimation is also tied to reducing this form of
multiplicative statistical dependency.

In addition, given the heterogeneity of scenes, a
single mixer model in which all filter activations are
always assumed dependent is not a good description of
the joint statistics (Guerrero-Colon, Simoncelli, &
Portilla, 2008; Karklin & Lewicki, 2005; Schwartz,
Sejnowski, & Dayan, 2006). We thus extend the cortical
model to allow multiple mixers (Schwartz et al., 2009).
We will consider a set of front-end cortical model filters
in both center and surround spatial locations and
determine a given center unit mean firing rate response,
given surrounding unit activations. A main issue for the
model is whether the surround activations are in the
divisive normalization pool of the center unit, and this
in turn is determined from scene statistics (Figure 1).

Center and surround in same normalization pool

We say that center and surround are in the same
normalization pool when they are co-assigned to a
common mixer and deemed statistically dependent.
This is the case, for instance, when the center and
surround stimuli are statistically homogenous (see
cartoon in Figure 1a, for patches that are within the
zebra image). In this case, the Gaussian estimate is
given by:

E gcjxc;xs; n1½ �� jxcj
mcs

mcs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2c þ x2s þ r

p ð1Þ

Here xc is the center unit activation and xs the surround
unit (for readability, we assume just one filter in the
center and one in the surround, although this can be
extended to more filters); mcs is the gain signal that
includes both center and surround and acts divisively
(thus related to divisive normalization); r is a small
additive constant as typically assumed in divisive
normalization modeling (Heeger, 1992; Schwartz &
Simoncelli, 2001; Schwartz et al., 2009; here we fix it at
0.1 for all simulations); and n1 indicates inclusion of
both center and surround in the normalization pool.
The Appendix includes the full form of Equation 1,
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which contains a function f(mcs, n) to make the
equation into a proper probability distribution. The
function f(mcs, n) depends on both mcs and on the
number of center and surround filters n. We have
omitted the function f(mcs, n) in the main text for
simplicity and to exemplify that this formulation is
similar to the canonical divisive normalization equation
(e.g., Heeger, 1992; see this point also in Schwartz et al.,
2009; Wainwright & Simoncelli, 2000). However, note
that in all simulations and plots in the paper, we
compute the full form of the equation according to the
Appendix. Also, the exact mixer prior changes the
equation details but not the qualitative nature of the
divisive normalization and the simulations (see Appen-
dix).

More complex versions of the GSM can include a
covariance matrix that departs from the identity matrix
and is learned from natural scenes. This essentially
modifies the gain signal in the denominator by allowing
nonequal weighting for filters in the normalization
pool. In most of the simulation examples presented
here, as in Schwartz et al. (2009), we assume an identity
covariance matrix. However, we also consider one
neurophysiology example that includes different geo-
metric arrangements of the inputs, with emphasis on
collinearity (Wannig et al., 2011). For this, we apply an
extended version of the model that relaxes the identity
matrix covariance assumption, allowing surround
filters in different locations to have different weights
in the gain signal (Coen-Cagli et al., 2009). In this case,
the gain signal is given by:

mcs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�XtR�1Xþ r

p
where R is the covariance matrix and X ¼ (Xc, Xs).

Center and surround in different normalization pools

We have thus far described the condition in which
the surround is in the normalization pool of the center.
Similarly, we consider the case in which the surround is
not in the normalization pool of the center, i.e., they are
not co-assigned to a common mixer and are deemed
independent. This is the case, for instance, when center
and surround stimuli are inhomogeneous (see cartoon
if Figure 1a, when center and surround patches are
across the border of the zebra image). We solve for the
Gaussian estimate, E(gc j xc, n2), where n2 indicates
inclusion of only the center and not the surround
normalization pool.

E gcjxc; n2½ �� jxcj
mc

;

mc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2c þ r

p ð10Þ

Here the divisive gain signal mc includes only the center
filter responses.

Full model as a mixture of independent and dependent
conditions

For any given input stimulus, the two Gaussian
estimates (Equations 1 and 10) are weighted by the
posterior probability that the center and surround are
in the same normalization pool for the given stimuli.
The model output is therefore given by:

E gcjxc;xs½ � ¼ p n1jxc; xs½ �E gcjxc;xs; n1½ �
þ p n2jxc; xs½ �E gcjxc; n2½ � ð2Þ

Equation 2 includes a first term in which the surround
normalizes the center filter activation and thus is in its
normalization pool (Equation 1) and a second term in
which the surround does not normalize the center
activation and thus is not in its normalization pool
(Equation 1 0). In addition, the strength of the
normalization signal is dependent on the (posterior)
weighting of the two terms in Equation 2, resulting in a
generalized form of divisive normalization.

Here the priors for the two cases of surround
normalizing the center or not are (p[n1], p[n2] ¼ 1 �
p[n1]). The posteriors for the surround normalizing the
center or not given filter activations to an input
stimulus are (p[n1 j xc, xs], p[n2 j xc, xs]). In this paper,
we treat the priors as a free parameter and calculate the
posterior assignments given an input stimulus similar to
Coen-Cagli et al. (2012) using Bayes (see Appendix).
Figure 2 shows how the posterior co-assignments vary
as a function of orientation difference and contrast for
different priors, intuitively related to the suggestion
above that more homogenous center and surround
stimuli are more likely to be in the same normalization
pool. When the prior probability of co-assignment is set
to 1, then the posterior probabilities become (p[n1 j xc,
xs] ¼ 1, p[n2 j xc, xs] ¼ 0), which is essentially the
canonical divisive normalization model in which the
surround always normalizes the center for any input
stimuli (Figure 1b).

Other model details

We follow Schwartz et al. (2009) in assuming that the
normalization pool of the surround units has the same
orientation preference as the center units. This is
motivated from the observation that statistical depen-
dencies are prominent for similar center and surround
orientations (Coen-Cagli et al., 2012; Schwartz &
Simoncelli, 2001). Therefore, when the surround
normalizes the center target, this amounts to a tuned
surround normalization (see also Chikkerur et al.,
2010; and Ni, Ray, & Maunsell, 2012, regarding tuned
surround normalization and in the middle temporal
visual area [MT]). In addition, we assume that the
linear front-end units in center and surround locations
are given by idealized Gaussian tuning curves:
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xi ¼ exp
�ð/� /iÞ2

2r2

" #

with i corresponding either to center or surround
location, / to the stimulus orientation, and /i to the
preferred orientation of the neural unit.

For the perceptual tilt illusion simulations, we use a
standard population vector read-out (Georgopoulos,
Schwartz, & Kettner, 1986), identical to the approach
in Schwartz et al. (2009). Specifically, we consider a
population of center units, E(gic j xc, xs), with 360
preferred orientations. The estimated center angle given
by:

r ¼ 0:5angle
X
i

gicuð2/iÞ
( )

where / is the preferred angle of unit i, u(/) is a two

dimensional unit vector pointing in the direction of /,
and the doubling takes account of the orientation
circularity.

Cortical flexible normalization model with
top-down attention

The generative model we described above specifies
how to generate filter outputs corresponding to center
and surround locations, and we assume that given these
outputs, cortical neurons in a center location estimate
the local Gaussian component via a generalized form of
divisive normalization. We assume that in the face of
attention, neurons continue to compute this local
structure, since all the attention tasks we focus on are
concerned with a local task in a central location in light
of the contextual stimuli and indeed report the response
of a neuron in the central location. We thus hypoth-
esize that attention accentuates the attended filter
outputs in the center and surround locations and that
cortical neurons then compute the local estimate (i.e.,
Gaussian corresponding to the center location) as
before. Attention to the surround only influences this
computation when center and surround stimuli are
inferred to be statistically dependent. The model
therefore weights more the contribution of the attended
locations, as if they are more believable or reliable, but
only if the attended locations are considered dependent
with the center location. In the Discussion section, we
discuss the relation of our approach to functional
models of attention.

We first consider attention for the case that center
and surround are co-assigned and in the same
normalization pool. The outputs for center and
surround are now given by: acxc and asxx, where ac
and as are center and surround attention weights and xc
and xs are the filter outputs without attention as before.
The output of each spatial location may be multiplied
by its own attention weight, but to simplify the
notation, we show the equations for a single surround
location and attention weight.

The observed output with attention is given by a
GSM model with a common mixer multiplying a
Gaussian: gcv ¼ acxc; gsv ¼ asxs. The model neuron
estimates the Gaussian corresponding to the center
unit, which depends on both acxc and asxs:

E gcjxc;xs; n1; ac; as½ �� jacxcj
mcs

;

mcs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ca

2
c þ x2s a

2
s þ r

p ð3Þ

Here mcs is the gain signal with attention that includes
both center and surround filter activations. The divisive
signal weights more heavily the location that is more
strongly attended. In addition, attention to the center

Figure 2. Influence of prior co-assignment parameter (i.e.,

probability over all stimuli that surround is in the normalization

pool of the center) on estimated posterior co-assignments in the

model (i.e., probability that surround is in the normalization pool of

the center, given the observed center and surround stimuli). This

is plotted as a function of (a) orientation difference between the

center and surround, and (b) contrast of the center when the

surround is set at maximum contrast.
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location weights both the numerator and the divisive
gain signal, while attention to the surround weights
only the divisive signal.

When the surround is not in the normalization pool
of the center, then attention to the surround has no
influence on the estimation. Attention to the center is
given by:

E gcjxc; n2; ac½ �� jacxcj
mc

;

mc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ca

2
c þ r

p ð30Þ

For attention weights set to 1, Equations 3 and 30

reduce to Equation 1 and 10 above.
As before, the full model is a weighted sum of

Equations 3 and 30, according to the probability of co-
assignment given the input stimulus and the attentional
parameters in center and surround:

E gcjxc; xs; ac; as½ �
¼ p n1jxc; xs; ac; as½ �E gcjxc;xs; n1; acas½ �
þ p n2jxc;xs; ac; as½ �E gcjxc; n2; ac½ � ð4Þ

For Equation 4, we need to estimate the (posterior)
probability of co-assignment given the input stimulus:

p n1jxc; xs; ac; as½ � ¼ pðn1ÞPcs

pðn1ÞPcs þ pðn2ÞPcPs
;

p n2jxc;xs; ac; as½ � ¼ pðn2ÞPcPs

pðn1ÞPcs þ pðn2ÞPcPs

The term Pcs is the likelihood of the observed filter
values under the assumption that center and surround
are coordinated (n1). Similarly, PcPs is the likelihood
under the assumption that center and surround are
independent (n2). The equations for Pcs, Pc, and Ps are
given in the Appendix and depend on the gain signals
for center and surround mcs, center alone mc, and the
surround alone ms, as well as the number of filters in
the center and surround. Note that attention also
influences these gains since it acts multiplicatively on
the filter outputs, and so can also affect these co-
assignment probabilities. Intuitively, when the gains of
center and surround are more similar, they are more
likely to be co-assigned.

In summary, the resulting form of attention influence
in the model has two main features. First, it is similar to
the proposal of Reynolds and Heeger (2009), in that
attention can weight both the numerator and the
divisive signal. But it is different in terms of the
normalization pools that are part of the original
statistical formulation. Attention alters how much we
should weight the units in a given normalization pool
that are contributing to the estimated model neuron
response. For instance, if one attends to the surround
location, then if center and surround are deemed

generated with a common mixer, the surround signal
is weighted more heavily, as if its contribution is
accentuated due to the attention in this computation
(and similarly, for attention to the center).

Second, attention also acts on the co-assignment
probability and so can influence the composition of the
normalization pool for given experimental stimuli, as a
function of properties such as contrast, orientation, and
geometric arrangement of the stimuli. In the Results
section, we show a few neurophysiology examples in
which we suggest that the composition of the normal-
ization pool is critical. We also show that one can
conceive of stimuli for which attending to the surround
leads to competing effects such as (a) a heavier weight
of the surround units (similarly to the case above), but
at the same time (b) a lower probability that the center
and surround are deemed dependent. This leads to
nontrivial predictions that differ from Reynolds and
Heeger (2009).

Model parameters and fits

In the model simulations, we fixed the additive
constant in the model to 0.1, and the prior probability
that surround is in the normalization pool of the center
to 0.5 (from which we always infer the posterior
probability using Bayes, given the particular experi-
mental stimulus, as stated in the Methods section).

In one of the simulations (Figure 5), we optimized
the parameters of the model to best match the
Sundberg et al. (2009) data with a least-squares fit.
We did this for both the canonical and flexible models.
In the canonical fit, we also included an extra weighting
factor for center and surround terms (that is fixed
across all input stimuli) to allow for more flexibility:
wcws such that mcs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wcx2ca

2
c þ wsx2s a

2
s þ r

p
. Both

versions with and without this added (fixed) flexibility
yielded similar results. We specifically fit the weighting
factors, the additive constant, and the attend yes and
no conditions: wc, ws, r, ayes, and ano (the fits were
2.0294, 0.5395, 0.0891, 0.3148, and 0.2073). For
surround attention, we set as ¼ ayes and ac ¼ ano; for
center attention as ¼ ano and ac ¼ ayes; and for distant
attention, as ¼ ano and ac ¼ ano. For the flexible
normalization model we fit r, ayes, ano, and n (the fits
were 0.01, 0.354, 0.14, and 0.32), where the last term is
the prior for assignment.

In one of the simulations (Figure 6), we included the
covariance matrix learned in Coen-Cagli et al. (2009),
which relaxed the assumption that the denominator
weighted equally each surround filter. Specifically, the
inverse covariance was such that for the assigned
condition both the variance for the collinear location
and the covariance between the collinear and center
location were higher.
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Results

Model behavior

We first demonstrate some of the main properties of
the model, by varying the attention weights of either
center or surround, and examining the result as a
function of whether center and surround are in the
same normalization pool. We show the two extremes of
either the surround not in the normalization pool of the
center (co-assignment probability 0), or surround in the
normalization pool of the center (co-assignment
probability 1). All other values of Equations 3 and 30

are held fixed, and the center and surround unit (linear)
activations are set to a value of 1. In each condition, we
depict the estimated Gaussian of a given center unit
(i.e., the estimated output of the center unit, according
to the model).

Figure 3a depicts the condition in which center and
surround are not in the same normalization pool, i.e.,
do not share a common mixer in the model. In this case
(Equation 30), increasing the surround attention when
the center weight is held fixed at 1 has no effect on the
estimated model output. In contrast, increasing the
center attention weight when the surround weight is
held fixed at 1 increases the estimated output. In Figure
3b, the center and surround are assumed in the same
normalization pool, i.e., they share a common mixer in
the model and are co-assigned. In this case, increasing
the center attention weight (blue line, with the surround
attention weight fixed at 1) still increases the estimated
response. In addition, increasing the surround attention
weight now decreases the estimate (black line, with the
center attention weight fixed at 1). This is due to
Equation 3, in which the surround unit outputs affect
the response of the center unit via the divisive
normalization signal. Note also that for high probabil-
ity of co-assignment, the estimated response increases
more rapidly for large values of center attention
(compare the blue lines in Figure 3a and b for center
attention weight above 1).

We next discuss this form of model in relation to
experimental data. Cortical neurons are strongly
influenced by surround stimuli. We specifically examine
data in which surround effects in cortex (such as the
amount of suppression or facilitation, or changes in
contrast response curves) are influenced by attention.
We start by showing that the model can replicate key
experiments explained by divisive normalization, as
well as simple extensions that require a tuned surround
normalization pool. We then go on to model physio-
logical data that we suggest is well suited to our form of
flexible normalization pools. Finally, we propose new
experiments targeted at providing a better test case for
distinguishing the models.

Neurophysiology simulations: Canonical and
tuned divisive normalization

We first show that our model replicates some key
attention results that have previously been addressed
due to the similar form of attention modulation as in
Reynolds and Heeger (2009). The model can capture
data in which the size of the attention field is critical for
changes in contrast response functions: namely, cap-
turing both so-called contrast gain and response gain,
which have been observed in the experimental litera-
ture. In Figure 4a, we include a small optimally
oriented stimulus within the center receptive field
(RF) and a large attention field (i.e., attention to both
center and surround units). Attention causes a leftward
shift in the contrast response function (i.e., contrast
gain) relative to the nonattended condition. Figure 4b
depicts a larger stimulus covering both the center and
surround unit locations and a smaller attention field
within the center unit RF. Now, attention results in an
upward shift of the contrast response function (i.e.,
response gain). In the simulations, center and surround
are in the same normalization pool, since the input
stimuli have similar orientation. The behavior in the
model arises due to the nature of Equation 3, which has
similar properties to the Reynolds and Heeger (2009)
model, with attention to the center weighting both the
numerator and denominator and attention to the
surround weighting only the denominator. Note,
however, that this behavior is only fully observed if
the contrast response function is saturating, which in
our formulation depends on the mixer prior and indeed
holds for the prior we have chosen (see Appendix).

Our model also replicates another key result (not
shown) of changes in orientation tuning due to
attention (McAdams & Maunsell, 1999). The attention
is either to an oriented stimulus (‘‘attend center’’
condition) or to a color blob, which constitutes the
contextual stimulus (‘‘attend away’’ condition). Atten-
tion to the center scales the height of the tuning curve
multiplicatively, both in the V4 data and model. In the
model, this is due to the increase in the estimated
response for larger center attention (Figure 3), behav-
ing similar to the Reynolds and Heeger model (2009).
Similar multiplicative scaling has been noted in area V1
(McAdams & Reid, 2005).

Our model also accounts for data that require tuned
surround normalization with attention, an aspect that
is unconstrained in descriptive normalization models,
but that has been suggested in other recent modeling
approaches (Chikerrur et al., 2010). By assuming that
surround suppression in V4 is also orientation tuned as
in V1 (see discussion in Sundberg et al., 2009, and their
reference to Schein & Desimone, 1990), then we expect
to see experimental differences in attention to the
surround for parallel versus orthogonal surround. In
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particular, when the surround stimulus orientation is
orthogonal to the center stimulus, then we predict no
effect of attending to versus ignoring the surround.
This prediction also comes about in a canonical divisive
normalization model that includes a tuned surround
(e.g., by setting the co-assignment probability of
surround in the normalization pool of the center to 1
in our model). In contrast, a model that includes an
untuned surround, and thus allows all surround
orientations to contribute to the normalization signal,
would result in surround suppression for the attend
surround condition. Although the different conditions
have not been tested extensively or systematically, some

neurophysiology data indeed suggest that there is no
effect of attention in V4 when the surround is an
orthogonal orientation to the center (Moran &
Desimone, 1985).

Neurophysiology simulations: Flexible
normalization pools

We are particularly interested in data for which our
model diverges from the canonical divisive normaliza-
tion model. It should be noted that experimental data
thus far are scarce. However, we suggest that recent

Figure 3. Model behavior for different parameter changes. (a) Model response (i.e., Gaussian estimate in the GSM model; see main text)

when surround is not assigned. In the simulation, we either vary the surround attention weight when the center attention is fixed to 1 (black

line), or we vary the center attention weight when the surround attention is fixed to 1 (blue line). Additive constant is set to 0.1 and number

of filters set to 4 (one center filter and three surround filters; n ¼ 4). Note that if we change the number of surround filters, the result

remains the same since the surround is not assigned. (b) Same but when surround is assigned to normalization pool of center with

probability 1. Cyan and gray lines correspond to n ¼ 2, 3, 5, and 6, resulting in similar qualitative effect.

Figure 4. Contrast versus response gain in the model (after Reynolds & Heeger, 2009). (a) Stimulus confined to center of RF, and

attention field (red filled circle) includes center and surround locations; (b) stimulus extent includes center and surround locations, while

attention field is confined to the center location. In both panels, attended location weight set to 3 and unattended to 1, and number of filters

is set to 2 (n ¼ 2). The qualitative result does not depend on the number of filters.
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Figure 5. Flexible versus canonical model for contrast dependence of surround modulation with attention. Surround contrast is fixed to the

highest contrast and center contrast is varied. Left: data (adapted from Sundberg et al., 2009); middle: canonical model; right: flexible

normalization model. (a) Surround modulation index (SMI) for attending and ignoring surround, as a function of center contrast (x-axis)

and attention location (3 curves; corresponding to surround, distant, and center attention conditions). (b) SMI for attention to the surround

location minus SMI for attention to distant location. In the model panels, dark blue curves show optimal fits to Sundberg et al. (2009) data

(see Methods, Model parameters and fits). For the flexible model, we also hand-changed the prior to 0.15 less and more than optimal fit

(cyan), and in the canonical we also hand-changed additive constant to 2 to dominate the fit (cyan). (c) Probability of assignment. The

flexible model takes a weighted sum of E½gcjxc; xs; n1; ac; as� � jxcjmcs
;mcs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ca

2
c þ x2s a

2
s þ r

p
(divide by surround condition) and E½gcjxc;X;

n2; ac� ¼ jxcjmc
;mc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ca

2
c þ r

p
(divide only by center condition), with the weighting given by the posterior weights. In the canonical model

the posterior weights are set to 1 such that there is always divisive normalization by the surround.
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data are compatible with our proposal. We also
simulate model predictions that are more targeted at
testing the flexible normalization model.

Surround suppression as a function of contrast and
attention

We first consider recent data showing a strong effect
of attention to the surround when the surround is the
same orientation as the center in V4 (e.g., Sundberg et
al., 2009). Sundberg et al. (2009) measured attention in
V4 neurons for iso-oriented stimuli in the center and
surround, including a control of attending to a distant
surround. One main result in the data is more
suppression when attending to the surround and less
suppression when attending the center: As Sundberg et
al. (2009) point out, this is expected from a divisive
normalization model of attention (Reynolds & Heeger,

2009). In addition to this observation, we focus on a
particular aspect of the Sundberg et al.’s (2009) data
that we show is of interest from the point of view of the
flexible model, namely the modulation with attention as
a function of stimulus contrast. The main idea in the
flexible model is that the contrasts of the center and
surround stimuli, and the attention condition, affect the
posterior probability of assignment and therefore
influence the amount of surround suppression. We go
through the thought process and simulations in more
detail below, showing that the flexible model, but not
the canonical model, can capture a particular trend of
contrast dependence of surround modulation in the
data.

To quantify the surround modulation, Sundberg et
al. (2009) calculated the surround modulation index
(SMI) for attending to a given center (SMI_center),
surround (SMI_surround), or distant location (SMI_

Figure 6. Flexible versus canonical models for geometry. (a) Simulations of Wannig et al. (2011) attention data. Cartoons show the stimuli

and location of attention. Both the flexible and canonical models capture the larger facilitation for collinear attention in the Wannig et al.

(2011) data. (b) Simulations without attention based on Cavanaugh et al. (2002), with cartoons and simulations adjusted to match the

Wannig et al. (2011) setup. Only the flexible model captures the greater suppression for collinear than diagonally placed stimuli. Attention

weights are set to 2 and 1, respectively, and the additive constant to 0.1. The flexible and canonical models are as in Figure 5, but include

a nondiagonal inverse covariance matrix capturing the geometry:

E gcjxc; xs; n1; ac; as½ � � jxcj
mcs

;mcs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acxc; asxs½ �TR�1cs acxc; asxs½ � þ r

q
;

E gcjxc; n2; ac½ � � jxcj
mc

;mc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acxc½ �TR�1c acxc½ � þ r

q
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distant). The SMI index pertains to the response of a
neuron with attention to the given location (center,
surround, or distant) when the surround stimulus is
present versus attention to the same location when
there is no surround stimulus:

SMI ¼ Rcs � Rc

Rcs þ Rc

As can be seen in Figure 5a, both the canonical and
flexible normalization models can capture a main trend
in the data of more surround suppression when
attending to the surround than when attending to the
center and of more intermediate suppression when
attending to a distant location. Also, as reported in
Sundberg et al. (2009), for both models the SMI index
is stronger (more negative) when the center stimulus
contrast is low than when it is high contrast. Note that
the surround stimulus is fixed to a high contrast in these
experiments, while the center stimulus contrast is
varied. In both models, the surround attention weights
the surround filter activation more heavily, leading to
more suppression, and the distant attention constitutes
a control in which center and surround filter activations
are weighted equally (i.e., both are not attended).

In addition, when the data is replotted (Figure 5b,
left), it is also evident that for low center contrast, the
SMI index for attending to surround or distant
locations are more similar; as the center contrast
increases, the SMI index for surround and distant
locations are more different. We next show that a
canonical divisive normalization model could not
account for this trend (Figure 5a, b, middle column)
and that it is better captured by the flexible model
(Figure 5a, b, right column).

In the canonical model, for low center contrast, the
difference between the surround and distant attention is
instead more pronounced in the canonical model. This
can be seen in the canonical model from the term:

mcs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ca

2
c þ x2s a

2
s þ r

q
:

For low center contrast, the center filter activation is
low, and so the surround activation term (weighted by
the attention signal) becomes more prominent. For
high center contrast, this difference is diminished in
the canonical model (it can flatten if the additive
constant is very large or if the center filter activation
is not in the denominator due to a zero weighting
factor, but it cannot reverse the trend). To demon-
strate this, we show the resulting simulation in Figure
5b (middle) by fitting the parameters of the canonical
model (see Methods) to best match the SMI data in
5a (left). The full data fits are shown in Figure 5a
(middle). The difference between the attend surround
and distant conditions are shown in Figure 5b
(middle). We tried fitting several versions of canonical

model (see caption of Figure 5 for including large
divisive weight) and manually exploring the parameter
range, and could not reverse the trend to match the
data.

We then considered the flexible normalization model
and found that it could capture this trend of modulation
index as a function of contrast in the Sundberg et al.
(2009) data (Figure 5a, b, right). In the flexible model,
this was due to the posterior assignment weights (Figure
5c, right), which in turn control the amount of surround
suppression. The strength of surround modulation for
the surround attention condition increases more rapidly
as the center and surround stimulus contrasts are more
similar (therefore, as the center contrast is increased; see
cartoon in Figure 5).

Surround geometry and attention

The data of Wannig et al. (2011) suggest that
attention effects depend on the geometric arrangement
of stimuli in the surround. Using stimuli that comprise
several oriented bars, they found, for instance, that
when center and surround bars are matched in
orientation, then attention to a collinear surround
leads to more facilitation than attention to a diagonally
placed surround (see stimulus cartoon in Figure 6).

To address the Wannig et al. (2011) data, we
considered the flexible attention model with a covari-
ance matrix that is matched to those learned in Coen-
Cagli et al. (2009), such that the covariance is higher
between collinear filters when center and surround are
co-assigned. In the experiments, the stimulus arrange-
ment always included both parallel and diagonal
surround bars, and attention was manipulated. In this
case, the estimated co-assignment probability in the
model remained high for both attention conditions
(Figure 6a, right). The response of the flexible model
was therefore dominated by the covariance weights in
the denominator, leading to less surround suppression
in the collinear attention than the diagonal attention
case (Figure 6a, middle). We note that a canonical
divisive model that is handed the same covariance
matrices learned in Coen-Cagli et al. (2009) could also
capture this result (Figure 6a, left), following a similar
argument. Since the estimated assignment probability
in the flexible model is near 1, the two models behave
similarly in this case. As in Wannig et al. (2011), this
effect was not present when the stimuli at the two
locations were orthogonal (simulation not shown).

However, there are also data on surround suppres-
sion and stimulus geometry, in the absence of attention.
We treated such data as a control condition, which the
model should also be tested against. In particular,
Cavanaugh, Bair, and Movshon (2002) found that
when center and surround grating orientations are
similar, there is more surround suppression when the
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surround stimulus is arranged collinearly. The flexible
model can address this result, as we have also shown
previously (Figure 6b, middle; see also Coen-Cagli et
al., 2012, for a more complete simulation of the
Cavanaugh et al., 2002 geometry data). Note that in
this experiment, the stimulus configuration does change
for the different experimental conditions, and the
surround is either arranged collinearly, diagonally, or
parallel with the center. In the flexible normalization
model, the estimated co-assignment weights are signif-
icantly higher for the collinear than the diagonal or
parallel stimulus arrangements (Figure 6b, right; since
collinear stimuli are deemed as more assigned in the
model inference, due to the learned covariance
weights). As a result, for the collinear stimuli, higher
co-assignment brings about more surround suppression
in the flexible model, consistent with the data. This is
crucially different from the Wannig et al. (2011)
stimulus configurations, in which the collinear stimuli
were always present in both conditions, which led to a
large co-assignment in the model for all stimulus
conditions.

We can again ask whether a canonical normalization
model can explain the results of Cavanaugh et al.
(2002). As before, we consider a canonical model with
the same covariance matrix and set the co-assignment
weights to 1. In this case, the canonical model cannot
account for the Cavanaugh et al. (2002) data (Figure
6b, left). With the weights set to 1, the canonical model
instead produces less suppression for the collinear than
other stimulus arrangements. It is of course possible
instead to hand-design the weights of a canonical
divisive model differently so that they are compatible
with the Cavanaugh et al. (2002) result. However, the
same canonical model would then fail to account for
the Wannig et al. (2011) data. That is, one cannot
hand-design a set of weights in the canonical model
that would account for both sets of data simultaneous-
ly. We assume here that the effects in the Wannig et al.
(2011) data are due to the nonclassical receptive field,
i.e., that the surround bars are indeed outside the
classical RF, although we cannot rule out that there are
also influences of the bars impinging on the classical
RF. In summary, the flexible model therefore suggests a
means of addressing two disparate sets of geometry
data, with and without attention. Since the experiments
were each run separately with different conditions,
there is room for further testing with neurophysiology
in which the geometric stimulus configurations and
attention manipulations are recorded in the same
neuron.

Model predictions

As noted earlier, existing neurophysiology data are
fairly sparse in terms of testing the kind of issues that

are critical for the flexible normalization model.
However, the goal of building models such as ours is
not only to show compatibility with some existing data,
but crucially, to make new predictions for experiments
that have not been done and are motivated by the
theory.

In our model, the co-assignment probabilities for a
given input stimulus are affected by attention. One can
conceive of experiments for which these would be
critical and for which our model predictions would be
expected to depart from other divisive models of
attention. Of particular interest are cases in which the
center stimulus is nonoptimal for the neuron and the
surround stimulus is optimal. As a consequence,
surround attention increases the surround gain but
decreases the co-assignment probability (because
center and surround influences are now even more
different and less likely to be co-assigned). This can
result in attention to the surround, reducing surround
suppression, rather than enhancing it as would be
predicted in divisive normalization models that do not
include flexible normalization pools. This can be
contrasted with the case of an optimal center and
non optimal surround, in which case attention to the
surround increases both the surround gain and the co-
assignment probability (because it makes center and
surround responses more similar), leading to more
suppression.

Figure 7 depicts the model predictions contrasting
the flexible and canonical model (assuming a tuned
surround in both). We vary the distance between the
center and surround orientations, with the center
either optimal or nonoptimal. To simulate the
canonical model, we used a reduced version of our
model without normalization pools (i.e., probability
of surround co-assigned to center normalization pool
always set to 1). The two models behave similarly for
optimal center and varying the surround; in both, the
amount of modulation by attention depends on the
difference between the orientations of center sur-
round. However, the canonical model predicts that
for a nonoptimal center stimulus and optimal
surround, the modulation by attention is essentially
similar and strong, regardless of the center stimulus
orientation (Figure 7a). The flexible model, in
contrast, predicts that the amount of attentional
modulation depends on the difference between the
orientation of the nonoptimal center and optimal
surround (Figure 7b). This is, in turn, a consequence
of the co-assignment probabilities (Figure 7c). This
example points to the suggestion that attention may
have similar effect as contrast (Coen-Cagli et al.,
2012) in terms of grouping of center and surround,
which results in some nontrivial predictions that have
yet to be tested experimentally.
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Discussion

We have focused on contextual effects and attention
within a generative class of scene statistics model. We
have previously linked our modeling approach to a
generalized form of divisive normalization model that
is sensitive to the statistical homogeneity of the input
and includes a flexible divisive normalization pool
(Coen-Cagli et al., 2012; Schwartz et al., 2009). Here we
have added attention to this class of model, via
weighting more heavily the contribution of the center
and surround units that are attended and in the same
normalization pool. We have shown that the resulting
attention model can explain some cortical data
pertaining to spatial contextual influences of orienta-
tion and attention. In particular, our model replicates
some neurophysiology results that have been previously
modeled with divisive normalization (Figure 4). Our
model also addresses some additional neurophysiology
spatial context data (Figures 5 and 6) and, importantly,
makes new testable predictions (Figure 7), given the
extension to stimulus-dependent normalization pools.

We next describe the relation to divisive normaliza-
tion models in more detail, as well as functional models
of attention and the implications of our model from a
functional standpoint. We then discuss the implications
of our model for neurophysiology and for perception,
and extensions of the modeling.

Relation to and extension of divisive
normalization models of attention

Our model relates to divisive normalization formu-
lations of attention (Reynolds & Heeger, 2009; see also
Ghose, 2009; Lee & Maunsell, 2009) and particularly to
the divisive normalization model described by Rey-
nolds and Heeger (2009). Reynolds and Heeger (2009)
are more permissive in the divisive normalization pool
and do not have a computational method to set the
surround selectivity in the divisive pool. They assume
that the normalization pool is fixed rather than
stimulus dependent.

Recent scene statistics approaches (e.g., Coen-Cagli
et al., 2012; Schwartz et al., 2009) suggest that surround
effects depend on properties such as the relative
orientation and contrast, which influence whether units
are in the same normalization pool. Here we propose
that attention could be manipulated within this
extended form of model. The form of cortical model
is thus motivated from scene statistics, potentially
providing an extra layer of functional interpretation.
We have shown that some existing experimental data
on attention are compatible with the suggestion of
stimulus-dependent normalization pools (e.g., Figures 5
and 6), although we note that the existing data on this
topic is sparse (see subsection on experimental impli-
cations).

Figure 7. Prediction of the flexible versus canonical model for nonoptimal center stimulus and optimal surround stimulus. (a) Predictions of

the canonical divisive normalization model. The y-axis corresponds to the response modulation by attention, i.e., the response of the

model neuron without attention divided by its response with attention. Black and gray solid lines are for an optimally oriented center

stimulus and varying the orientation of the surround stimulus. Blue and cyan lines are for an optimally oriented surround stimulus and

varying the orientation of the center stimulus. Black and blue lines are for an attention weight set to 3, and gray and cyan lines are for

different values of the attention weights. (b) Same but for the flexible normalization pool model. (c) Depicts for the flexible model the

estimated (posterior) weights that the surround is in the normalization pool of the center (plotted as the modulation of the estimated

weights without attention divided by the estimated weights with attention). Values greater than 1 indicate that attention increased the

estimated weights. The flexible model takes a weighted sum of E½gcjxc; xs; n1; ac; as� � jxcjmcs
;mcs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ca

2
c þ x2s a

2
s þ r

p
(divide by surround

condition) and E½gcjxc; n2; ac� ¼ jxcjmc
;mc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ca

2
c þ r

p
(divide only by center condition), with the weighting given by the posterior weights. In

the canonical model the weights are set to 1 such that there is always divisive normalization by the surround.
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Our model extends previous divisive normalization
models by incorporating co-assignment probabilities
that can be modified not only by the sensory input
(such as contrast and orientation) but also by attention;
this in turn influences the normalization pools. Indeed,
an additional proposal of the statistical model is that
attention could actually influence the (posterior)
probability that center and surround are deemed
dependent. We suggest that a rational may be seen in
the analogy of contrast and attention effects within the
model. The judgment about the dependence between a
single pair of adjacent regions is necessarily a proba-
bilistic one: The model can only compute a probability
that the given regions are an instance of a dependent
(or independent) process. Changes in contrast (and
attention) can change the evidence in favor of one
hypothesis or the other. As for contrast (Coen-Cagli et
al., 2012), we suggest that the intermediate cases in
which there is some probability that center and
surround are dependent (but it is not extremely near
0 or 1) are most interesting and may be biased by
attention. For instance, if attention to the surround
makes the center and surround appear even more
different, then the surround suppression could be
reduced according to the model. We have shown a
concrete predictive example (Figure 7).

We note that there are various forms of attention in
the literature, including: spatial, feature, and surface or
object-based attention. For spatial attention, we
suggest that the question of whether the spatial context
is in the divisive normalization pool of the target is
critical. For feature attention to the opposite hemifield,
the contextual stimulus is too far away spatially and
exerts no divisive influence, neither in the flexible model
nor in Reynolds and Heeger (2009). In this case, we
assume that the attention influence itself follows the
suggestion of Reynolds and Heeger (2009), and the
flexible and canonical models do not diverge. If there is
an interaction of both feature and spatial attention
(e.g., one is cued to a feature in the nonclassical
surround), then the models could, however, diverge due
to the potential for divisive normalization. Perceptual
grouping of surfaces or objects (where the grouping
extends to spatial regions outside the classical receptive
field) are interesting from the point of view of the
flexible model. We have specifically considered the
geometric grouping of orientation, as in Wannig et al.
(2011). We have shown that the flexible model is
sensitive to collinear versus other geometrical configu-
rations, thus diverging from the canonical model
(Figure 6). These directions might be expected to
generalize to other feature configurations beyond the
scope of this model: For instance, in area MT, Wannig,
Rodrı́guez, and Freiwald (2007), suggest that when
there are two spatially overlapping surfaces, then
attention to a feature in one surface essentially

‘‘spreads’’ across the surface. Other perceptual studies
(e.g., Festman & Braun, 2012) have shown attention
spread when the attended and ignored fields conform to
a complex perceptually grouped motion.

Our model is not tied to a specific mechanistic
implementation, although there are a range of mech-
anistic models for divisive normalization (see, e.g.,
references in Schwartz, Hsu, & Dayan, 2007; Carandini
& Heeger, 2012, reviews), for attention (see, e.g.,
references in Reynolds & Heeger, 2009; Baluch & Itti,
2011, reviews; Mishra, Fellous, & Sejnowski, 2006;
Tiesinga, Fellous, Salinas, José, & Sejnowski, 2004); as
well as the intersection of the two (e.g., Ayaz & Chance,
2009). The co-assignments in our model might be
related to network states switching between regimes in
which the surround is active or inactive or to
interneuron’s pooling different subpopulation outputs
(Salinas, 2003; Schwabe, Obermayer, Angelucci, &
Bressloff, 2006; see Coen-Cagli et al., 2012 and related
references).

Functional models of attention and functional
implications of our approach

The functional goal of attention is a topic of great
interest and has been addressed in other computational
modeling approaches. Dayan and Zemel (1999) mod-
eled attention as increased certainty (given tradeoff
between accuracy and metabolic cost) in a population
of cortical neurons for coding a stimulus property such
as orientation. A number of computational models of
attention have focused on Bayesian modeling frame-
works, given uncertain sensory inputs and top-down
attention priors (e.g., Chikkerur et al., 2010; Rao, 2005;
Yu & Dayan, 2005). Other recent work has suggested
that scenes are too complex to allow exact Bayesian
inference and that attention might serve to improve and
refine the approximations (Whiteley, 2008).

Yu and Dayan (2005) considered optimal inference
in the face of (e.g., spatial) uncertainty and have shown
that this can address various issues and classes of
perceptual attention data not addressed within our
framework, such as the Eriksen task and load (e.g.,
Dayan, 2009; Dayan & Solomon, 2010; Yu et al., 2009).
Chikkerur et al. (2010) assumed that the system should
infer the identity and position of the visual input and
showed that their resulting form of model is equivalent
to Reynolds and Heeger (2009). In their model,
attention essentially increases the prior probability of
a particular feature or location and, via Bayes, is
incorporated both in the numerator and the denomi-
nator of the formulation. Their model amounts to a
tuned surround normalization, but does not address
normalization pools. Chalk, Murray, and Series (in
revisions) explained modification of the prior as a
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strategy to optimize the expected reward in detection
tasks, under the hypothesis that the brain learns a
probabilistic model of both stimulus statistics and
reward statistics. These studies thus suggest a norma-
tive framework for the type of attentional modulation
that we have assumed. Here, we focus instead on its
interactions with scene statistics.

The attention model of Spratling (2008) does adopt a
scene statistics approach, but within a predictive coding
framework (e.g., Rao & Ballard, 1999, modified to be
multiplicative). Their model results in divisive normal-
ization due to the modified nonlinearity from the
original predictive coding. Attention multiplicatively
modulates the model neurons and essentially biases the
attended neurons to win in the competition over other
neurons and to suppress nonattended neurons. Al-
though their approach is described quite differently
from ours, the divisive normalization is driven by this
competition and proposed to facilitate binding, which
also goes beyond more canonical divisive normaliza-
tion frameworks with a fixed normalization signal.
However, they do not focus on issues of the heteroge-
neity in scenes and normalization pools, which is the
main focus here.

We suggest that attending to a location in the
surround influences the center computation only when
they are inferred to be statistically homogenous or
more generally part of the same texture or extended
object. There are at least two ways of interpreting our
model suggestion in this vein. First and perhaps more
intuitively, attention may be thought of as enhancing
the apparent contrast of the visual input at a given
location, as has been suggested before (e.g., Carrasco,
Ling, & Read, 2004; Carrasco, 2011, and references
therein). If one attends to the surround, then the
assumption that the surround appearance is enhanced
leads to the proper adjustment in the local estimation
of the center when center and surround are considered
statistically dependent; conversely, when center and
surround are independent, the enhanced contrast of the
surround has no effect on the estimation.

A second related way to consider the effect of
attention is that the visual input in the attended
location may become a more reliable cue than the
unattended location, therefore weighting its contribu-
tion more heavily in the estimation of the center, but
only if they are considered dependent. As an analogy,
consider the case of lightness perception (Adelson,
2000). The luminance is a more global shared property,
and the reflectance is a more local property. If one aims
to estimate a local reflectance in a given position, then
if attention is to a surround location sharing the same
luminance, the surround might be more heavily
weighted in such computation as if that information
is more enhanced or more reliable. In contrast,
attending to a location that is known to have an

entirely different luminance would not affect the local
estimation. This suggests that attention could serve to
improve local estimates by properly setting the
normalization pools. This concept could be formalized
by adding an explicit noise term to the model and
evaluating the local estimation in a task. This direction
offers a route for future work but is beyond the scope
of this paper. In addition, we suggest that attention
could change the probability that center and surround
are considered to be part of the same global object in
this estimation.

Neurophysiological implications

We have modeled a range of attention neurophys-
iology data in the literature, with emphasis on the
interaction between surround modulation and atten-
tion. We suggest a number of directions for future
experiments in neurophysiology to further test the
model.

While there have been recent biological data on
surround and attention, we still lack understanding of
many issues, which are crucial for constraining and
testing the modeling. For V4, we do not have good
understanding of surround selectivity even without
attention, although Schein and Desimone (1990)
suggest that suppression in V4 outside the classical
receptive field is stronger for preferred orientation. In
contrast, while a lot is known about surround effects in
V1 and its selectivity to properties of the stimulus such
as the orientation, we know less about the interaction
between attention and surround in V1. Some data point
to attention effects in V1 (Chen et al., 2008; Roberts,
Delicato, Herrero, Gieselmann, & Thiele, 2007; Roelf-
sema, Lamme, & Spekreijse, 1998) and to similarities in
attention between V1 and V4 (e.g., McAdams & Reid,
2005; Motter, 1993).

In general, it would be desirable to have more
systematic testing of surround tuning (e.g., for different
orientations outside the classical receptive field) and
attention manipulation in the same experiment. Most
studies of attention either fix the surround orientation
or do not control for it. The finding of strong effects for
the fixed condition of an optimal surround (Chen et al.,
2008; Roberts et al., 2007; Sundberg et al., 2009) and
that the amount of attentional influence depends on the
amount of surround suppression (Sundberg et al.,
2009) are consistent with our model. However, more
fine and systematic manipulations of optimal and
nonoptimal orientations in the center and surround,
with and without attention (e.g., Figure 7), would be a
stronger test case. Indeed, it was the fine manipulations
without attention for V1 that allowed us to test the
generalized divisive normalization model more closely
in the co-assignment regimes where it makes nontrivial
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predictions (Coen-Cagli et al., 2012); such systematic
testing with attention would allow us to similarly
constrain the attentional modeling.

We also briefly note other related neurophysiology
work on attention, which is not particular to our model
versus other divisive normalization approaches. Other
work on surround neurophysiology (Chen et al., 2008)
pertains to task difficulty in area V1. They report
results from two classes of neurons: ‘‘regular-spiking’’
neurons and ‘‘fast-spiking’’ putative interneurons. We
expect the regular-spiking neural data to be most
compatible with our model. When we assume that the
attention weight is stronger for the hard task than for
the easy task, we can obtain the right qualitative flavor
of these ‘‘difficulty-suppressed neurons’’ in simulation;
that is, responses are more suppressed when attending
to the surround (due to increased suppression in the
denominator of the divisive normalization; not shown).
However, our model in its current form (and indeed
also related divisive models) does not include a distinct
separation of difficulty-suppressed and difficulty-en-
hanced neurons, as suggested in the data. Other V1
work (Roberts et al., 2007) has reported differences in
area summation curves due to attention, in which
attention to the RF in the near fovea reduces the RF
radius, and attention to the RF in the parafovea
increases the RF radius or peak of the area summation
curve. Although we do not have control of fovea and
periphery in the model, it is possible that some of the
changes may be due to the attention size relative to the
RF size of the neuron (in an analogous suggestion to
issues leading to response versus contrast gain in
Herrmann, Montaser-Kouhsari, Carrasco, & Heeger,
2010; Reynolds & Heeger, 2009; our Figure 4). In the
experiments of Roberts et al. (2007), the portion of the
bar stimulus that required attention was a small
luminance patch. To model the near fovea, one might
assume that the attention field covers both center and
surround units, since the RF is small and even a little
jitter is likely to include the surround. Attention would
then include more surround suppression and reduce the
RF radius. To model the more peripheral RFs, one
might assume that attention is confined within the
center unit RF, because the attended region of the bar
is small, and the RF is larger. Attention would then
modulate only the center unit RF and not invoke more
surround suppression. This argument is not special to
our divisive normalization formulation and would be
expected to hold for other related models.

Perceptual implications

In previous work, we have used a similar form of
divisive normalization model to address the perceptual
tilt illusion via a standard population readout

(Schwartz et al., 2009). The attention model could also
be used to tie in with such perceptual biases, but more
understanding is needed regarding manipulating atten-
tion to center and surround in the tilt illusion.

In repulsive biases, which are apparent, for instance,
in the classical tilt illusion for surround stimuli, the
center orientation is perceived as tilted away from the
surround more than it actually is. Such repulsive effects
occur for small orientation differences between the
center and surround stimuli. Such effects without
attention can be explained by canonical divisive
normalization (Schwartz et al., 2009). Surround stimuli
can also induce weaker attractive effects for large
orientation differences between the center and sur-
round, an effect that arises in our model without
attention from flexible normalization pools (Schwartz
et al., 2009).

There has been work on repulsive biases in the face
of attention with either other features or in the
temporal domain (e.g., Liu, Larsson, & Carrasco,
2007; Prinzmetal, Nwachuku, & Bodanski, 1997;
Spivey & Spirn, 2000; Tsal, Shaley, Zakay, & Lubow,
1994; Tzvetanov, Womelsdorf, Niebergall, & Treue,
2006). However, there is little data on tilt illusion and
attention addressing these issues (although see work on
spatial crowding and attention; Mareschal, Morgan, &
Solomon, 2010). There are at least two different sets of
studies suggestive of the main change in repulsive bias
that could emerge from a canonical divisive normali-
zation model. First, there have been studies on the
temporal analog of the tilt illusion (Clifford, Wender-
oth, & Spehar, 2000; Schwartz et al., 2007), namely on
the tilt aftereffect, showing that attention to the
temporal context can increase repulsive biases (Liu et
al., 2007; Spivey & Spirn, 2000). Second, there have
been studies on the motion direction analog of the tilt
illusion (Clifford, 2002), namely the influence of
attention on surround motion repulsion (Tzvetanov et
al., 2006). This study reveals an increased bias when
attending to the context and also hints at the possibility
that attention to a target in the absence of attention to
a context may lead to less bias.

We have found in our model that similar predictions
hold for repulsive effects in the tilt illusion (Figure 8).
For the simulations, we follow an experimental design
inspired by Tsvetanov et al. (2006), but in the tilt
domain. Specifically, we include a vertical center
orientation and two possible surround orientations (at
6208; this is also similar to the tilt aftereffect attention
experiments), and manipulate attention in this setup.
Attention to the center decreases the repulsive bias due
to less suppressive weight from the surround context,
and conversely, attention to the surround stimulus
increases the repulsive bias further due to more
suppression from the surround via the increased
attention weight. This is more pronounced when there

Journal of Vision (2013) 13(1):25, 1–24 Schwartz & Coen-Cagli 18



is only one surround orientation. This prediction would
qualitatively hold also for the canonical divisive
normalization model and does not require flexible
normalization pools.

In addition, the main focus of previous psychophys-
ical work has been with respect to repulsive biases and
attention. An open question is whether attractive biases
that occur for large (e.g., orientation or motion)
differences between target and context stimuli can be
modulated via attention. Although attractive biases are
more elusive in perceptual data, this could constitute an
interesting test case for our model. Attractive biases
occur in the realm of lower (but not zero) probability of
co-assignment in the flexible model (Schwartz et al.,
2009), and attention could alter these probabilities and
thus shift the angle that leads to maximal attraction.
We have focused here on the perceptual tilt illusion and
attention. Perceptual studies have also shown that

attention can modulate the integration of target and
collinear flankers (Freeman, Driver, Sagi, & Zhaoping,
2003). There are also more general interesting questions
beyond attention to a single feature regarding how our
perception of grouping and segmentation of textures,
surfaces, and objects in the world interact with
attentional processes.

Model extensions

There are also a number of directions to extend the
modeling. We have assumed that an attention signal is
known (as is often analogous to the way attention
experiments are done); however, one can consider
extensions to the scene statistics approach in which
attention provides some form of supervision in the
learning (for a recent review, see Baluch & Itti, 2011;
and for a reinforcement learning framework, Chalk,
Murray, & Series, personal communication and sub-
mitted; and for eye movements, see Hayhoe & Ballard,
2005). We have also not addressed the possibility of
correlated variability between model neurons in our
population, an aspect that has received recent emphasis
in the attention literature (e.g., Cohen & Maunsell,
2009, 2011; Mitchell, Sundberg, & Reynolds, 2009). An
important question for the future is whether the flexible
normalization extends to other grouping aspects, such
as occlusion and figure-ground. Indeed, such issues are
expected to influence whether the surround is in the
normalization pool of the center. We have assumed
that higher cortical areas hierarchically inherit the
orientation selectivity of earlier visual areas. To address
attention effects that are more specific to midlevel
vision, we expect that the model would need to be
expanded hierarchically to learn more complex features
beyond orientation.

More generally, spatial context and temporal context
(e.g., adaptation) are closely tied (Schwartz et al.,
2007), and there are indeed tilt aftereffect data that
could be explained by assuming a similar form of model
in time as in space. The relation between neural
adaptation and attention is poorly understood physi-
ologically. There is great interest in obtaining a more
unified understanding of the interaction between the
signal statistics in space and time, and attention factors.
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Appendix

Gaussian estimate

As in previous work on the Gaussian Scale Mixture
(GSM), the generative model is only well defined with a
prior set on each of its components. The Gaussian
component by definition includes a Gaussian prior as
discussed in the main text, and for the mixer variable v,
we assume a loglogistic prior. The exact form of the
Gaussian estimate in the GSM depends on the mixer
variable prior (see also Wainwright, Simoncelli, &
Willsky, 2001). This does not affect the divisive form
and qualitative nature of the simulations reported here,
but influences the exponent of the numerator and
denominator and therefore the saturation of the
contrast response function. Here we use a loglogistic
prior, which leads to a saturating curve. In previous
modeling we have used a Rayleigh prior (Coen-Cagli
et al., 2012; Schwartz et al., 2009), for which the
exponent of the denominator is smaller; this can
accommodate all the results reported here except for
the needed saturation of the contrast response function
for obtaining the results of Figure 4 on changes in
contrast versus response gain with attention. Different
neurons have different saturations, and from our
perspective here (as in other divisive normalization
formulations), we assume saturation via this choice of
mixer prior.

Without loss of generality, we write out the case of
center and surround co-assigned and therefore sharing
a common mixer. We also write out the equations
without attention for readability. Incorporating atten-
tion would (as described in detail in the main text)
change xc to acxc and xx to asxs in all the equations
below.

For filter responses X ¼ (xc, xs) and Gaussian
variable g¼ (gc, gs) with covariance R, the GSM model
is given by:

xc ¼ vgc;xs ¼ vgs

The priors on each of the model components are given by:

p g½ � ¼ Nð0;RÞ ¼ 1

ð2pÞ
n
2jR

1
2 j
expð�XtR�1XÞ

p v½ � ¼
b
a

x
a

� �b�1
1þ x

a

� �bh i2
We assume a¼ 1; b¼ 2. Throughout the paper, we also
assume the covariance matrix R is the identity matrix.

As in our previous GSM work (Coen-Cagli et al.,
2012; Schwartz et al., 2009), we assume that the neural
response at a center location is given by the Gaussian

estimate for the center. This is obtained via Bayes and
given by:

E gcjX½ �

¼ jxcjffiffiffi
2
p

mcs

·
ðm2

cs þ kcs þ 1Þexp m2
cs

2

n o
Ekcsþ1

2

m2
cs

2

� �
� 2

h i
C kcsþ1

2

� �
ðm2

cs þ kcsÞexp m2
cs

2

n o
Ekcs

2

m2
cs

2

� �
� 2

h i
C kcs

2

� � ;

mcs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xTR�1cs xþ r

q
;

(See similar detailed Bayesian derivation in Schwartz et
al., 2009 appendix.) Note that this is proportional to a
divisive normalization formulation, as pointed out in
the main text, with the other terms arising from the
usual constraint that the probability distribution must
sum to 1:

E gcjX½ �� jxcj
mcs

;

mcs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xTR�1cs xþ r

q
;

where mcs is the gain signal for center and surround
(this is the same signal as in the main text, but we write
it out more generally with the covariance matrix Rcs);
kcs are the number of filters in center and surround;
Ei( ) is an exponential integration function; and C( ) is
the Gamma function.

We can similarly write out the non–co-assigned case,
replacing the cs subscripts with c subscripts (since
center does not depend on surround and has its own
mixer variable).

Posterior co-assignment probability

We estimate the (posterior) probability of co-
assignment given the input stimulus and attention
weights as follows (using Bayes):

p n1jxc;xs½ � ¼ pðn1ÞPcs

pðn1ÞPcs þ pðn2ÞPcPs
;

Pcs ¼ 2p
Kcs
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðR�1cs Þ

q� ��1
2�2þ

Kcs
2

h i
m

1�Kcs
2

cs

h i

· ðmcs þ KcsÞe
mcs
2 Ei

Kcs

2
;
mcs

2

	 

� 2

� �
C

Kcs

2

	 
� �

We can also similarly write out PcPs, replacing the
subscripts cs with c and s respectively, and therefore
reflecting the scenario in which center and surround are
not co-assigned.

We similarly obtain the (posterior) probability of
non–co-assignment, with the two probabilities adding

Journal of Vision (2013) 13(1):25, 1–24 Schwartz & Coen-Cagli 23



to 1:

p n2jxc;xs½ � ¼ 1� p n1jxc;xs½ �
These equations are identical for the case of attention,

which as before replaces xc to acxc and xs to asxs in all
the equations. In this case, the posterior probabilities
are defined as p(n1 j xc, xs, ac, as) and p(n2 j xc, xs, ac,
as).
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